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Stochastic optimisation with inequality constraints using simultaneous

perturbations and penalty functions
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We present a stochastic approximation algorithm based on penalty function method and a simultaneous
perturbation gradient estimate for solving stochastic optimisation problems with general inequality constraints.
We present a general convergence result that applies to a class of penalty functions including the quadratic
penalty function, the augmented Lagrangian, and the absolute penalty function. We also establish an asymptotic
normality result for the algorithm with smooth penalty functions under minor assumptions. Numerical results are
given to compare the performance of the proposed algorithm with different penalty functions.

Keywords: stochastic optimisation; inequality constraint; simultaneous perturbation

1. Introduction

In this paper, we consider a constrained stochastic

optimisation problem for which only noisy measure-

ments of the cost function are available. More

specifically, we are aimed to solve the following

optimisation problem:

min
� 2G

Lð�Þ, ð1Þ

where L :Rd
!R is a real-valued cost function, � 2 Rd

is the parameter vector, and G�Rd is the constraint

set. We also assume that the gradient of L(�) exists and

is denoted by g(�). We assume that there exists a unique

solution �* for the constrained optimisation problem

defined by (1). We consider the situation where no

explicit closed-form expression of the function L is

available (or is very complicated even if available), and

the only information are noisy measurements of L at

specified values of the parameter vector �. This

scenario arises naturally for simulation-based optimi-

sation where the cost function L is defined as the

expected value of a random cost associated with the

stochastic simulation of a complex system. We also

assume that significant costs (in term of time and/or

computational costs) are involved in obtaining each

measurement (or sample) of L(�). These constraint

prevent us from estimating the gradient (or Hessian) of

L(�) accurately, hence prohibit the application of

effective non-linear programming techniques for

inequality constraint, for example, the sequential

quadratic programming methods; see, for example,

Bertsekas (1995, x 4.3). Throughout the paper, we use

�n to denote the nth estimate of the solution �*.
Several results have been presented for constrained

optimisation in the stochastic domain. In the area of

stochastic approximation (SA), most of the available

results are based on the simple idea of projecting the

estimate �n back to its nearest point in G whenever �n
lies outside the constraint set G. These projection-

based SA algorithms are typically of the following

form:

�nþ1 ¼ �G �n � anĝnð�nÞ½ �, ð2Þ

where �G :R
d
!G is the set projection operator, and

ĝnð�nÞ is an estimate of the gradient g(�n); see, for

example, Dupuis and Kushnes (1987); Kushner and

Clark (1978); Kushner and Yin (1997); Sadegh (1997).

The main difficulty for this projection approach lies in

the implementation (calculation) of the projection

operator �G. Except for simple constraints like interval

or linear constraints, calculation of �G(�) for an

arbitrary vector � is a formidable task.
Other techniques for dealing with constraints have

also been considered: Hiriart-Urruty (1977) and Pflug

(1981) present and analyse a SA algorithm based on

the penalty function method for stochastic optimisa-

tion of a convex function with convex inequality

constraints; Kushner and Clark (1978) presents several

SA algorithms based on the Lagrange multiplier

method, the penalty function method, and a combina-

tion of both. Most of these techniques rely on the
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Kiefer and Wofolwitz (1952) (KW) type of gradient
estimate when the gradient of the cost function is not
readily available. Furthermore, the convergence of
these SA algorithms based on ‘non-projection’ techni-
ques generally requires complicated assumptions on
the cost function L and the constraint set G. In this
paper, we present and study the convergence of a class
of algorithms based on the penalty function methods
and the simultaneous perturbation (SP) gradient
estimate Spall (1992). The advantage of the SP gradient
estimate over the KW-type estimate for unconstrained
optimisation has been demonstrated with the simulta-
neous perturbation stochastic approximation (SPSA)
algorithms. And whenever possible, we present suffi-
cient conditions (as remarks) that can be more easily
verified than the much weaker conditions used in our
convergence proofs.

We focus on general explicit inequality constraints
where G is defined by

G, f� 2Rd: qjð�Þ � 0, j ¼ 1, . . . , sg, ð3Þ

where qj :R
d
!R are continuously differentiable

real-valued functions. We assume that the analytical
expression of the function qj is available. We extend the
result presented in Wang and Spall (1999) to incorpo-
rate a larger classes of penalty functions based on
the augmented Lagragian method. We also establish
the asymptotic normality for the proposed algorithm.
Simulation results are presented to illustrated the
performance of the technique for stochastic
optimisation.

2. Constrained SPSA algorithms

2.1 Penalty functions

The basic idea of the penalty-function approach is to
convert the originally constrained optimisation pro-
blem (1) into an unconstrained one defined by

min
�

Lrð�Þ,Lð�Þ þ rPð�Þ, ð4Þ

where P:Rd
!R is the penalty function and r is

a positive real number normally referred to as the
penalty parameter. The penalty functions are defined
such that P is an increasing function of the constraint
functions qj; P4 0 if and only if qj4 0 for any j;
P!1 as qj41; and P!�l (l� 0) as qj!�1. In
this paper, we consider a penalty function method
based on the augmented Lagrangian function defined
by

Lrð�, lÞ ¼ Lð�Þ þ
1

2r

Xs
j¼1

maxf0, lj þ rqjð�Þg
� �2

�l2j
n o

,

ð5Þ

where l 2 Rs can be viewed as an estimate of the

Lagrange multiplier vector. The associated penalty

function is

Pð�Þ ¼
1

2r2

Xs
j¼1

maxf0, lj þ rqjð�Þg
� �2

�l2j
n o

: ð6Þ

Let {rn} be a positive and strictly increasing sequence

with rn!1 and {ln} be a bounded non-negative

sequence in Rs. It can be shown (see, for example,

Bertsekas (1995, x 4.2)) that the minimum of the

sequence functions {Ln}, defined by

Lnð�Þ,Lrn ð�, lnÞ,

converges to the solution of the original constrained

problem (1). Since the penalised cost function (or

the augmented Lagrangian) (5) is a differentiable

function of �, we can apply the standard stochastic

approximation technique with the SP gradient estimate

for L to minimise {Ln(�)}. In other words, the original

problem can be solved with an algorithm of the

following form:

�nþ1 ¼ �n � anr̂Lnð�nÞ

¼ �n � anĝn � anrnrPð�nÞ,

where ĝn is the SP estimate of the gradient g(�) at �n
that we shall specify later. Note that since we assume

the constraints are explicitly given, the gradient of the

penalty function P(�) is directly used in the algorithm.
Note that when ln¼ 0, the penalty function defined

by (6) reduces to the standard quadratic penalty

function discussed in Wang and Spall (1999)

Lrð�, 0Þ ¼ Lð�Þ þ r
Xs
j¼1

maxf0, qjð�Þg
� �2

:

Even though the convergence of the proposed algo-

rithm only requires {ln} be bounded (hence we can set

ln¼ 0), we can significantly improve the performance

of the algorithm with appropriate choice of the

sequence based on concepts from Lagrange multiplier

theory. Moreover, it has been shown (Bertsekas 1995)

that, with the standard quadratic penalty function, the

penalized cost function Ln¼Lþ rnP can become ill-

conditioned as rn increases (that is, the condition

number of the Hessian matrix of Ln at �
�
n diverges to1

with rn). The use of the general penalty function

defined in (6) can prevent this difficulty if {ln} is

chosen so that it is close to the true Lagrange

multipliers. In x 4, we will present an iterative method

based on the method of multipliers (see, for example,

Bertsekas (1982)) to update ln and compare its

performance with the standard quadratic penalty

function.
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2.2 A SPSA algorithms for inequality constraints

In this section, we present the specific form of the
algorithm for solving the constrained stochastic
optimisation problem. The algorithm we consider is
defined by

�nþ1 ¼ �n � anĝnð�nÞ � anrnrPð�nÞ, ð7Þ

where ĝnð�nÞ is an estimate of the gradient of L, g(�), at
�n, {rn} is an increasing sequence of positive scalar with
limn!1 rn ¼ 1, rP(�) is the gradient of P(�) at �, and
{an} is a positive scalar sequence satisfying an! 0 andP1

n¼1 an ¼ 1. The gradient estimate ĝn is obtained
from two noisy measurements of the cost function L by

ðLð�n þ cn�nÞ þ �
þ
n Þ � ðLð�n � cn�nÞ þ �

�
n Þ

2cn

1

�n
, ð8Þ

where �n 2 R
d is a random perturbation vector,

cn! 0 is a positive sequence, �þn and ��n are noise in
the measurements. and 1/�n denotes the vector
1=�1

n, . . . , 1=�d
n

� �
. For analysis, we rewrite the algo-

rithm (7) into

�nþ1 ¼ �n � angð�nÞ � anrnrPð�nÞ þ andn � an
�n

2cn�n
,

ð9Þ

where dn and "n are defined by

dn, gð�nÞ �
Lð�n þ cn�nÞ � Lð�n � cn�nÞ

2cn�n
,

�n, �
þ
n � �

�
n ,

respectively.
We establish the convergence of the algorithm (7)

and the associated asymptotic normality under appro-
priate assumptions in the next section.

3. Convergence and asymptotic normality

3.1 Convergence theorem

To establish convergence of the algorithm (7), we need
to study the asymptotic behaviour of an SA algorithm
with a ‘time-varying’ regression function. In other
words, we need to consider the convergence of an SA
algorithm of the following form:

�nþ1 ¼ �n � an fnð�nÞ þ andn þ anen, ð10Þ

where { fn(�)} is a sequence of functions. We state here
without proof a version of the convergence theorem
given by Spall and Cristion (1998) for an algorithm in
the generic form (10).

Theorem 1: Assume the following conditions hold.

(A.1) For each n large enough (�N for some N 2 N ),
there exists a unique ��n such that fnð�

�
nÞ ¼ 0.

Furthermore, limn!1 �
�
n ¼ �

�:

(A.2) dn! 0, and
Pn

k¼1 akek converges.
(A.3) For some N51, any �4 0 and for each n�N,

if k�� �*k� �, then there exists a �n(�)4 0
such that (�� �*)T fn(�)� �n(�)k���*k where
�n(�) satisfies

P1
n¼1 an�nð�Þ ¼ 1 and

dn�n(�)
�1
! 0.

(A.4) For each i¼ 1, 2, . . . , d, and any �4 0, if
j�ni� (�*)ij4 � eventually, then either fni(�n)� 0
eventually or fni(�n)5 0 eventually, where we use
(�*)i to denote the ith element of �*.

(A.5) For any �4 0 and non-empty S� {1, 2, . . . , d}
there exists a �0(�,S)4 � such that for all
� 2 {� 2Rd : j(�� �*)ij5 � when i 62 S,
j(�� �*)ij ��

0(�,S) when i 2 S},

lim sup
n!1

P
i 6 2Sð� � �

�Þi fnið�ÞP
i2Sð� � �

�Þi fnið�Þ

����
����51:

Then the sequence {�n} defined by the algorithm (10)
converges to �*.

Based on Theorem 3.1, we give a convergence result for
algorithm (7) by substituting rLn(�n)¼ g(�n)þ
rnrP(�n), dn, and �n=2cn�n into fn(�n), dn, and en in
(10), respectively. We need the following assumptions.

(C.1) There exists K1 2 N such that for all n�K1, we
have a unique ��n 2R

d with rLnð�
�
nÞ ¼ 0.

(C.2) {�ni} are i.i.d. and symmetrically distributed
about 0, with j�nij � �0 a.s. and Ej��1ni j � �1.

(C.3)
Pn

k¼1 ðak�k=2ck�kÞ converges almost surely.
(C.4) If k�� �*k� �, then there exists a �(�)4 0 such

that

(i) if � 2 G, (�� �*)T g(�)� �(�)k�� �*k4 0.
(ii) if � 62 G, at least one of the following two

conditions hold

. (�� �*)T g(�)� �(�)k�� �*k and
(�� �*)T�rP(�)� 0.

. (�� �*)T g(�)��M for some constant
M4 0 and (�� �*)TrP(�)��(�)k�� �*k4 0

(C.5) anrn! 0, g(�) and rP(�) are Lipschitz. (see
comments below).

(C.6) rLn(�) satisfies condition (A5).

Theorem 2: Suppose that assumptions (C.1–C.6) hold.
Then the sequence {�n} defined by (7) converges to �*
almost surely.

Proof: We only need to verify the conditions
(A.1–A.5) in Theorem 1 to show the desired result.

. Condition (A.1) basically requires the station-
ary point of the sequence {rLn(�)} converges
to �*. Assumption (C.1) together with existing
results on penalty function methods estab-
lishes this desired convergence.
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. From the results in Spall (1992), Wang (1996),

and assumptions (C.2–C.3), we can show that

condition (A.2) hold.
. Since rn!1, we have condition (A.3) hold

from assumption (C.4).
. From (9), assumption (C.1) and (C.5), we have

jð�nþ1 � �nÞij5jð�n � �
�Þij

for large n if j�ni� (�*)ij4 �. Hence, for large

n, the sequence {�ni} does not ‘jump’ over the
interval between (�*)i and �ni. Therefore, if

j�ni� (�*)ij4 � eventually, then the sequence

{ fni(�n)} does not change sign eventually. That

is, condition (A.4) holds.
. Assumption (A.5) holds directly from (C.6).

œ

Theorem 2 given above is general in the sense that it
does not specify the exact type of penalty function P(�)

to adopt. In particular, assumption (C.4) seems

difficult to satisfy. In fact, assumption (C.4) is fairly
weak and does address the limitation of the penalty

function based gradient descent algorithm. For exam-

ple, suppose that a constraint function qk(�) has a local

minimum at �0 with qk(�
0)4 0. Then for every � with

qj(�)� 0, j 6¼ k, we have (�� � 0)TrP(�)4 0 whenever �
is close enough to � 0. As rn gets larger, the term rP(�)
would dominate the behaviour of the algorithm and
result in a possible convergence to �0, a wrong solution.

We also like to point out that assumption (C.4) is

satisfied if cost function L and constraint functions qj,
j¼ 1, . . . , s are convex and satisfy the Slater condition,

that is, the minimum cost function value L(�*) is

finite and there exists a � 2 Rd such that qj(�)5 0 for
all j (this is the case studied in Pflug (1981)).

Assumption (C.6) ensures that for n sufficiently large

each element of g(�)þ rnrP(�) make a non-negligible
contribution to products of the form (�� �*)T(g(�)þ
rnrP(�)) when (�� �*)i 6¼ 0. A sufficient condition

for (C.6) is that for each i, gi(�)þ rnriP(�) be

uniformly bounded both away from 0 and 1 when
k�� �*)ik� �4 0 for all i.

Theorem 2 in the stated form does require that the

penalty function P be differentiable. However, it is

possible to extend the stated results to the case where
P is Lipschitz but not differentiable at a set of points

with zero Lebesgue measure, for example, the absolute

value penalty function

Pð�Þ ¼ max
j¼1,..., s

max 0, qjð�Þ
� �� �

:

In the case where the density function of measurement

noise (�þn and ��n in (8) exists and has infinite support,
we can take advantage of the fact that iterations of

the algorithm visit any zero-measure set with zero

probability. Assuming that the set D , {� 2 Rd:rP(�)
does not exist} has Lebesgue measure 0 and the

random perturbation �n follows Bernoulli distribution

(Pð�i
n ¼ 0Þ ¼ Pð�i

n ¼ 1Þ ¼ 12), we can construct a

simple proof to show that

Pf�n 2D infinitely ofteng ¼ 0

if P{�0 2 D}¼ 0. Therefore, the convergence result in

Theorem 2 applies to the penalty functions with non-

smoothness at a set with measure zero. Hence, in any

practical application, we can simply ignore this

technical difficulty and use

rPð�Þ ¼ maxf0, qJð�Þð�ÞgrqJð�Þð�Þ,

where J(�)¼ argmaxj¼1, . . . , s qj(�) (note that J(�) is

uniquely defined for � 62 D). An alternative approach

to handle this technical difficulty is to apply the

SP gradient estimate directly to the penalised cost

L(�)þ rP(�) and adopt the convergence analysis pre-

sented in He, Fu, Marcus (2003) for non-differentiable

optimisation with additional convexity assumptions.
Use of non-differentiable penalty functions might

allow us to avoid the difficulty of ill-conditioning as

rn!1 without using the more complicated penalty

function methods such as the augmented Lagrangian

method used here. The rationale here is that there

exists a constant �r ¼
Ps

j¼1ðl
�
j l�j is the Lagrange

multiplier associate with the jth constraint) such that

the minimum of Lþ rP is identical to the solution

of the original constrained problem for all r4�r, based

on the theory of exact penalties; see, for example, of

Bertsekas (1995, x 4.3). This property of the absolute

value penalty function allow us to use a constant

penalty parameter r4�r (instead of rn!1) to avoid

the issue of ill-conditioning. However, it is difficult to

obtain a good estimate for �r in our situation where the

analytical expression of g(�) (the gradient of the cost

function L(�)) is not available. And it is not clear

that the application of exact penalty functions with

rn!1 would lead to better performance than the

augmented Lagrangian based technique. In x 4 we will

also illustrate (via numerical results) the potential

poor performance of the algorithm with an arbitrarily

chosen large r.

3.2 Asymptotic normality

When differentiable penalty functions are used, we can

establish the asymptotic normality for the proposed

algorithms. In the case where qj(�*)5 0 for all

j¼ 1, . . . , s (that is, there is no active constraint at

�*), the asymptotic behaviour of the algorithm is

International Journal of Control 1235



exactly the same as the unconstrained SPSA algorithm

and has been established in Spall (1992). Here we

consider the case where at least one of constraints is

active at �*), that is, the set A , { j¼ 1, . . . , s ;

qj(�*)¼ 0} is not empty. We establish the asymptotic

normality for the algorithm with smooth penalty

functions of the form

Pð�Þ ¼
Xs
j¼1

pjðqjð�ÞÞ,

which including both the quadratic penalty and

augmented Lagrangian functions.
Assume further that E[enjF n,�n]¼ 0 a.s.,

E½e2njFn� ! �2 a.s., E½ð�i
nÞ
�2
� ! �2, and E½ð�i

nÞ
2
� !

	2, whereF n is the �-algebra generated by �1, . . . , �n. Let
H(�) denote the Hessian matrix of L(�) and

Hpð�Þ ¼
X
j2A

r2 pjðqjð�ÞÞ
� �

:

The next proposition establishes the asymptotic

normality for the proposed algorithm with the follow-

ing choice of parameters: an¼ an��, cn¼ cn�
 and

rn¼ rn� with a, c, r4 0, �¼ �� �� 2
4 0, and

3
 � ð�=2Þ þ ð3�=2Þ � 0.

Proposition 1: Assume that conditions (C.1–6) hold.

Let P be orthogonal with PHp(�*)P
T
¼ a�1r�1 diag

(l1, . . . , ld). Then

n�=2ð�n � �
�Þ dist

�!
Nð
,PMPTÞ, n!1

where M ¼ 1
4 a

2r2c�2�2�2 diag½ð2l1 � �þÞ
�1, . . . , ð2ld�

�þÞ
�1
� with �þ¼ �5 2mini li if �¼ 1 and �þ¼ 0 if

�5 1, and


 ¼
0 if 3
 �

�

2
þ
3�

2
40,

ðarHpð�
�Þ �

1

2
�þ I Þ

�1T if 3
 �
�

2
þ
3�

2
¼ 0,

8>><
>>:

where the lth element of T is

�
1

6
ac2	2 L

ð3Þ
lll ð�

�Þ þ 3
Xp

i¼1, i6¼l

L
ð3Þ
iii ð�

�Þ

" #
:

Proof: For large enough n, we have

E½ĝnð�nÞj�n� ¼ Hð ��nÞð�n � �
�Þ þ bnð�nÞ,

rPð�nÞ ¼ Hpð ��
0
nÞð�n � �

�Þ,

where bnð�nÞ ¼ E½ĝnð�nÞ � gnð�nÞj�n�. Rewrite the

algorithm into

�nþ1 � �
� ¼ ðI� n��þ��nÞð�n � �

�Þ þ n�ð���þ�Þ=2�nVn

þ n��þ���=2Tn,

where

�n ¼ an��Hð ��nÞ þ arHpð ��
0
nÞ,

Vn ¼ n�
 ĝnð�nÞ � Eðĝnð�nÞj�nÞ½ �

�n ¼ �aI,

Tk ¼ �an
�=2��bnð�nÞ:

Following the techniques used in Spall (1992) and the

general Normality results from Fabian (1968) we can

establish the desired result. œ

Note that based on the result in Proposition 1, the

convergence rate at n1/3 is achieved with �¼ 1 and


 ¼ ð1=6Þ � �40.

4. Numerical experiments

We test our algorithm on a constrained optimisation

problem described in (Schwefel 1995, p. 352)

min
�

Lð�Þ ¼ �21 þ �
2
2 þ 2�23 þ �

2
4 � 5�1 � 5�2 � 21�3 þ 7�4

subject to

q1ð�Þ ¼ 2�21 þ �
2
2 þ �

2
3 þ 2�1 � �2 � �4 � 5 � 0

q2ð�Þ ¼ �
2
1 þ �

2
2 þ �

2
3 þ �

2
4 þ �1 � �2 þ �3 � �4 � 8 � 0

q3ð�Þ ¼ �
2
1 þ 2�22 þ �

2
3 þ 2�24 � �1 � �4 � 10 � 0:

The minimum cost L(�*)¼�44 under constraints

occurs at �*¼ [0, 1, 2,�1]T where the constraints

q1(�)� 0 and q2(�)� 0 are active. The Lagrange multi-

plier is ½l�1, l
�
2, l
�
3�
T
¼ ½2, 1, 0�T. The problem had not

been solved to satisfactory accuracy with deterministic

search methods that operate directly with constraints;

claimed by Schwefel (1995). Further, we increase the

difficulty of the problem by adding i.i.d. zero-mean

Gaussian noise to L(�) and assume that only noisy

measurements of the cost function L are available

(without the gradient). The initial point is chosen at

[0, 0, 0, 0]T; and the standard deviation of the added

Gaussian noise is 4.0.
We consider three different penalty functions.

. Quadratic penalty function:

Pð�Þ ¼
1

2

Xs
j¼1

maxf0, qjð�Þg
� �2

: ð11Þ

In this case the gradient of P(�) required in

the algorithm is

rPð�Þ ¼
Xs
j¼1

max
�
0, qjð�Þ

�
rqjð�Þ: ð12Þ

1236 I.-J. Wang and J.C. Spall



. Augmented Lagrangian:

Pð�Þ ¼
1

2r2

Xs
j¼1

max
�
0, lj þ rqjð�Þ

�� �2
�l2: ð13Þ

In this case, the actual penalty function used

will vary over iteration depending on the

specific value selected for rn and ln. The

gradient of the penalty function required in

the algorithm for the nth iteration is

rPð�Þ ¼
1

rn

Xs
j¼1

max
�
0, lnj þ rnqjð�Þ

�
rqjð�Þ: ð14Þ

To properly update ln, we adopt a variation of the

multiplier method (Bertsekas 1995):

lnj ¼ max
�
0, lnj þ rnqjð�nÞ,M

�
, ð15Þ

where lnj denotes the jth element of the vector ln,
and M 2 Rþ is a large constant scalar. Since (15)

ensures that {ln} is bounded, convergence of the

minimum of {Ln(�)} remains valid. Furthermore,

{ln} will be close to the true Lagrange multiplier as

n!1.
. Absolute value penalty function:

Pð�Þ ¼ max
j¼1,..., s

max 0, qjð�Þ
� �� �

: ð16Þ

The gradient of P(�) when it exists is

rPð�Þ ¼ maxf0, qJð�Þð�ÞgrqJð�Þð�Þ, ð17Þ

where J(�)¼ arg maxj¼1, . . . , sqj(�).

For all the simulations we use the following
parameter values: an¼ 0.1(nþ 100)�0.602 and
cn¼ n�0.101. These parameters for an and cn are
chosen following a practical implementation guideline
recommended in Spall (1998). For the augmented
Lagrangian method, ln is initialised as a zero vector.
For the quadratic penalty function and augmented
Lagrangian, we use rn¼ 10n0.1 for the penalty para-
meter. For the absolute value penalty function, we
consider two possible values for the constant penalty:
rn¼ r¼ 3.01 and rn¼ r¼ 10. Note that in our experi-
ment, �r ¼

Ps
j¼1 l

�
j ¼ 3. Hence, the first choice of r at

3.01 is theoretically optimal but not practical, since
there is no reliable way to estimate �r. The second
choice of r represent a more typical scenario where an
upper bound on �r is estimated.

Figure 1 plots the averaged errors (over 100
independent simulations) to the optimum over 4000
iteration of the algorithms. The simulation result in
Figure 1 seems to suggest that the proposed algorithm
with the quadratic penalty function and the augmen-
ted Lagrangian led to comparable performance (the
augmented Lagrangian method performed slightly
better than the standard quadratic technique). This
suggests that a more effective update scheme for ln
than (15) is needed for the augmented Lagrangian
technique. The absolute value function with
r ¼ 3:01ð	 �r ¼ 3Þ has the best performance.
However, when an arbitrary upper bound on �r is
used (r¼ 10), the performance is much worse than
both the quadratic penalty function and the
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Figure 1. Error to the optimum (k�n� �*k) averaged over 100 independent simulations.
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augmented Lagrangian. This illustrates a key diffi-

culty in effective application of the exact penalty

theorem with the absolute penalty function.

5. Conclusions and remarks

We presented a stochastic approximation algorithm

based on penalty function method and a simultaneous

perturbation gradient estimate for solving stochastic

optimisation problems with general inequality con-

straints. We also presented a general convergence

result and the associated asymptotic Normality for the

proposed algorithm. Numerical results are included to

demonstrate the performance of the proposed algo-

rithm with the standard quadratic and absolute value

penalty functions and a more complicated penalty

function based on the augmented Lagrangian method.
In this paper, we considered the explicit con-

straints where the analytical expressions of the

constraints are available. It is also possible to apply

the same algorithm with appropriate gradient esti-

mate for P(�) to problems with implicit constraints

where constraints can only be measured or estimated

with possible errors. The success of this approach

would depend on efficient techniques to obtain

unbiased gradient estimate of the penalty function.

For example, if we can measure or estimate a value of

the penalty function P(�n) at arbitrary location with

zero-mean error, then the SP gradient estimate can be

applied. Of course, in this situation further assump-

tions on rn need to be satisfied (in general, we would

at least need
P1

n¼1 anrn=cnð Þ
251Þ. However, in a

typical application, we most likely can only measure

the value of constraint qj(�n) with zero-mean error.

Additional bias would be present if the standard

finite-difference or the SP techniques were applied to

estimate rP(�n) directly in this situation. A novel

technique to obtain unbiased estimate of �P(�n)
based on a reasonable number of measurements is

required to make the algorithm proposed in this

paper feasible in dealing with implicit constraints.
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