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“hysteresis,” caused by the subcritical bifurcation. The bifurcation
diagrams for the backstepping controller (57) are shown in Fig. 4 for
c0 = 6 and ��2k = 0:5. This controller “softens” the bifurcation from
subcritical to supercritical and eliminates the hysteresis. In addition,
it stabilizes all stall equilibria and prevents surge for all values of�.

While all three designs in Table I soften the bifurcation, the
global design achieved with backstepping is due to a methodological
difference. The bifurcation designs in [14] and [7] are based on
local stability properties established by the center manifold theorem
because the maximum of the compressor characteristic is a bifurcation
point that is not linearly controllable. Hence stabilization is inherently
nonlinear and results in asymptotic but not exponential stability.
Our Lyapunov-based design incorporates the good features of a
bifurcation-based design. For�0 = 1, the termVr(r) in the Lyapunov
function (49), becomesVr(R) = R, so that the Lyapunov function
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�
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2
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2 (59)

is (locally) quadratic in� and  but only linear inR. Since the
derivative ofV2 is quadratic in all three variables,_V2 � �a1�2 �
a2R

2
�a3( �c0�)

2 [see (56)], this clearly indicates that the achieved
type of stability is asymptotic but not exponential. However, to satisfy
the requirements not only for local but also for global stability, our
analysis is considerably more complicated.

V. CONCLUSION

Experimental validation of the controller presented here is planned
but is beyond the scope of this paper. Measurement of� represents a
challenge but it is not expected to be insurmountable considering that
a controller that employs thederivativeof � has been successfully
implemented [7].
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Boston, MA: Birkhäuser, 1996.
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A Deterministic Analysis of Stochastic
Approximation with Randomized Directions

I-Jeng Wang and Edwin K. P. Chong

Abstract—We study the convergence of two stochastic approxima-
tion algorithms with randomized directions: the simultaneous pertur-
bation stochastic approximation algorithm and the random direction
Kiefer–Wolfowitz algorithm. We establish deterministic necessary and
sufficient conditions on the random directions and noise sequences for
both algorithms, and these conditions demonstrate the effect of the “ran-
dom” directions on the “sample-path” behavior of the studied algorithms.
We discuss ideas for further research in analysis and design of these
algorithms.

Index Terms—Deterministic analysis, random directions, simultaneous
perturbation, stochastic approximation.

I. INTRODUCTION

One of the most important applications of stochastic approxi-
mation algorithms is in solving local optimization problems. If an
estimator of the gradient of the criterion function is available, the
Robbins–Monro algorithm [9] can be directly applied. In [7], Kiefer
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and Wolfowitz present a modification of the standard Robbins–Monro
algorithm to recursively estimate the extrema of a function in the
scalar case. The algorithm is based on a finite-difference estimate of
the gradient and does not require knowledge of the structure of the cri-
terion function. In [1], Blum presents a multivariate version of Kiefer
and Wolfowitz’s algorithm for higher dimensional optimization. We
will refer to this algorithm as the Kiefer–Wolfowitz (KW) algorithm.
For an objective function with dimensionp, the finite-difference
estimation generally requires2p observations at each iteration. This
requirement usually results in unrealistic computational complexity
when the dimension of the problem is high. To circumvent this
problem, several authors have studied variants of the KW algorithm
based on finite-difference estimates of the directional derivatives
along a sequence of randomized directions; see, for example, [6],
[8], and [12]. We will refer to this type of algorithm as theran-
dom direction Kiefer–Wolfowitz(RDKW) algorithm. The number of
observations needed by the RDKW algorithm is two per iteration,
regardless of the dimension of the problem. However, the question
arises as to whether the increase in the number of iterations (due to
the randomization of the directions) may offset the reduction in the
amount of data per iteration, resulting in worse overall performance.
Different distributions for the randomized direction sequence have
been considered: uniform distribution in [6], spherically uniform
distribution in [8], and Normal and Cauchy distributions in [12]. None
of these results theoretically establish the superiority of the RDKW
algorithms with respective direction distribution over the standard
KW algorithm.

In [11], Spall presents a KW-type algorithm based on a “simul-
taneous perturbation” gradient approximation that requires only two
observations at each iteration. The algorithm also moves along a
sequence of randomized directions as the RDKW algorithm. By
analyzing the asymptotic distribution, Spall [11] shows that the
proposed algorithm can be significantly more efficient than the
standard KW procedure. Following the terminology of [11], we
refer to Spall’s algorithm as thesimultaneous perturbation stochastic
approximation(SPSA) algorithm. Chin presents in [4] both theoretical
and numerical comparison of the performance of KW, RDKW (the
name RDSA is used therein), and SPSA algorithms. A more general
class of distributions is considered for the RDKW algorithm there and
the SPSA algorithm is shown to exhibit the smallest asymptotic mean
squared error. Chin makes an assumption that components of each
direction have unity variance, which is not necessary for convergence
of the RDKW algorithm as illustrated by Proposition 2. In fact, as
explained in Section IV, we can show that the SPSA and RDKW algo-
rithms achieved the same level of performance asymptotically under
optimized conditions. In [2], Chenet al. study a modification of the
SPSA algorithm and prove its convergence under weaker conditions.

In this paper, we focus on the sample-path analysis of the SPSA
and the RDKW algorithms. We develop a deterministic analysis
of the algorithms and present deterministic necessary and sufficient
conditions on both the randomized directions and noise sequence for
convergence of these algorithms. Different from the results in [2], [4],
and [11], we treat the “randomized” direction sequence as an arbitrary
deterministic sequence and derive the conditions on each individual
sequence for convergence of these algorithms. The resulting condition
displays the sample-path effect of each random direction sequence on
the convergence of both algorithms.

Throughout the paper, we consider the problem of recursively
estimating the minimum of an objective functionL: Rp ! R based
on noisy measurements ofL. We assume thatL satisfies the following
conditions.

A1) The gradient ofL, denoted byf = rL, exists and is
uniformly continuous.

A2) There existx� 2 Rp such that

• f(x�) = 0;
• for all � > 0, there existsh� > 0 such thatkx�x�k � �

implies f(x)T (x � x�) � h�kx � x�k.

Note that Assumptions A1) and A2) are not the weakest possible
assumptions on the functionL for convergence of the SPSA or
RDKW algorithms; for example, a weaker Lyapunov-type of condi-
tion is considered by Chenet al. in [2] for convergence of the SPSA
algorithm. Since our main objective is not to obtain convergence
results under weaker conditions onL, we adopt the more restrictive
assumptions [A1) and A2)] to avoid unnecessary complications that
may arise from considering the more generalL. Throughout this
paper,fcng is a positive scalar sequence withlimn!1 cn = 0.

II. CONVERGENCE OFROBBINS–MONRO ALGORITHMS

We rely mainly on the following convergence theorem from [14]
and [15] to derive conditions on the perturbations and noise.

Theorem 1: Consider the stochastic approximation algorithm

xn+1 = xn � anf(xn) + anen + anbn (1)

where fxng; feng; and fbng are sequences onRp; f : Rp !
Rp satisfies Assumption A2), andfang is a sequence of positive
real numbers satisfyinglimn!1 an = 0; 1

n=1 an = 1, and
limn!1 bn = 0. Suppose that the sequenceff(xn)g is bounded.
Then, for anyx1 in Rp; fxng converges tox� if and only if feng
satisfies any of the following conditions.

C1)

lim
n!1

sup
n�k�m(n;T )

k

i=n

aiei = 0

for someT > 0, wherem(n; T ) maxfk : an+ � � �+ak �
Tg.

C2)

lim
T!0

1

T
lim sup
n!1

sup
n�k�m(n;T)

k

i=n

aiei = 0:

C3) For any�; � > 0, and any infinite sequence of nonoverlap-
ping intervalsfIkg on N there existsK 2 N such that for
all k � K

n2I

anen < �

n2I

an + �:

C4) There exist sequencesffng and fgng with en = fn + gn
for all n such that

n

k=1

akfk converges andlim
n!1

gn = 0:

C5) The weighted averagef�eng of the sequencefeng defined by

�en =
1

�n

n

k=1

kek

converges to zero, where

�n =
1; n = 1

n

k=2
1

1�a
; otherwise

n = an�n:

Proof: See [14] for a proof for conditions C1)–C4) and [15] for
a proof for condition C5).

Theorem 1 provides five equivalence necessary and sufficient noise
conditions, conditions C1)–C5), for convergence of the standard
Robbins–Monro algorithm (1). Note that the assumption thatff(xn)g
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is bounded can be relaxed by incorporating the projection scheme
into the algorithm as in [3]. Since our objective is to investigate
the effect of the “random” directions on the algorithm, rather than
to weaken the convergence conditions, the form of the convergence
result in Theorem 1 suffices for our purpose. In the next section, we
will use Theorem 1 to establish the convergence of two stochastic
approximation algorithms with randomized directions by writing them
into the form of (1).

III. A LGORITHMS WITH RANDOMIZED DIRECTIONS

In this section, we study two variants of the KW algorithms
with randomized directions, including the SPSA and the RDKW
algorithms. In contrast to the standard KW algorithm, which moves
along an approximation of the gradient at each iteration, these algo-
rithms move along a sequence of randomized directions. Moreover,
these algorithms use only two measurements per iteration to estimate
the associated directional derivative as in the case of the RDKW
algorithm, or some related quantity as in the case of the SPSA
algorithm.

We define the randomized directions as a sequence of vectorsfdng
on Rp. We denote theith component ofdn by dni. Except for
Propositions 1 and 2, the sequencefdng is assumed to be an arbitrary
deterministic sequence. The main goal of this section is to establish
a deterministic characterization offdng that guarantees convergence
of the algorithms under reasonable assumptions. Note that we use
the same notationdn to represent the random directions for both
the SPSA and RDKW algorithms to elucidate the similarity between
them. This does not imply that the same direction sequence should be
applied to both algorithms. In general, different requirements onfdng
are needed for convergence of these two algorithms, as illustrated in
Theorems 2 and 3.

A. SPSA Algorithm

Although the convergence of Spall’s algorithm has been established
in [11], it is not clear (at least intuitively) why random perturbations
used in the algorithm would result in faster convergence. In both
Spall’s [11] and Chen’s [2] results, conditions on random pertur-
bations for convergence are stated in probabilistic settings. These
stochastic conditions provide little insight into the essential properties
of perturbations that contribute to the convergence and efficiency
of the SPSA algorithm. In this section, we develop a deterministic
framework for the analysis of the SPSA algorithm. We present five
equivalent deterministic necessary and sufficient conditions on both
the perturbation and noise for convergence of the SPSA algorithm,
based on Theorem 1. We believe that our sample-path characterization
sheds some light on what makes the SPSA algorithm effective.

We now describe a version of the SPSA algorithm. We define a
sequence of vectorsfrng, related tofdng, by

rn =
1

dn1
; � � � ;

1

dnp
:

The SPSA algorithm is described by

xn+1 = xn � an
y+n � y�n

2cn
dn (2)

where y+n and y�n are noisy measurements of the functionL at
perturbed points, defined by

y
+
n = L(xn + cnrn) + e

+
n

y
�
n = L(xn � cnrn) + e

�
n

with additive noisee+n and e�n , respectively. For convenience, we
write

f
r(xn) =

L(xn + cnrn)� L(xn � cnrn)

2cn
(3)

as an approximation to the directional derivative along the direction
rn; rTn f(xn). To analyze the algorithm, we rewrite (2) into the
standard form of the Robbins–Monro algorithm (1)

xn+1 = xn � anf
r(xn)dn + an

en

2cn
dn (4)

= xn � an r
T
n f(xn)� bn dn + an

en

2cn
dn

= xn � anf(xn) + anbndn + an
en

2cn
dn

� an dnr
T
n � I f(xn) (5)

by defining

bn = r
T
n f(xn)� f

r(xn)

en = e
�
n � e

+
n :

(6)

The sequencefbng represents the bias in the directional derivative
approximation. The effective noise for the algorithm is the scaled
difference between two measurement noise values,e

c
dn. We can

apply the result in Theorem 1 to establish the convergence of the
SPSA algorithm (2). We first prove that the bias sequencefbng
converges to zero.

Lemma 1: Suppose thatL: Rp ! R satisfies Assumption A1),
fcng converges to zero, andfrng is bounded. Then the sequence
fbng defined by (6) converges to zero.

Proof: By the Mean Value theorem

bn = r
T
n f(xn)�

L(xn + cnrn)� L(xn � cnrn)

2cn

= r
T
n [f(xn)� f(xn + (2�n � 1)cnrn)]

where0 � �n � 1 for all n 2 N . Let � > 0 be given. Sincef
is uniformly continuous, there exists� > 0 such thatkx � yk < �

implieskf(x)�f(y)k < �

sup kr k
. Furthermore, by the convergence

of fcng there existsN 2 N such thatk(2�n � 1)cnrnk < � for all
n � N . Hence, for alln � N

jbnj � krnkkf(xn)� f(xn + (2�n � 1)cnrn)k

< sup
n

krnk
�

supn krnk
= �:

Thereforefbng converges to zero.
Using Theorem 1 and Lemma 1, we establish a necessary and

sufficient condition for convergence of the SPSA algorithm in the
following theorem.

Theorem 2: Suppose that Assumptions A1 and A2) hold, and
frng; fdng; andff(xn)g are bounded. Then,fxng defined by (2)
converges tox� if and only if the sequencesf(dnrTn �I)f(xn)g and
f e

2c
dng satisfy conditions C1)–C5).
Proof ()): Suppose thatfxng converges tox�. Thenff(xn)g

converges tof(x�) = 0 by the continuity off . Since frng and
fdng are bounded,kdnrTn � Ik is bounded andf(dnrTn � I)f(xn)g
converges to zero. Thusf(dnrTn � I)f(xn)g satisfies conditions
C1)–C5). By Theorem 1,f(dnrTn � I)f(xn) �

e

2c
dng satisfies

C1)–C5). Thereforef e

2c
dng satisfies conditions C1)–C5).

((): This follows directly from Theorem 1 and Lemma 1.
Theorem 2 provides the tightest possible conditions on both the

randomized direction sequencefdng and noise sequencefeng. Note
that the condition ondn is “coupled” with the function valuesf(xn).
This special form of coupling suggests an adaptive design scheme
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for dn based on the estimate off(xn). However, this idea may be
difficult to carry out due to the special structure of the matrix

dnr
T
n � I =

0 d

d
� � � d

d
d

d
0 � � � d

d

...
...

...
d

d

d

d
� � � 0

: (7)

We can see that it is difficult to scale the elements in the matrix
according toff(xn)g. One solution to this is to establish probabilistic
sufficient conditions on the perturbation to guarantee that the deter-
ministic condition in Theorem 1 holds almost surely, as in [2] and
[11]. We present a general sufficient condition based on the martingale
convergence theorem. In the following proposition, we assume that
fdng and feng are random sequences.

Proposition 1: Let Fn be the �-algebra generated by
fdkgk=1;���;n and fekgk=1;���;n. Assume that 1

n=1
aqn < 1

for someq > 1, andE( d
d

j Fn�1) = 0 for i 6= j. Suppose that

fdng; frng; andff(xn)g are bounded. Then,f(dnrTn � I)f(xn)g
satisfies noise conditions C1)–C5) almost surely.

Proof: Let zn = an(dnr
T
n � I)f(xn); zn = [zn1; � � � ; znp]

T .
Since

E(zn j Fn�1) = E an dnr
T
n � I f(xn) j Fn�1 = 0

f n

k=1
zkg is a martingale. Furthermore

E(jznij
q) <1

for all i � p by the boundedness offdng; frng; ff(xn)g, and
1

n=1
apn. Hence by theLq convergence theorem for martingales [5,

eq. (4.4), p. 217], the sequencef n

k=1
zkg converges almost surely.

Therefore,f(dnrTn � I)f(xn)g satisfies condition C4) and hence the
noise conditions C1)–C5).

In [2] and [11], dn is assumed to be a vector ofp mutually
independent random variables independent ofFn�1. Under this
assumption, it is clear that the condition in Proposition 1 can be
satisfied by assuming eitherE(dni) = 0, as in [2], orE( 1

d
) = 0,

as in [11].

B. RDKW Algorithms

The RDKW algorithm with random directions of different dis-
tributions has been studied by several authors; see, for example,
[6], [8], and [12]. In this section, we study the convergence of
the RDKW algorithm for a general direction sequencefdng. We
establish deterministic necessary and sufficient conditions on both the
direction sequencefdng and the noise sequence for the convergence
of the RDKW algorithm (Theorem 3). We compare and contrast these
conditions to those of Theorem 2.

The RDKW algorithm can be described by

xn+1 = xn � an
y+n � y�n

2cn
dn (8)

where

y
+

n = L(xn + cndn) + e
+

n

y
�

n = L(xn � cndn) + e
�

n :

As in the case of the SPSA algorithm, we can rewrite the algorithm
(8) into a Robbins–Monro algorithm

xn+1 = xn � anf
d(xn)dn + an

en

2cn
dn

= xn � an�
2
f(xn) + anbndn + an

en

2cn
dn

� an dnd
T
n � �

2
I f(xn) (9)

by defining

bn = d
T
nf(xn)� f

d(xn)

en = e
�

n � e
+

n

(10)

where� > 0 is an arbitrary constant real number. Comparing (9)
with (4), we can see that the RDKW algorithm differs from the SPSA
algorithm only in the direction along which the directional derivative
is estimated.

Following the same arguments as in the proofs of Lemma 1 and
Theorem 2, we can show that the sequencefbng defined by (10)
converges to zero and the following theorem holds.

Theorem 3: Suppose that Assumptions A1) and A2) hold, and
fdng andff(xn)g are bounded. Then,fxng defined by (8) converges
tox� if and only if the sequencesf(dndTn��

2I)f(xn)g andf e

2c
dng

satisfy noise conditions C1)–C5).
Comparing the above conditions with those of Theorem 2, we again

notice a coupling betweenfdng andff(xn)g. Similar to the case of
the SPSA algorithm, it may be difficult to designfdng based on
ff(xn)g to satisfy the condition forf(dndTn � �2I)f(xn)g above,
due to the structure of the matrix

dnd
T
n � �I =

(dn1)
2 � �2 dn1dn2 � � � dn1dnp

dn2dn1 (dn2)
2 � �2 � � � dn2dnp

...
...

...
dnpdn1 dnpdn2 � � � (dnp)

2 � �2

:

(11)

Although we are allowed to choose smallerdni (the same is not
true for SPSA since 1

d
needs to be bounded), the diagonal terms

always give a “weight” around the quantity�2. Furthermore, if we
try to choose�2 = �2n such that�2n � (dni)

2 and let�n ! 0, the
resulting sequence of functionsf�2nf(xn)g in (9) may not satisfy
Assumptions A1) and A2) and the algorithm may not converge.
However, similar to the case for the SPSA algorithm, we can derive
the following sufficient probabilistic condition ondn. As before, we
assume below thatfdng andfeng are random sequences.

Proposition 2: Let Fn be the �-algebra generated by
fdkgk=1;���;n and fekgk=1;���;n. Assume that 1

n=1
aqn < 1

for someq > 1, andE(dnd
T
n j Fn�1) = �2I. Suppose thatfdng

and ff(xn)g are bounded. Thenf(dndTn � �2I)f(xn)g satisfies
conditions C1)–C5) almost surely.

IV. CONCLUSION

As pointed out in Section III, the SPSA and RDKW algorithms
are very similar in form. In fact, under a probabilistic framework,
we can show that these two algorithms have the same asymp-
totic performance under optimized conditions. In [10], Sadegh and
Spall show that the random direction sequencefdng with Bernoulli
distribution for each component is asymptotically optimal for the
SPSA algorithm. Following the same approach, we can show that
the Bernoulli distribution is also optimal for the RDKW algorithm,
based on the asymptotic distribution established by Chin in [4] for
the RDKW algorithm. These two algorithms are clearly identical in
this case and hence exhibit the same performance (see [13, Sec. 5.4]
for a proof).

Although the probabilistic approach used in [4] and [11] is useful
in assessing the asymptotic performance of stochastic approximation
algorithms, it provides little insight into the essential properties of ran-
domized directions that contribute to the convergence and efficiency
of the SPSA and RDKW algorithms. Furthermore, simulation results
suggest that the SPSA algorithm (or the RDKW algorithm) with
Bernoulli distributed randomized directions outperforms the standard
KW algorithm not only in the average but also along each sample
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path. This phenomenon certainly is not reflected in the probabilistic
analysis of [11] or [4]. Our deterministic analysis does shed some
light on what makes the SPSA and the RDKW algorithms effective.
Perhaps a complete answer can be obtained by further analyzing
the sequencef(dnrTn � I)f(xn)g (or f(dndTn � �2I)f(xn)g for
the RDKW), which is the difference between the SPSA (or the
RDKW) algorithm and the standard KW algorithm. In the case where
dni = �1, as in the case of Bernoulli distribution, the matrixdnr

T

n�I

(or dnd
T

n � I) has a unique structure

0 d

d
� � � d

d

d

d
0 � � � d

d

...
...

...
d

d

d

d
� � � 0

:

We conjecture that the effect of the elements in the sequence
f(dnr

T

n �I)f(xn)g will be “averaged out” [in the sense of condition
C5)] across the iterations along each sample path, if the directions
fdng are chosen appropriately.
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