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A scalable adaptive optics (AO) control system architecture composed of asynchronous control clusters based
on the stochastic parallel gradient descent (SPGD) optimization technique is discussed. It is shown that sub-
division of the control channels into asynchronous SPGD clusters improves the AO system performance by
better utilizing individual and/or group characteristics of adaptive system components. Results of numerical
simulations are presented for two different adaptive receiver systems based on asynchronous SPGD clusters—
one with a single deformable mirror with Zernike response functions and a second with tip—tilt and segmented
wavefront correctors. We also discuss adaptive wavefront control based on asynchronous parallel optimization
of several local performance metrics—a control architecture referred to as distributed adaptive optics (DAO).
Analysis of the DAO system architecture demonstrated the potential for significant increase of the adaptation
process convergence rate that occurs due to partial decoupling of the system control clusters optimizing indi-
vidual performance metrics. © 2006 Optical Society of America
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1. INTRODUCTION

Adaptive optics (AO) systems often comprise several
wavefront corrector types (tracking and beam steering
mirrors, several deformable mirrors, and/or liquid crystal
phase modulators) that have quite different dynamical
(time-response) characteristics.'™ This “nonuniformity”
of wavefront corrector time responses significantly com-
plicates control system architecture and commonly re-
sults in a simplified approach being taken where the con-
trol loops for all wavefront correctors are “synchronized”
based on the temporal dynamics of the wavefront correc-
tor with the slowest time response—“the slowest sets the
pace.” This artificially induced slowdown of AO system op-
eration may have a significant impact on an adaptive sys-
tem’s capability for compensation of fast-changing
atmospheric-turbulence-induced phase aberrations in
various AO applications. A desired solution of this prob-
lem would be development of adaptive optics architec-
tures composed of asynchronously operating wavefront
control subsystems (AO clusters). The need for asynchro-
nous parallel wavefront control in the form of AO clusters
also emerges in such applications as adaptive free-space
laser communication and relay-mirror-based laser beam
projection systems. In both of these system types, adap-
tive wavefront distortion compensation is performed in
remotely located AO subsystems. In these wavefront con-
trol configurations the remotely located AO subsystems
are quite difficult to synchronize without data exchange
(e.g., using additional optical or rf communication
channels?). On the other hand, the absence of synchroni-
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zation between remotely located wavefront control sys-
tems may result in undesired cross talk between their
control loops and compensation process instability.

One more example of the technical challenges faced by
conventional AO control techniques is feedback control of
super-high-resolution AO mirror arrays consisting hun-
dreds or even thousands of actuators—the so-called ex-
treme adaptive optics.5 With the conventional phase-
conjugation-based wavefront control approach, a key
bottleneck for these extreme-AO systems is the time de-
lay between the wavefront sensor’s data measurements
and the completion of control signals computation. Typi-
cally, the time required for the wavefront sensor data pro-
cessing increases proportionally to the square of the num-
ber of wavefront corrector (AO mirror) actuators.® For
this reason the high-resolution phase-conjugation-type
AO technique faces serious problems in providing the op-
erational speed required for most atmospheric AO appli-
cations.

Compensation operational speed can be an even more
serious problem in the alternative to phase-conjugation-
type systems based on optimization of a system perfor-
mance metric (e.g., Strehl raltio,1 sharpness functions,7 or
image quality metrics®). The metric optimization is com-
monly performed using iterative wavefront control algo-
rithms such as gradient descent, multidithering, and sto-
chastic parallel gradient descent (SPGD).}®° With these
wavefront control techniques the iterative process conver-
gence speed—on which the AO system compensation
bandwidth depends—rapidly decreases with increasing
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control channel number or, equivalently, AO compensa-
tion spatial resolution. From this viewpoint, subdivision
of the AO system’s control channels into parallel weakly
coupled control clusters, each with a smaller number of
control channels, may significantly improve convergence
speed and the AO system’s bandwidth.!® The AO wave-
front control architectures described here are based on
the use of asynchronous SPGD AO clusters. It is shown
that wavefront control based on asynchronous SPGD AO
clusters represents an attractive alternative to traditional
AO wavefront control approaches for various adaptive op-
tics applications.

2. STOCHASTIC PARALLEL GRADIENT
DESCENT CONTROL CLUSTERS: PROBLEM
STATEMENT

The notional schematic of an AO receiver system with
control clusters is shown in Fig. 1. In this system the con-
trol channels are distributed between N, asynchronously
operating control clusters with M}, (j=1,...,N,) channels
in each cluster. There is an advantage (but not a require-
ment) to assign AO system control channels to individual
clusters based on some common characteristic such as, for
example, wavefront corrector actuator time responses as
mentioned, actuator physical locations (e.g., control chan-
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Fig. 1. Schematic of an AO receiver system with wavefront con-
trol channels distributed between AO control clusters. Propaga-
tion of optical wave A, through a distorting layer results in phase
aberration ¢(r,¢) of received input wave A;,(r,t) that enters the
optical receiver system (shown by a cylinder). Here r={x,y} is a
coordinate vector orthogonal to the AO system’s optical axis and
t is the time. The receiver system optical train contains one or
more wavefront correctors (not shown). The receiver output wave
A, ui(r,t) with phase 8(r,t) (residual phase) enters a system per-
formance metric sensor sensitive to the residual phase aberra-
tion. The metric signal J is sent to controllers (control clusters)
that compute voltages {u; ;} that are applied to the wavefront cor-
rector’s electrodes. (a) Gray-scale images at right are examples of
the pupil plane phase aberration, (b) the phase correction at each
subaperture of the segmented wavefront corrector (described in
the text) having seven subapertures, and (c) the residual phase
distortion.

M. A. Vorontsov and G. W. Carhart

nels belonging to different wavefront correctors can be as-
signed to separate clusters) or spatial resolution of phase
distortion compensation (so that Zernike aberrations of
different orders are compensated using different control
clusters). A group of control channels associated with a
high-resolution wavefront corrector [AO mirror or liquid
crystal phase spatial light modulator (SLM)] segment can
be a cluster as well as a group of control channels associ-
ated with adaptive subapertures of a tiled optical
system.11

Assume that wavefront distortion compensation in an
AO system composed of N, clusters is based on optimiza-
tion of a measured performance metric J. In the AO sys-
tem schematic shown in Fig. 1, the performance metric is
proportional to received light power inside a small pin-
hole located at the coordinate origin of the lens focal plane
(Strehl metric). The metric value J depends on the control
voltages {u; ;} applied to AO system actuators, where indi-
cesl (I=1,...,M;) and j (j=1,...,N,) are associated with
the control channel and cluster numbers, correspondingly.
Thus the performance metric J is a function of Ny
=Ej1\iclM i control variables.

Consider first an AO control system architecture based
on performance metric optimization using the conven-
tional SPGD algorithm.S’lz’13 SPGD wavefront control
uses cyclic (iterative) updates of the control voltages {u; ;}
computed based on measurements of the performance
metric perturbations &/, where index n=0,1,..., corre-
sponds to the adaptation (optimization) process iteration
number. The metric perturbation &/ results from small
amplitude random control voltage changes (perturba-
tions) {du;;} applied simultaneously to all AO system
wavefront corrector electrodes. In the original SPGD ap-
proach, control voltage perturbations {du;;} are assumed
to be delta-correlated, random values with zero mean.®13
In more recent “SPGD clones,” the perturbations {u;;}
can be statistically dependent (correlated) random vari-
ables, so that the wavefront phase perturbations du(r)
originating from the control voltage perturbations {du;;}
are statistically correlated with phase aberrations the AO
system intends to compensate.®? The SPGD control volt-
age update rule is given by the expression

1
uyt Y = uf + &I su, (1)

where {yj(.”)}> 0 are update coefficients (gain coefficients).

In the conventional SPGD control algorithm, all the
perturbations {5ul'})} in Eq. (1) are applied simultaneously
and the corresponding metric perturbation &/ is mea-
sured after the delay time, 7=max; {7 ;} where {7, ;} are
time responses of the individual channels. This “the slow-
est sets the pace” time-delay rule is used to guarantee
that all transition processes in wavefront corrector actua-
tors and control circuits caused by the applied perturba-
tions or control voltage updates do not impact metric mea-
surements. This means that the SPGD iteration (clock)
rate is determined by the time response of the slowest
control channel. This requirement poses a problem when
using the SPGD wavefront control approach in AO sys-
tems having multiple wavefront correctors with different
operational bandwidths.
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In the case of sequential addressing of individual ac-
tuators (elements) of a high-resolution AO mirror array or
liquid crystal phase SLM, the time delay in metric mea-
surements is determined by the corrector frame update
time 70—the time required to address all wavefront cor-
rector elements—but not the time response 7,. of indi-
vidual actuators that can be significantly shorter than 7.
Thus, the SPGD control technique, as well as any other
metric optimization technique used for adaptive wave-
front control, follows the most conservative operational
times management approach: the control voltage update
rate is chosen based on the slowest temporal processes oc-
curring in the system—“the slowest sets the pace.” Divid-
ing the control channels into parallel asynchronously op-
erating control clusters as discussed in Section 3 intends
to improve AO system performance by better utilizing in-
dividual and/or group characteristics of adaptive system
elements.

3. DYNAMICAL MODEL OF
ASYNCHRONOUS STOCHASTIC PARALLEL
GRADIENT DESCENT CLUSTERS

Assume that control loops (actuators and/or control cir-
cuits) belonging to the jth cluster have near the same
time response 7;, where j=1,...,N,. Describe dynamics of
the controlling elements in the jth cluster by the following
first-order dynamical model:

T

i ar +vit)=wut), j=1,...,N, (2)
where w;(¢)={u;;t)}, (=1,...,M;,j=1,...,N,) is the vec-
tor of control voltages (controls) applied to wavefront cor-
rector actuators in the jth cluster and v;(t)={y;;(t)} is the
vector of phase modulation amplitudes resulting from
these controls.

The wavefront phase u(r,#) generated in response to
applied controls can be represented as

NC
u(r,t) = X, vit)S;(r), (3)
j=1

where S;(r)={S;;(r)} and S;;(r) are the actuators’ re-
sponse functions.

Dynamics of the sensor used for the performance met-
ric J(¢) measurements (metric—sensor) can be described
by the equation

dJ(2)
dt

7y +J (@) =1(2), (4)

where 7; is the sensor’s integration time and I(¢) is the
light intensity entering the sensor. For example, for the
metric—sensor composed of a lens with a small pinhole lo-
cated at its focus as shown in Fig. 1, the intensity I(¢) is
proportional to the Strehl ratio St(¢)—a widely used per-
formance metric in adaptive optics.

Consider the SPGD control voltage update rule [Eq. (1)]
independently (asynchronously) applied to individual
clusters
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u(trH-l,j) = u(th) + ’yj(n)&]:/(n)ﬁu(tn+1,])’ .] = 17 cee ’Nc’ (5)

where ¢, ; are the moments in time when control vector
updates occur, and du(¢, ;) are the control vector pertur-
bations for the jth cluster at the nth iteration. Assume
that control vector updates at different clusters occur
asynchronously, that is, time differences A, ;=¢, j,1~t,
between updates in different clusters are changing over
the time (or over the iteration number n): A, ;=A;(n). The
time differences {A;(n=0)} are referred to here as the ini-
tial time offset parameters.

The time durations {7} between subsequent control
voltage updates performed by each cluster control loop de-
pend on the corresponding time responses {7} in Eq. (2).
Ideally the times {7} should be significantly longer than
the clusters’ response times {7;} (7> 7;) to ensure that all
control loop transition processes are ended prior to the
next control voltage updates. On the other hand, the up-
date times {7} define the clusters’ operational speeds (it-
eration rates) and from this viewpoint it is desirable to
make {7} short (but still without causing AO compensa-
tion performance degradation). It is convenient to link the
update and response times for all clusters by the follow-
ing expressions T;=Br7;, where Sr=1 is a feedback delay
factor.

The control cycle time diagram for the SPGD cluster
operation is shown in Fig. 2 for two clusters. In the jth
cluster it begins at moment ¢, ;, corresponding to the con-
trol vector u(¢, ;) update as shown in Fig. 2(a). Perfor-
mance metric measurement J(¢, ;+7T}) is performed after
the time delay T;. Assume that control perturbations
dul(t, ;) are applied to the cluster’s actuators at moment
t,j+7T; simultaneously with the metric measurement.
Measurement of the perturbed metric value J(¢, ;+27)) as
well as the computation of the metric perturbation &TJ(-”)
=J(ty1)-J(t, +T;) occurs at moment ¢,.q;=t,;+27T},
that is, after delay T in respect to applied control voltage
perturbation. The next control voltages update occurs at
the time ¢, j+ o, where & is a small time delay required
for computations of the new controls. In most cases the
computation time & can be ignored (& <T}). Thus the
control cycle (iteration) duration for the jth cluster equals

The SPGD control loops for different clusters are
coupled through the metric values J(¢) that depend on
control voltage changes occurring in all clusters. Thus,
owing to the use of a metric common for all channels, the
clusters are coupled.

4. ANALYSIS

The key question to answer is, “Why should the asynchro-
nously operated network of SPGD AO clusters as de-
scribed above provide performance metric optimization?”
To address this question, consider metric perturbation
&]J(")zJ (¢,j+2T;)-J(t, ;+T)) resulting from the applied
perturbations and control voltage updates that occurred
in all clusters during the time interval (¢, ;+T},t, j+2T}).
The metric perturbation &I](»n) is computed at ¢=t,,; ; and
used directly for the control voltages update only in the

Jjth cluster. Note that the metric perturbation value &]J(”)
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Fig. 2. Operational time diagrams for two asynchronous SPGD clusters. Arrows indicate the moments of metric measurements (dashed

lines) and the control voltage updates and perturbations (solid lines).

is influenced by all control voltages changes occurring be-
tween moments ¢,;+7; and ¢,;+27; including not only
the control voltage perturbations éu(t,;) performed by
the jth cluster, but also the perturbations éu(t,,,) and
control voltage updates Au(Z, ) corresponding to all
other clusters for which time moments ¢,, , and ¢, ;+ be-
long to the interval (¢, ;+7},t, ;+2T};). The contributions
to metric perturbation é‘JJ” orlglnatmg from these other
clusters characterize the intercluster cross talk. Despite
this intercluster cross talk, the applied perturbation
éu(t, j+7T; and the metric perturbation measurement
&]}") at t, j+2T; are always separated by the “correct” (in
respect to the actuators dynamics of jth cluster) time in-
terval T for only the jth cluster. All other influences on
metric perturbations coming from other clusters that are
not synchronized with the jth cluster are random and oc-
cur at random moments inside the interval (¢,;+7T},t,;
+2T}). On average, the influence of the intercluster cross
talk appears to be significantly smaller than the synchro-
nized in time perturbations and metric measurements of
the jth cluster. This qualitative explanation is supported
by the following mathematical arguments.

Consider the control voltage update Au13)=ul(tn+1 J)
-u(t, ;) corresponding to the /th control channel in the
Jth cluster. In accordance with the SPGD update rule [Eq.
BN, Aufl)=y"aT" su]"), where ouf")=out,,). Using a
Taylor serles expansion of sJ at the moment ¢, ;+T},

represent the product 5J(”)5u(") in the form
M a;
5Jj§uu (ﬁulJ) +2—&7kJ5u1J
k%l OU,j
N, M,
+ E E &]k qﬁulJ

q#j k=1 Uk,q
N, My

+2 2

q'#jk'=1

(6)

Auy, ,5u
k', lj
&uk, /

To simplify notation, we omitted in approximation (6) the

iteration index n. In the Taylor series expansion [approxi-
mation (6)], we keep only the first order terms in respect
to the control voltage perturbations and updates terms,
assuming that both are small. The first two terms in ap-
proximation (6) describes impact on metric perturbation
originated from perturbations of control voltages at the
Jth cluster. The other two terms are due to the interclus-
ter cross talk caused by perturbations and control voltage
updates occurred during the time interval (¢,;+7},t,;
+2T;). Because the clusters are not synchronized the
double sums in approximation (6) include only contribu-
tions from the control voltage perturbations and updates
corresponding to the time moments ¢, , and ¢/ ,» belong-
ing to the interval (¢, ;+7},t,;+27);). Thus the sums do
not include contributions from all control channels.

If the chosen perturbations are random and statisti-
cally independent, the second and the third terms in ap-
proximation (6) reduce to zero in expected values. Assum-
ing that the perturbations {du;;} in jth cluster and the
updates {Auy o} (¢’ #j) occurring in other clusters at
time interval (¢, ;+7j,¢,;+27)) are statistically indepen-
dent, the expected value of the last term in approximation
(6) also can be neglected as the sum of statistically inde-
pendent terms. Thus, the approximation (6) reduces in
the expected value to &J;8u;;=(3J;/du;;)(du;;)?. The ex-
pected value of the SPGD update term in Eq. (5) then can
be represented in the form

&
Auf") = P &I suf") = 7(">a

(n))2
il (n)(gul ) ’
ulJ

j=1,...,N,.

(7)

This means that the control voltage update is propor-
tional (on average) to the metric J true gradient compo-
nent in respect to the control variable 5u§¢)’ and the itera-
tive dynamics of asynchronous control clusters results in
updates that lead to decrease (for positive y) or increase
(for negative ) of the metric J value at every iteration



M. A. Vorontsov and G. W. Carhart

step, assuming that the perturbations and 7y are suitably
small in amplitude.9

5. NUMERICAL SIMULATIONS

A. Adaptive Receiver with Zernike Stochastic Parallel
Gradient Descent Clusters

Consider an AO receiver system with wavefront control
based on asynchronous SPGD clusters as shown in Fig. 1.
Assume for simplicity that phase aberrations ¢(r,t) origi-
nate from a thin phase-distorting layer (phase screen) lo-
cated at the system’s pupil plane, z=0. The complex am-
plitude of the input field after passing through the phase
screen is A (r,t)=Agexplie(r,t)], where A, is the com-
plex amplitude of a plane wave entering the phase screen.
Propagation through the system optical train results in
an additional (controllable) wavefront phase modulation
u(r,t) introduced by a single or by multiple wavefront cor-
rectors. The system’s output wave with complex ampli-
tude Agu(r,t)=Agexplidr,t)], where d&r,t)=¢(r,t)
+u(r,t) is the residual phase, enters the performance
metric sensor (Strehl ratio sensor) composed of a lens
with a small pinhole located in front of a photodetector at
the lens’s focal plane coordinate origin as shown in Fig. 1.
The optical field complex amplitude in the lens focal plane
is proportional to the two-dimensional Fourier transform
of the field A,,; entering the lens. Thus the measured
metric J(¢) is proportional to the output field intensity in-
side a small pinhole that, in its turn, is proportional to the
output field zero-spectral component squared modulus

2

8

J(t) = ‘JAO explid(r,t)]d%r

Assume that the phase modulation u(r,t) introduced by
the wavefront corrector(s) can be represented as a sum of
Ny classical aberrations described by the Zernike polyno-
mials (Zernike aberrations) {Z,(r)}
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N,

u(r,t) = >, v,(HZ(r), 9)
k=1

where vy (¢) are the controlling amplitudes. We exclude in
the sum [Eq. (9)] the zero-order Zernike polynomial
Zy(r)=1, corresponding to piston-type aberration, because
the Strehl metric [Eq. (8)] does not depend on any con-
stant phase shift.

Subdivide the control channels into N, SPGD clusters
using the Zernike polynomial number (aberration order)
as a distinguishing factor. The first cluster includes M;
low-order Zernike aberrations (tip—tilt or defocus, etc.).
The next (second) cluster incorporates control channels
associated with compensation of the next M, Zernike ab-
errations, and so on. For convenience of counting the ab-
errations, we define response functions S;;(r)=Z,(r),
where the polynomial index ¢ is coupled with the cluster
number j and control channel number / inside the cluster
by the following relationship: ¢=1+3}M;. The same
counting rule is applied for both the aberration ampli-
tudes v;(t)={v; j()} and controls w;(¢)={u; ;(?)}.

Assume that the evolution of the amplitudes v;(¢) in re-
sponse to applied controls z;(¢) is described by the system
of equations [Eq. (2)] and that time responses {7;} are
shorter for the clusters controlling higher-order aberra-
tions. This sequence of time responses is associated with
the corresponding sequence of characteristic times for the
atmospheric turbulence induced phase aberration compo-
nents. For these components the power spectrum band-
width increases with the order of aberration.! In the nu-
merical simulations the sequence of time responses {7;}

obeyed the following general scheme:
T = Tl_A7 7}=m1n{T]}+(Nc _j)AT,

forj=2,...,N,, (10)

T1 = Tmax>

where 7,,,=max{7;}, A is a response time offset between
the first cluster (the slowest one that corresponds to com-
pensation of first M; Zernike aberrations) and the second
cluster, 7y =minf{7j}=r7y;, is the fastest control cluster

(0] [0
w [72]
= =
o (=}
=% a,
172] wn
(5] (5]
— i
(0] o
g g
= = 21 8
12 3 N,
Cluster number
. ) R T
& &
1) =1 19)
& . &
= B ]
g g
"F Tz T3 . Tmin ; -
1 2 3 N, 1 2 3 N,
Cluster number Cluster number

Fig. 3. Characteristic diagrams of time responses {7} for adaptive system with N, asynchronous control clusters. (a) Definitions of time
offsets A and A7 in Eq. (10), (b)—(d) correspond to the numerical simulation results as described in the text.



2618 J. Opt. Soc. Am. A/Vol. 23, No. 10/October 2006

that corresponds to the highest-order aberrations com-
pensation, and Aris the response time difference between
the group of neighboring clusters excluding the first and
the second clusters. The examples of the response time
diagrams corresponding to Eq. (10) are shown in Fig. 3.

Define B,=Tmax/ Tmin @S the ratio between the slowest
(first) and the fastest (last) clusters, and Br=A/(Tpax
—Tmin) @S the normalized time offset between the first
(slowest) and the second clusters. The initial time differ-
ences {A;} between control voltage updates (initial inter-
cluster time offset parameters) are chosen randomly in-
side the corresponding time intervals {7;}. The feedback
delay factor Bp=T}/7; characterizing time delays {7’} be-
tween control voltage change and the corresponding met-
ric measurements was set the same for all clusters.

Thus in our example the temporal characteristics of the
network of SPGD clusters used in the numerical simula-
tions is described by the following set of parameters: Br
= T]/ Tjs Ba=A/(Tmax= Tmin)» B+= Tmax/ Tmins and Be
=A7/(Tpax— Tmin)—the normalized response time offset be-
tween the neighboring clusters.

In the numerical simulations, the parameters 8, and
Br were fixed (B,=5 and Br=2) while the parameters B,
and B, were varied. The following intercluster time re-
sponse distributions, shown in Figs. 3(b)-3(d), are consid-
ered in the computations:

1. Time responses of all clusters except the first (slow-
est) cluster are equal [see Fig. 3(b)]. This case corresponds
to By=1 and B,=0.

2. Time responses gradually decrease from cluster to
cluster [Fig. 3(©)]: A7=(7Tmax— Tmin)/ (N.—1) and Br=p,
=1/(N,-1).

3. All clusters have the same time responses [Fig. 3(d)]:

Ba=pB.=0.

Consider first the numerical simulation results for an
AO system composed of N,=7 asynchronous Zernike
SPGD clusters and N;=32 is the total number of Zernike
polynomials the AO system intends to compensate. The
first cluster performs compensation of only wavefront tip—
tilt aberrations (M;=2). Each other control cluster in-
cludes control of five sequential Zernike aberrations. The
pupil plane phase aberration (phase screen)is considered
a random function with a power spectrum corresponding
to the Kolmogorov atmospheric turbulence model.’ The
aberration strength is characterized by the ratio D/r,
where D is the receiver aperture diameter and rg is the
Fried parameter for a plane wave.'® The asynchronous
SPGD cluster network dynamics is described by the sys-
tem of Egs. (2)—(5) and (8). The computation of Strehl ra-
tio metric evolution curves St(¢) during the adaptation
process (instantaneous adaptation curves) is performed
for fixed phase screen realizations {¢(r)} over the time ¢
=5007;. Efficiency of adaptive compensation is character-
ized by the atmospheric-average dependence (St(¢)), ob-
tained by averaging the instantaneous curves St(z) ob-
tained for N ,=50 different phase screen realizations. For
simplicity we assumed that the metric sensor integration
time, 77 in Eq. (4), is significantly smaller than the char-
acteristic time 7,,;, and can be neglected. The numerical
simulation of input wave propagation through the adap-
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Fig. 4. Atmospheric-average Strehl metric evolution curves
(St(t)) obtained for the conventional SPGD system (curve 1), and
for the control system with seven asynchronous SPGD clusters
(curves 2—4). The cluster time response parameters correspond to
the diagrams are shown in Fig. 3: (b) for curve 2, (c¢) for curve 4,
and (d) for curve 1. The compensation level (St) is defined as the
ideal compensation is calculated using Strehl metric calculation
based on residual phase aberrations d&r)=¢(r)-¢4(r), where
phase function ¢z(r) corresponds to the approximation of func-
tion ¢(r) with first N, Zernike polynomials. Numerical simula-
tions are performed for the Kolmogorov turbulence model with
D/ry=4.

0.8

Diry=2; (7 clusters, B,=1; p.=0)

0.0 T T T I T
0 100 200 300
tit,

Fig. 5. Strehl ratio evolution curves (St(¢)) for SPGD (dashed
lines) and the SPGD cluster (solid lines) AO system architectures
for different atmospheric turbulence strengths defined by the
D/ry ratio. The clusters’ time responses correspond to diagram
(b) in Fig. 3.

tive receiver system optical train was performed on a
256 X 256 numerical grid. The adaptation process evolu-
tion curves (St(¢)) are shown in Fig. 4 for the conventional
SPGD control system corresponding to a single cluster
with time response 7; (curve 1), and for an AO system
with seven asynchronous SPGD Zernike control clusters
(curves 2—4) having different time response parameters
Ba and B,. In all cases, considered AO wavefront control
based on asynchronous SPGD clusters demonstrated
faster convergence that the conventional SPGD algorithm
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(compare curves 2—4 with curve 1). The fastest conver-
gence rate is achieved in the system with B,=1 and g,
=0 shown in Fig. 4 by curve 2. In this case, the clusters
corresponding to high-order aberration compensation (all
clusters except the first) have the fastest time response:
7= Tmin=0.2 Tnax for j=2,...,7 [see time-response dia-
gram in Fig. 3(b)]. With the redistribution of time re-
sponses within the interval 7, < 7;< 75 (by keeping the
ratio B,=Tmax/ Tmin=5 unchanged) the adaptation rate
drops as illustrated in Fig. 4 (compare curve 3 and 4 with
curve 2) but still remains better than for the conventional
SPGD (single cluster) control system architecture.

The advantage in the convergence rate achieved using
the AO compensation with asynchronous SPGD clusters
versus conventional control algorithm remains with
variation of atmospheric turbulence strength as described
by the D/r( ratio. The atmospheric average adaptation
curves obtained for different D/r; values using the con-
ventional and asynchronous SPGD control are shown in
Fig. 5.

The adaptation curves in Figs. 4 and 5 demonstrate
that despite the intercluster cross talk, the wavefront
phase control using asynchronous SPGD clusters results
in a stable monotonic convergence process. Contrary to
the conventional SPGD approach for which the conver-
gence rate is determined by the slowest control channel
(“the slowest sets the pace” strategy), in AO systems
based on parallel asynchronous SPGD clusters the con-
vergence rate depends on characteristic response times of
all clusters. The presence of “fast” clusters speeds up con-
vergence for the entire system thus taking advantage of
fast control loops.

B. Adaptive Optical Receiver with Segmented and
Tip-Tilt Mirrors

Assume that the optical train of an adaptive receiver sys-
tem in Fig. 1 includes the following two wavefront correc-
tors: a tip-tilt (beam steering) mirror and a segmented
mirror. The segmented mirror is composed of N, circular
subapertures of diameter d densely packed into a compos-
ite receiver aperture of diameter D. An example of a seg-
mented mirror aperture comprising seven segments (sub-
apertures) is shown in Fig. 1(b).

Assume that each subaperture has N actuators that
can provide independent control of N, low-order Zernike
aberrations within the subaperture regions {{);} defined
by the expressions {|r-r/|<d}, where {r;} are the subap-
erture center points. The control voltages u;(¢)={u; ;(¢)} (
l=1,...,Ny and j=1,...,N,) applied to jth subaperture,
result in the phase modulation u;(r,?) inside the corre-
sponding subaperture region ();.

It is convenient to represent u;(r,t) as the sum of the
subaperture average phase uf (r,?) (piston-type aberra-
tion), where u?(r,t)=u!(t) for [r-rj/<d and zero other-
wise, and the aberration u}’(r,t) composed of the Zernike
polynomials {Z;(r)} of higher than zero order:

uj(r,t) = uf(r,t) + uj(v,t) = vo () Zo(r - ;)
NZ
+ > 0, (OZ)r-x)). (11)

=1

Here v(t)={v;;(t)} are Zernike aberration amplitudes re-
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sulting from the applied control voltages {u;;(t)}. In Eq.
(11) the Zernike polynomials {Z;(r-r;)} are defined inside
). Note that for the zero-order polynomial Zy(r-r;)=1.
The amplitudes wvy(¢)={v;(t)} are associated with the
piston-type aberration and referred to here as the spa-
tially uniform phase shifts (or just phase shifts).

The phase modulation ugy(r,¢) introduced by the seg-
mented mirror is given by the expression

N, N,
uSM(rat) = 2 u]p(r3t) + 2 ujq(r’t)y (12)
=i =

for [r-rj|<d/2 (j=1,...,N,) and ugy (r,t)=0 otherwise.
We represent the phase modulation component intro-
duced by the tip—tilt mirror in the form wry(r,¢)=vp(t)r,
where vp(t)={v,(t),v,(¢)} and ap(t)={u,(t),u,(t)} are the
tip—tilt amplitude and control vectors, respectively. The
complex amplitude of the optical wave that passes the re-
ceiver system optical train and enters the metric sensor
(see Fig. 1) is given by

Aout(r’t) = Ain exp[i 5(1‘,t)]

=Ain exp[l @(r’ t) + iuSM(r? t) + iuTM(r,t)]’
(13)

where §(r,?) is the uncompensated (residual) phase aber-
ration.

Assume that temporal dynamics of both the segmented
and tip—tilt mirrors can be described by the system of
equations, similar to Eq. (2), coupling the phase modula-
tion amplitudes and controls:

dv,(2) '
TSMT + Vj(t) = uj(t) J= 1, e ,Nc, (14)
dv,(?)
[y +vo(t) =uy(t), (15)
dvy(t)
™t vp(t) =ur(t), (16)

where w;(t)={u;;(¢)} and v;(t)={v,;(t)} are vectors of the
controls and phase modulation amplitudes for the jth sub-
aperture, 7qy is the time response of the segmented mir-
ror control channels (excluding control of the piston-type
aberration), and 7, and 7y are time responses of piston-
type and tip-tilt aberrations, respectively.

Assign the AO system control channels to N,+2 SPGD
clusters operating in parallel. The first N, clusters, each
composed of N control channels, control individual seg-
mented mirror subapertures (except piston control). An
additional control cluster is dedicated to control of only
piston-type aberration. This cluster includes N, control
channels. The last cluster combines the two control chan-
nels of the tip—tilt mirror.

In the numerical simulations, we considered a seg-
mented mirror composed of N,=7 closely located circular
subapertures as shown in Fig. 1(b). The input-wave phase
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Fig. 6. Strehl ratio atmospheric-average adaptation curves
(St(t)) for the control system architecture shown in Fig. 1 with a
segmented mirror (seven subapertures) and a tip—tilt mirror. A
single metric (Strehl ratio) is used to control all channels. Con-
trol is based on asynchronous SPGD clusters for (a)-(d) and the
conventional SPGD approach for (e). Numerical simulations are
performed for D/ry=4, N;=32, B.= Tmax! Tmin=4 and Bp=2.

distortions are modeled using pupil plane phase screens
corresponding to the Kolmogorov turbulence model. An
example of a random phase screen is shown Fig. 1(a). The
output signal of the Strehl ratio sensor, J(¢)=St(¢), de-
fined by Eq. (8), was used as the input signal for all con-
trol clusters as illustrated in the optical system schematic
in Fig. 1. For simplicity we assumed that the metric sen-
sor’s integration time, 7; in Eq. (4), is significantly
smaller than the characteristic times 7gy, 7,, and 71y and
can be neglected.

The dynamics of the segmented and the tip—tilt mirrors
were modeled using the discrete-time version of Egs.
(14)—(16). The computations of the control voltage update
in the asynchronous SPGD clusters were performed using
Eq. (5). The parameters B,=7nax/ Tmin, and Br=T/ 1.«
(time delay factor) characterizing temporal characteris-
tics of the control clusters were fixed (8,=4 and B;=2) for
all cases considered. Here 7, and 7,;, are maximum and
minimum values of the response times 7gy;, 7, and 7.

The atmospheric-average performance metric evolution
curves (St(¢)) are shown in Fig. 6 for the following cases:
(@) Tmax=7sM> Tmin=7rM=7, (slow low-order aberrations
control at the segmented mirror subapertures), (b) 7pax
=Ty, Tmin=TsM=7rM (Slow piston control), (¢) Tmax=7rM,
Tmin= TSM= Tp (SIOW tlp—tllt COI’ltI‘Ol), (d) Tmin= TTM = TSM = Tp
(equally fast control channels), (&) Tnax=7rM=TsM=7,
(equally slow control channels, that corresponds to the
conventional SPGD with B,=1 and B;=2). In the last case
the slowest channels set the pace, so that all time re-
sponses were set to 7 .x.

As seen from the comparison of the metric evolution
curves in Fig. 6, subdivision of the AO system control
channels into asynchronously operated SPGD clusters re-
sults in significant improvement of the adaptation conver-
gence rate. The general tendency is that the convergence
speed is dependent on the total number of the slow oper-
ating control channels.

M. A. Vorontsov and G. W. Carhart

C. Distributed Stochastic Parallel Gradient Descent
Control of Adaptive Receiver with Segmented

and Tip-Tilt Mirrors

The adaptation convergence rate can be significantly im-
proved by combining the asynchronous SPGD -cluster
based wavefront control concept considered here with the
distributed adaptive optics (DAO) concept.'®*!! Assume
that a single metric sensor is replaced by an array of the
metric sensors that can provide an estimation of phase
aberration compensation performance for the individual
subapertures of the segmented mirror. An example of
such an array of metric sensors is shown in Fig. 7. The
sensor is composed of a lens array with a photo array lo-
cated at its focal plane. The lenslets capture the output
wavefront only inside regions corresponding to the seg-
mented mirror subapertures {{};}. Thus, the subapertures
of both the segmented mirror and the metric sensor (len-
slet apertures) are geometrically matched. For simplicity,
assume that both the aperture sizes and the center points
{r;} of the lenslets and subapertures coincide. Assume
that the photo-array pixel size is smaller than the diffrac-
tion limited focal spot size corresponding to the seg-
mented mirror subaperture size d. Efficiency of phase ab-
erration compensation for the wavefront local regions {Q);}
can be characterized using photocurrent measurements
{Ji®)} (G=1,...,N,) obtained from a set of photo-array pix-
els located at the lenslet focal plane points {r;}. The sig-
nals {J;(t)}, referred to here as the local metrics, are pro-
portional to the Strehl ratios associated with the

Input wave
Distorting
layer 'a
- )
Segmented N
mirror control A, °(r) Tip/tilt
clusters Z in control
{u } cluster
/1
& Y U_ U
X327y \ D
Piston
control
cluster

{”/_0} \

N

\P
J, A ‘ : St
{ J} out 5 (r)
1 e o o 1
. : “*— Lens-array
Metrics | 1
sensor : 7
! —( | Photo-array
1 = !
Local metrics —— 1 Global metric

Fig. 7. Schematic of the AO receiver system with distributed
control based on asynchronous SPGD clusters. The system in-
cludes a segmented mirror with seven subapertures and a tip—
tilt mirror. For both the piston and tip-tilt control clusters the
global metric ¢/ is used. The local metrics {;} that correspond to
the segmented mirror subapertures are used for controlling of
low-order aberrations at the segmented mirror subapertures.
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Fig. 8. Strehl ratio atmospheric-average adaptation curves for
the DAO control systems architectures shown in Fig. 7 [curves
(a)—(c)] and for the AO system architecture in Fig. 1 with asyn-
chronous SPGD control using a simple metric [curves (d)-(f)]. In
both cases control is based on asynchronous SPGD clusters with
the following time responses: 7yax=7sM Tmin=7rM=7, (slow seg-
mented mirror) for curves (¢) and (f); Tmax=7) Tmin=TsM=Trm
(slow piston mirror) for (b) and (e); and 7yyn=7rM=TeM=7,
(equally fast control channels) for (a) and (d). Numerical simula-
tions are performed for the Kolmogorov turbulence model with

D/ry=8 and N,=32.

segmented mirror subapertures. Note that the metric sen-
sor in Fig. 7 is similar to Shack-Hartman sensors com-
monly used in AO systems for wavefront phase measure-
ments. In the case considered, the Shack—Hartman-type
sensor is used for measurements of the local metrics val-
ues but not to determine wavefront phase. As shown in
Fig. 7, the local metrics {J;(t)} are used only by the SPGD
control clusters performing compensation of Zernike aber-
rations at the segmented mirror subapertures. Note that
the local metrics {/;(¢)} cannot be used for compensation
of the piston-type aberration as the constant phase shifts
introduced by the piston control does not impact the local
metric values. Compensation of the piston-type aberra-
tion can be performed using the Strehl ratio metric J(¢)
=St(¢), which is here referred to as the global metric. The
metric St(¢) is defined over the entire segmented mirror
aperture area [see Eq. (8)]. The global metric St(¢) can be
measured using an additional metric sensor (not shown in
Fig. 7) that shares the AO system output wavefront. Note
that St(¢) can be also calculated using the focal-plane in-
tensity distribution measurements performed by the
photo array. For the AO system schematic shown in Fig.
7, the global metric St(¢) is also used for tip—tilt mirror
control.

Results of the numerical simulation analysis of the AO
system with DAO control described are presented in Fig.
8. In all cases considered, the use of distributed control
resulted in significant improvement of the adaptive sys-
tem performance—compare the atmospheric-average
curves for DAO control [curves (a), (b), and (c)] with the
corresponding evolution curves obtained using asynchro-
nous SPGD optimization with a single metric [curves(d),
(e), (D] in Fig. 8.
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6. CONCLUSION

In this paper we show that the problem of synchroniza-
tion of multiple control loops of adaptive optics systems
composed of several wavefront correctors with different
time responses can be resolved without sacrificing perfor-
mance of the entire adaptive system by setting the adap-
tation “clock” based on the slowest control channels. In
the analyzed adaptive system architecture the control
loops are combined into groups (clusters) that can be op-
erated independently and asynchronously using the
SPGD optimization algorithm. The physical reason why
the asynchronously operating clusters do not interfere
with each other in the sense that they preserve stability
of the entire control system originates from the nature of
the SPGD control. The asynchronous control voltage up-
dates occurring in different SPGD clusters result in ran-
dom variations of the system performance metric that are
indistinguishable from the corresponding metric varia-
tions resulting from the control voltage perturbations nor-
mally used by SPGD control systems for the stochastic
gradient estimation.

The results of the numerical simulations of two differ-
ent adaptive receiver systems—one composed of a deform-
able mirror controlling Zernike aberrations and the sec-
ond having both a tip—tilt mirror and a segmented
wavefront corrector—show that the control system archi-
tectures based on asynchronously operated SPGD clus-
ters can provide stable convergence of the optimization
metric with a convergence rate exceeding that of a con-
ventional AO system with an update rate based on the
slowest wavefront control element present in the system.

The cluster-type structure of an adaptive control sys-
tem also has an advantage from the hardware develop-
ment viewpoint, as it offers scalable electronics control ar-
chitectures. The SPGD clusters electronic control blocks
can be easily combined in various configurations depen-
dent on the specific requirements for wavefront distortion
compensation without the need for reconfiguration of the
entire control system. It is also shown that if the adapta-
tion goal can be achieved by optimization of a set of met-
rics measured in parallel, asynchronous SPGD control
clusters can provide simultaneous optimization of these
metrics. This control system architecture, referred to as
the distributed AO system (DAO), allows the system con-
trol channels to be partially decoupled and hence increase
the adaptation process convergence rate. The analysis of
the DAO system composed of an array of adaptive subap-
ertures and the associated metric sensors controlled by
the asynchronously operated clusters demonstrated sig-
nificant adaptation performance improvement when com-
pared with single-metric asynchronous SPGD cluster con-
trol.

Some AO applications, e.g., laser beam projection con-
figurations using a relay mirror or laser communication
systems, require remotely located adaptive systems to be
operated in parallel. Wavefront control in these systems
can be based on the cooperative sharing of the metric
information.'® In these system types, wavefront control in
both remotely located systems is performed using optimi-
zation of metrics measured locally and sent to other loca-
tion via an optical or rf communication link. These sys-
tems can use asynchronous cluster SPGD control without
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the need for synchronization of clocks at both AO system
locations. Recent experiments performed with free-space
AO laser communication antennas using asynchronous
control of an eight-channel deformable mirror at each end
of the communication link provide experimental verifica-
tion of the wavefront control technique introduced here.
In these experiments the SPGD control clusters were
used for optimization of the remotely measured metrics
(received power). Metric exchange is performed through a
full duplex rf communication channel. The results of
these experiments will be presented in a subsequent pa-
per.
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