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Abstract - Learning, i.e., estimation of weights and biases
in neural networks, involves the minimization of a quadratic
error criterion, a problem which is usually solved using
back-propagation algorithms. This study, which is
essentially experimental, aims at assessing the potential of
first- and second-order simultaneous perturbation stochastic
approximation (SPSA) algorithms to handle this
minimization problem. To this end, several application
examples in identification and control of nonlinear dynamic
systems are presented. Test results, corresponding to
training of neural networks possessing different structures
and sizes, are discussed in terms of efficiency, accuracy,
ease of use (parameter tuning), and implementation.
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1. Introduction

In recent years, neural networks (NNs) have attracted
much attention for their potential to address a number of
difficult problems in modeling and controlling nonlinear
systems; see, e.g., [3], [16] and the references therein.

The most common NN structure is the multilayer
feedforward (or static) NN, which is proved to be a
universal approximator of static nonlinearities [2].
Learning, i.e., estimation of weights and biases, involves
the minimization of a quadratic output error criterion. This
non-convex optimization problem is usually handled using
back-propagation (BP) [8] - or generalized delta rule - in
which the error evaluated at the output layer is propagated
back through the hidden layers and the input layer.

On the other hand, modeling of nonlinear dynamic
systems involves more complex NN structures, e.g., time
delay networks, reeurrent networks, and interconnected
neural networks and dynamic elements or submodels. For
several of these NN structures, the static BP method can be
extended, e.g., dynamic back-propagation [6, 7] and back-
propagation through time [18] for recurrent networks.
Recently, Ayoubi [1] proposed a NN structure with
distributed dynamic linear elements embodied within the
elementary processing units (called dynamic multilayer
perception – DMLP) and developed a generalized dynamic
delta-rule.

Although extensions of the BP approach can be
developed for those NN structures, the resulting procedure
can be more complicated to implement and to use. In
addition, as NNs and dynamic elements could, in principle,
be interconnected in arbitrary configurations, it is appealing
to compute the gradient of the quadratic output error
criterion in a more straightforward, numerical way.
However, as neural networks usually involve a large
number of unknown parameters, the evaluation of the
criterion gradient by varying the parameters one at a time,
as it is required in finite difference approximations, would
be extremely costly.

In contrast to standard finite differences, the
simultaneous perturbation (SP) gradient approximation
proposed by Span [9] makes use of a very efficient
technique based on a simultaneous (random) perturbation in
all the parameters. This approach was first used for gradient
estimation in a first-order stochastic approximation (SA)
algorithm [9], and more recently for Hessian estimation in
an accelerated second-order SPSA algorithm [10, 11],

These algorithms seem particularly well suited to the NN
learning problem, and in this connection, Span and Cristion
developed a direct adaptive control scheme using a
feedforward NN controller [13, 14, 15], In this case, the
SPSA-based learning algorithm has the advantage that it
does not require the prior knowledge of a process model to
evaluate the criterion gradient. Since then, this direct
adaptive control scheme has been the subject of several
simulation studies, e.g., [4, 5].

This study is essentially experimental and, based on
several application examples, aims at assessing the potential
of the above-mentioned first- and second-order SA
algorithms to address the problem of parameter estimation
in NNs. From a practical point of view, the important issues
of convergence, accuracy, computational load, ease of use
(tuning), and simplicity of implementation are discussed.

The paper is organized as follows. Section 2 introduces
the basic principles of the SA algorithms considered in this
study. In Section 3, these algorithms are applied to the
training of two NN configurations used for modeling
nonlinear dynamic systems, e.g., a series-parallel NN and a
DMLP. In addition, a control application is discussed, in
which the parameters of a predictive PID controller,
implemented in the form of a feedforward NN, are adjusted
using SPSA. Finally, Section 4 is devoted to some
conclusions.
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2. The SA algorithms

We consider the problem of minimizing a mean-square

output error criterion with respect to a vector (3of unknown
parameters (typically the weights and biases of a NN)

(1)

where yi is the desired output and ~i is the output produced

by the NN depending on the parameters 0. In this work, the
minimization problem (1) is handled using several SA
algorithms, which have been implemented in MATLAB .m
files.

The first-order lSPSA algorithm is given by the

following core recursion for the parameter vector 0 [9]

Gk = b~_l – a~ ~~(b~_l) (2)

in which a~ is a positive scalar gain coefficient satisfying

certain conditions, and ~k (~k_~) is an approximation of the

criterion gradient obtained by varying all the elements of

bk_~ simukaneously! i.e.?

::

@k_l+@k) – @k_~–Ckf&)

2Ck&1

Sk(ek-l) = .. . (3)

@k_~ + CkAk) – @k-~ - ckAk)

zCkA~

where c~ is a positive scalar and A~is a user-generated zero-
mean random vector satisfying certain regularity conditions

(typically, ~ is symmetrically Bernouilly distributed).
Important to note is that this gradient estimate differs

from usual finite difference approximations in that the
number of criterion evaluations is not proportional to the
number of unknown parameters. Instead, only two
evaluations of the criterion are required.

The recursion (2) can also be based on a smoothed
gradient approximation [13]

Gk = PkGk_~ + (1 – ~k)~k (~k-1) , GO=O (4)

where ~k (6k_l ) is the simultaneous perturbation gradient

estimate (3) and OS pk S 1. This procedure denoted

lSPSA-GS is analogous to the momentum approach in BP.
Alternatively, if direct evaluations of the criterion gradient
are available (usually with some added
defines a stochastic gradient (SG)
lSGSA in the following.

noise), recursion (2)
algorithm, denoted

The second-order algorithms 2SPSA (and 2SGSA) are
based on the following two core recursions, one for the

parameter vector 6, the second for the Hessian H(6) of the
criterion [11 ].

(6)

where fik is a per-iteration estimate of the Hessian matrix,

which is computed from gradient approximations (or direct
evaluations) using a simultaneous perturbation approach,

~k is a simple sample mean, and f, is a mapping designed

to cope with possible non-positive-definiteness of ~k.

Again, the algorithm requires only a small number of
function evaluations - at least four criterion evaluations to
construct the gradient and Hessian estimates, or three
gradient evaluations in the SG case - independent of the
number of unknown parameters.

Important implementation issues of these SA algorithms
include initialization, choice of the gain sequences {a~} and
{c,} (usually these sequences are chosen in the form

ak = a(A + k + I)-a and ck = c(k + l)-Y ), gradient/Hessian

averaging and step rejection; see [11 ].
Usually, 1SPSA appears as an efficient, robust

algorithm, but suffers from the classical drawback of first-
order algorithms, i.e., a slowing down in the convergence as
an optimum is approached. 2SPSA includes second-order
effects with the aim of accelerating convergence. However,
tuning of the several algorithm coefficients is a more
delicate task, particularly in noisy environment.

3. Numerical Results

3.1 System identification using a series-parallel NN

First, a NN in series-parallel mode (or feedforward time
delay NN) is used as a prediction model for a process given
in [6]

y(k) =
y(k –l)y(k – 2)y(k – 3)u(k – 2)(y(k –3) - 1) + u(k –1)

1+ y(k-2)2 + y(k -3)2

(7)

where u(k) and y(k) denote the input and output sequences,
respective y.

Obviously, this simple example does not require any
special learning procedure since the application of BP is
straightforward. Hence, first- and second-order methods as
implemented in the MATLAB NN Toolbox could certainly be

used. Our objective at this stage is to assess the relative
performance ~f the SA algorithms presented in Section 2.
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The training set consists of 997 data produced by (7)
using an input sine wave with increasing frequency (from
0.1 to 10 Hz). Test sets used for model validation are
produced with other input signals, e.g., a switchback signal.
Based on the assumption that we know the correct system
orders, the process is modeled using a NN with 5 inputs

b(k -1), y(k-2), y(k-3), u(k-l),u(k-2)], one hidden
layer and one output. In order to select the number of nodes

in the hidden layer n~ and to define “reference” results, we
first use a Levenberg-Marquardt (LM) algorithm to estimate
the parameter sets corresponding to NNs with n. ranging
from 1 to 15. As a result, we see that the quadratic error
criterion is monotonically decreasing and that the resulting
NNs have good generalization (validation) properties.
Compromising model accuracy and size (a measure of this
compromise is given by Akaike’s criterion), the “best”
model corresponds to a NN with nti = 7.

In all these cases, lSPSA, lSPSA-GS and 2SPSA
perform successfully. Generally, the SPSA algorithms can
be rated as follows with regards to speed of convergence
and accuracy: (1) 2SPSA - (2) lSPSA-GS - (3) lSPSA. In
the case of NN with nti = 7 and a minimization of the error
criterion carried out with 2SPSA, identification and cross-
validation results are illustrated in Fig. 1.

As the number of nodes in the hidden layer increases
from 1 to 15, the results obtained with the three SPSA
algorithms become almost the same, i.e., the accuracy of the
results produced by lSPSA and 1SPSA-GS gradually
improves, the improvement being more noticeable for
lSPSA, while the accuracy of the results produced by
2SPSA, which initially also improves, slightly deteriorates
for larger values of nti. We can only conjecture about this
last observation, which could be interpreted as a
deterioration of the Hessian estimate due to NN over-
parametrization.

Convergence and accuracy are usually better and less
sensitive to the NN structure when the gradient information,
which is readily available in this example, is used in
lSGSA or 2SGSA algorithms. Our numerical experiments
show that 1SGSA produces results equivalent to standard
BP, while 2SGSA slightly supersedes BP with momentum
and adaptive learning rate, as implemented in the MATLAB
NN Toolbox. As compared to SP-algorithms, lSGSA and
2SPSA display similar performance.

From a computational point of view, the estimation and
regularization of the Hessian estimate used in 2SPSA can
become very costly for larger numbers of parameters. In our
application, the CPU time required by 2SPSA ranges from
5 to 10 times the CPU required by lSPSA, so that, in terms
of efficiency, the use of 2SPSA might be questionable.

Following an idea of Spall [12], an attempt is made to
reduce the computational expense by evaluating only a
diagonal estimate of the Hessian matrix. Indeed, we observe
a reduction of about 40% in the computation time, which is
due to savings in the evaluation of the Hessian estimate, as

well as in the recursion on 6 that only requires a trivial
matrix inverse. The performance, in terms of rate of
convergence and accuracy, remains almost unchanged,
which demonstrates that the diagonal Hessian estimate still

captures potential large scaling differences in the elements

of 0. This algorithm variation is denoted 2SPSA-DH.
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Figure 1. Identification (above) and cross-validation
(below) results (solid line: real system output
dotted line: NN output)

Table I compares, for ten independent runs starting from

the same initial parameter estimates 60, the results

obtained with each algorithm in the case of a NN with nti =
7. This table gives the minimum (best), maximum (worst)
and average values of the mean-square error criterion after
3000 iterations. It is apparent that algorithms based on a SP-
approximation of the gradient and/or the Hessian produce
more “dispersed” results, i.e., display a larger deviation
between the worst and best cases than the SG(BP)-
algorithms. Figure 2 shows the average mean-square error
curves for the SP-algorithms. Note that, even though the
average performance of lSPSA and lSPSA-GS are
virtually identical, the results produced by 1SPSA are more
dispersed from one run to another; see Table I.
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Table I. Mean-square errors obtained after 3000 iterations
(10 independent runs - NN with n. = 7)

lSPSA
lSPSA-GS

2SPSA
2SPSA-DH

lSGSA
2SGSA

BP
Adaptive BP-GS

LM

Best RMS
0.0051
0.011

0.0015

0.0012
0.0016

0.000092

0.0016

0.00023
0.00000024

,.0

Worst RMS
0.023
0.019

0.0030
0.0067
0.0016

0,00030
0.0016
0.00023

0.00000024

Average RMS
0,012

0.013
0.0021

0.0025
0.0016

0.00014

0.0016
0.00023

0.00000024

,.
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Figure 2. Average mean-square error curves (NN with
n~=7)

3.2 System identification using a DMLP

DMLPs incorporate dynamic linear elements within each
elementary processing units and so, allow nonlinew
dynamic systems to be modeled without the need for
recursion. As the number of unknown parameters grows
rapidly with the NN input dimension (and so, in a recurrent
NN, with the number of delayed inputs), DMLPs will be
particularly advantageous in reducing the size of the
unknown parameter set.

We consider the problem of modeling a nonlinear
process given in [17]

0.875y(k –1) + u(k –1)
y(k) =

l+y2(k-1)
(8)

using a DMLP with 1 input, 12 nodes in the hidden layer
and 1 output. The hidden and output nodes are associated
with first-order dynamic elements, so that there are nP = 50
unknown parameters to estimate.

Figure 3 shows identification results obtained with
1SPSA-GS. Although these results are satisfactory, it can
be observed that the dynamics of the process is not very
accurately captured, which might appear paradoxical since
DMLPs are, in principle, well-suited to this problem. In

fact, SP-algorithms experience difficulties with this NN
structures, and the gradient information, which is readily
available in this application, must be used to get better
performance.
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Figure 3. Identification results using lSPSA-GS (solid line:
real system output; dotted line: NN output)

3.3 A model-based predictive PID controller

A predictive PID control scheme, as depicted in Fig. 4, is
designed for the process (8) considered in section 3.2. The
PID controller is implemented using a feedforward NN with

[

k

1
three inputs e(k), ~ e(i), e(k) – e(k – 1) , one hidden layer

L=1

with 2 nodes and one output. The 11 parameters of this NN
controller are adjusted in order to minimize a receding
horizon criterion in the form

J=$#(k+i)-ym(k+i) ~+~~Au(k+i-1)2 (9)
iml isl

In this expression, y’(k) is the output of a second-order

model reference with ~ = 0.8 and on = 0.1, while y“(k) is

the output of a system emulator, which can be in the form
of an NN model (for the sake of simplicity, the emulator is
assumed perfect here) and provides a prediction of the
process output over a horizon N = 25. The weighting factor
A = 0.1 penalizes the control increments.

In this application, the requirements on the optimization
algorithm are: (a) small computational costs so that the
criterion minimization can take place within a sampling
period, (b) robustness and reliability so that, even in the
presence of perturbations, at least a lower value of the error
criterion can be achieved. On the other hand, accuracy in
estimating the controller parameters is not determinant.
With this view, the minimization of the receding horizon
criterion (9) is performed using 1SPSA-GS, with a
maximum of 20 iterations per sampling interval. Figure 5
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illustrates the excellent tracking capabilities of the NN PID
controller.
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Figure 4. Model predictive control scheme
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Figure 5. Performance of the NN predictive controller

4. Concluding Remarks

The SP-approach devised by Span [9-11] is a very powerful
technique, which allows an approximation of the gradient
and/or the Hessian of the objective function to be computed
by effecting simultaneous random perturbations in all the
parameters. This paper shows the potential of SGSA and
SPSA algorithms to efficiently address the parameter
estimation problem in NNs, and in this connection,
discusses several test-results in nonlinear system
identification and control. Remarkable properties of these
algorithms is their simplicity of implementation and ease of
use. Especially, the application of SPSA algorithms in the
area of direct and indirect control (or inverse modeling) is
very appealing.
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