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Abstract— This paper is a first step to formal
comparisons of several leading optimization algorithms,
establishing guidance to practitioners for when to use or
not use a particular method. The focus in this paper is
four general algorithm forms: random search,
simultaneous perturbation stochastic approximation,
simulated annealing, and evolutionary computation. We
summarize the available theoretical results on rates of
convergence for the four algorithm forms and then use
the theoretical results to draw some preliminary
conclusions on the relative efficiency. Our aim is to sort
out some of the competing claims of efficiency and to
suggest a structure for comparison that is more general
and transferable than the usual problem-specific
numerical studies. Much work remains to be done to
generalize and extend the results to problems and
algorithms of the type frequently seen in practice.

1. Introduction

To address the shortcomings of classical deterministic
algorithms, a number of powerful optimization algorithms
with embedded randomness have been developed. The
population-based methods of evolutionary computation are
only one class among many of these available stochastic
optimization algorithms. Hence, a user facing a challenging
optimization problem for which a stochastic optimization
method is appropriate meets the daunting task of
determining which algorithm is appropriate for a given
problem. This choice is made more difficult by the large
amount of “hype” and dubious claims that are associated
with some popular algorithms. An inappropriate approach
may lead to a large waste of resources, both from the view
of wasted efforts in implementation and from the view of
the resulting suboptimal solution to the optimization
problem of interest.

Hence, there is a need for objective analysis of the
relative merits and shortcomings of leading approaches to
stochastic optimization. This need has certainly been
recognized by others, as illustrated in the recent 1998 IEEE
International Conference on Evolutionary Computation,
where one of the major subject divisions in the conference
was devoted to comparing algorithms. Nevertheless,
virtually all comparisons have been numerical tests on
specific problems. Although sometimes enlightening, such
comparisons are severely limited in the general insight they
provide. On the other end of the spectrum are the “No Free
Lunch (NFL) Theorems” (Wolpert and McReady, 1997),
which simultaneously considers all possible loss functions
and thereby draw conclusions that have limited practical
utility since one always has at least some knowledge of the
nature of the loss function being minimized. Our aim in this
preliminary paper is to lay a framework for a theoretical
comparison of efficiency applicable to a broad class of
practical problems where some (incomplete) knowledge is
available about the nature of the loss function. We will

consider four basic algorithm forms-—evolutionary
strategies, random search, simulated annealing, and
simultaneous  perturbation  stochastic  approximation

(SPSA)—in the context of continuous variable optimization.
The basic optimization problem corresponds to finding an
optimal point 8":

0" =argmin L(0) ,
0eD

where L(0) is the loss function to be minimized, D is the
domain over which the search will occur, and 6 is a p-
dimensional (say) vector of parameters. We are mainly
interested in the typical case where 8 is a unique global
minimum.
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Although stochastic optimization algorithms other than
the four above certainly exist, we are restricting ourselves to
the four general forms in order to be able to make tangible
progress (note that there are various specific
implementations of each of these general algorithm forms).
These four algorithms are general-purpose optimizers with
powerful capabilities for serious multivariate optimization
problems. Further, they have in common the requirement
that they only need measurements of the objective function,
not requiring the gradient or Hessian of the loss function.

Critical to the approach of this paper will be the known
theoretical analysis on the rate of convergence of each of the
candidate algorithms. Our approach will be built as much as
possible on existing theory characterizing the rates of
convergence for the algorithms to perform the comparative
analysis. There appears to be no previous analysis putting
the theoretical results on a common basis for performing an
objective comparison. Of course, this approach is limiting in
that many algorithms have little—or possibly no—
theoretical justification. Nonetheless, it is our expectation
that performing a formal theoretical comparison of the
chosen algorithms will shed some light on relative
performance of other similar algorithms as well, even if the
similar algorithms lack the same current level of theoretical
justification.

After a brief discussion in Section 2 about the recent
“NFL” Theorems, we discuss in Sections 3 through 6 the
known convergence rate results on the four algorithms
under consideration. Finally, Section 7 offers some
preliminary assessment of the relative efficiency based on
the theoretical results of the previous sections.

2. No Free Lunch (NFL) Theorems and Their
Relationship to Rate of Convergence

Wolpert and Macready (1997) present a formal analysis of
search algorithms for optimization. One approach is to
compare the performance of algorithms as one runs over the
set of optimization problems; the other is to compare
performance for a particular problem as one runs over a
specified collection of algorithms. The essence of the NFL
Theorems is that the expected performance of any pair of
optimization algorithms across all possible problems is
identical. Of course, these results do not reflect the “usual”
types of prior information that might be available to the
algorithms and thus may not adequately reflect the
performance of algorithms as they are actually applied.

Obviously, for a specific choice of L, one algorithm may
be more efficient than another. Within the NFL framework,
however, what is of interest is the expected efficiency over
all possible loss functions (a finite sum since the domain for
0 has a finite number of elements), not the efficiency for a
specific loss function. According to the NFL Theorem, the
expected efficiency over all algorithms is the same, since

according to the main result

>, P(@®(3,,y,,....5,) €8(8")| L,n,a)  is independent of
the algorithm a, where y, is the the " value of the loss
function, is ®(y,,y,,...,¥,) a measure of the performance
of a after n iterations, and S(8") is some “small”
neighborhood of the optimum 6. A self-evident
implication of the NFL Theorem is: If a; has a faster rate of
convergence than a, for one set of problems, then there is a
set of problems for which a;, has a faster rate of convergence
than a,.

All the foregoing assumes that the domain and range for
L(0) are countable (and finite) sets. Hence, NFL results,
though interesting, have wunclear implications for
optimization in continuous parameter domains. The NFL
Theorem implies that an algorithm, a; say, is uniformly
more efficient than a, only if a, uses (even implicitly) more
information about the structure of loss functions than a,.
For example, simulated annealing uses only the current and
most recent values of the loss function, and cannot be
expected to be more efficient than algorithms that rely on
more detailed knowledge of functions (such as their local
shape).

3. Simple Global Random Search

We first establish a rate of convergence result for the
simplest random search method where we repeatedly sample

over the domain of interest, D < R” . This can be done in
“batch” or recursive form by simply laying down a number
of points in D and taking as our estimate of 8" that value of
0 yielding the lowest L value

It is well known that the random search algorithm above
will converge in some stochastic sense under modest
conditions (e.g., Solis and Wets, 1981). A typical
convergence theorem is of the form (proof in Spall, 1999):

Theorem 3.1. Suppose that 8" is the unique minimizer of L
on the domain D and that L(8") > —co. Suppose further that
for any € > 0 and V &, there exists a 8(g) > 0 such that

P(8,0, (): L(6,,, (K)) < L(67) +5) 2 8(s)  (3.1)

Then, for the random search algorithm, 4 P> 0" as.ask — .

While the above theorem establishes convergence of the
simple random search algorithm, it is also of interest to
examine the rate of convergence. The rate is intended to tell

the analyst how close ) . is likely to be to 8" for a given cost

of search. The cost of search here will be expressed in terms
of number of loss function evaluations. Knowledge of the
rate is critical in practical applications as simply knowing
that an algorithm will eventually converge begs the question



of whether the algorithm will yield a practically acceptable
solution in any reasonable period. To evaluate the rate, let
us specify a “satisfactory region” S(8") representing some
neighborhood of " providing acceptable accuracy in our
solution (e.g., S(6") might represent a hypercube about )
with the length of each side representing a tolerable error in
each coordinate of 0). An expression related to the rate of
convergence of Algorithm A is then given by

P(6, €S(©O7)=1-[1-POren(k) € SN (3.2)

We will use this expression in Section 7 to derive a
convenient formula for comparison of efficiency with other
algorithms.

4. Simultaneous Perturbation Stochastic
Approximation (SPSA)

The next algorithm we consider is SPSA. This algorithm is
designed for continuous variable optimization problems.
Unlike the other algorithms here, SPSA is fundamentally
oriented to the case of noisy function measurements and
most of the theory is in that framework. This will make for a
difficult comparison with the other algorithms, but Section 7
will attempt a comparison nonetheless. The SPSA algorithm
works by iterating from an initial guess of the
optimal 6, where the iteration process depends on a highly
efficient "simultaneous perturbation" approximation to the
gradient g(0) = 0L(8)/06 .

Assume that measurements (0) of the loss function are
available at any value of ©:

¥(0) = L(B) + noise .

For example, in a Monte Carlo simulation-based
optimization context, L(6) may represent the mean response
with input parameters 6, and »(0) may represent the
outcome of one simulation experiment at.©. In some
problems, exact loss function measurements will be
available; this corresponds to the noise = 0 setting (and in
the simulation example, would correspond to a
deterministic—non-Monte Carlo—simulation). Note that no
direct measurements (with or without noise) of the gradient
are assumed available.

It is assumed that L(0) is a differentiable function of 8
and that the minimum point 6 corresponds to a zero point of
the gradient, i.e.,

. _OL(6)
8O)="6

=0. 4.1)
In cases where more than one point satisfies (4.1), then the
algorithm may only converge to a local minimum (as a
consequence of the basic recursive form of the algorithm,
there is generally not a risk of converging to a maximum or
saddlepoint of L(8), i.e., to nonminimum points where g(0)

may equal zero). Extensions of SPSA to global optimization
are discussed in Chin (1994) and Maryak and Chin (1999),
but we will not discuss these ideas further due to the relative
immaturity of the theoretical foundation.

The SPSA procedure is in the general recursive SA form:

ék+l= ék_akék(élc) 4.2)

where g, (ék) is the estimate of the gradient g(8) = OL/06 at

the iterate ék based on the above-mentioned measurements

of the loss function and a, > 0 is a “gain” sequence. This
iterate can be shown to converge under reasonable
conditions (e.g., Spall, 1992; Dippon and Renz, 1997). The
core gradient approximation is

_A;cll -
. Ay
ék(ék)z y(ek+ ckAk)‘y(ek— ckAk) . , (43)
2¢,
A,

where ¢; is some “small” positive number and the user-
generated p-dimensional random perturbation vector, A, =
(An, Akz,...,Akp)T, contains {A;} that are independent and
symmetrically distributed about 0 with finite inverse
moments E(|A,|") for all k, i. One particular distribution for
Ay; that satisfies these conditions is the symmetric Bernoulli
+1 distribution; two common distributions that do not
satisfy the conditions (in particular, the critical finite inverse
moment condition) are uniform and normal. The essential
basis for efficiency of SPSA in multivariate problems is
apparent in (4.3), where only two measurements of the loss
function are needed to estimate the p-dimensional gradient
vector for any p; this contrasts with the standard finite
difference method of gradient approximation, which
requires 2p measurements.

Most relevant to the comparative analysis goals of this
paper is the asymptotic distribution of the iterate. This was
derived in Spall (1992), with further developments in Chin
(1997), Dippon and Renz (1997), and Spall (1998).
Essentially, it is known that under appropriate conditions,

%6, -0") — 5N, T) ask>w, (4.4)
where B > 0 depends on the choice of gain sequences (a;
and ¢; ), u depends on both the Hessian and the third
derivatives of L(0) at 6 (note that in general, u = 0 in
contrast to many well-known asymptotic normality results
in estimation), and T depends on the Hessian matrix at 8"
and the variance of the noise in the loss measurements.
Given the restrictions on the gain sequences to ensure
convergence and asymptotic normality, the fastest allowable



value for the rate of convergence of é,, to 8" is &, This

contrasts with the fastest allowable rate of k™2 for gradient-
based algorithms such as Robbins-Monro SA.

Unfortunately, (4.4) is not directly usable in our
comparative studies since the other three algorithms being
considered here appear to have convergence rate results
only for the case of noise-free loss measurements. The
authors are unaware of any comparable asymptotic
distribution result for SPSA in the noise-free case (note that
it is not appropriate to simply let the noise level go to zero
in (4.4) in deriving a result for the noise-free case; it is
likely that the rate factor B will also change if an asymptotic
distribution exists).

5. Simulated Annealing (SAN) Algorithms

The SAN method [(Metropolis et al. (1953) and Kirkpatrick
et al. (1983)] was originally developed for optimization over
finite sets. The Metropolis method produces a sequence that
converges in probability to the set of global minima of the
loss function as T; , the temperature, converges to zero.
Geman and Hwang (1986) present a SAN algorithm for
continuous parameter optimization. Their algorithm
produces a continuous-time stochastic process—a diffusion
process—whose probability distributions converge weakly
to the uniform probability distribution concentrated on the
(global) minima of the loss function, as the temperature
decreases to zero.

More recently, Gelfand and Mitter (1993), obtained
discrete-time  recursions for Metropolis-type = SAN
algorithms that, in the limit, optimize continuous parameter
loss functions:

6,,, =6, - a,,(g(é,,)+ gk)+ BW,, k>0, (5.1)

where {W,} is an i.i.d. sequence of p-dimensional, standard
Gaussian random vectors such that W, is independent of
{&ss E1ronr &4y} for each k21, and a; and by are suitably
chosen sequences. In particular, following Yin (1998),
assume that a;, = a/k, by = (b/(K log (k"7 + B,))"?, where
By, a, and b are positive constants, 0 <y <I. Under the
foregoing assumptions, the sequence in (5.1) is a non-
stationary Markov chain. Let py(y | x) denote its one-step
transition probability density at the epoch of the "
transition; then

Prob(8,, €46, =x) = ], p, (y/x)ay.

Furthermore (Gelfand and Mitter (1993)),

2y | )= 4, (e, )5, (x, )+ ()5 (v~ x)

were, 8(s) is the Dirac-delta function, q,(x,s) is the
Gaussian density function with mean x and variance
b26?(x), and s,(x,y)=exp(-[L(y)-L&)/T, ), if L) >
L(x), otherwise s(x, y) = 1. The function r is a normalizing

term, thus re(x) = 1 = [, q,(x,5)s, (x,y)dy , for all x € R .

The variance term is given by c,f(x):max{l, a; |+

where 7 is fixed, 0 <1 < 1/4, and T,(x)=b?c2(x)/(2a,).

The function s,(x, y) is the acceptance probability in the
usual Metropolis SAN. If the temperature sequence T} were

independent of the state, the sequence {é k} would reduce

to the classical SAN algorithm. (Strictly speaking, to qualify

as a classical SAN algorithm, the ék ’s would also be

required to lie in a finite set, in which instance py( * | * )
would be taken to be some one-step transition density on
that set.) It is easy to show that for & sufficiently large, (5.1)

is a Metropolis SAN if almost all ék lie in some fixed

compact set for all £> K, for some K > 0. In this sense, (5.1)
is equivalent to classical SAN for large enough &.

The sequence {ék} converges in probability to the

global minimum of the loss function. To be specific,
suppose that () has a unique minimum at 6" and let S(8")
be a neighborhood of 8°. Gelfand and Mitter (1993) show

that P(ék € S(G*)) —>lask—>co. Hence, the weak

convergence of (5.1) implies that it eventually is a classical
SAN.

6. Evolutionary Computation

There are three general approaches in Evolutionary
Computation (EC), namely Evolutionary Programming
(EP), Evolutionary Strategies (ES) and Genetic Algorithms
(GA). All three approaches work with a population of
candidate solutions and randomly alter the solutions over a
sequence of generations according to evolutionary
operations of competitive selection, mutation and sometimes
recombination (reproduction).

Global convergence results can be given for a broad
class of problems [see for example Eiben, Aarts and Van
Hee (1991) and Bick, Hoffmeister, and Schwefel, (1991)],
but the same cannot be said for convergence rates. The
mathematical complexity of analyzing EC convergence
rates is apparently great. Therefore convergence rate results
that exist are for certain restricted classes of fitness
functions that have some special properties that can be taken
advantage of and usually with simplified ECs. Most of the
convergence rate results available are for EC algorithms
using mutation and selection only, or using recombination
and selection only. Both Beyer (1995) and Rudolph (1997a)
examine ES algorithms that include selection, mutation and
recombination. The function analyzed in both cases is the
classic spherical fitness function L(0) = ||0]* whose exact
solution is of course known. Convergence rates based on the
spherical fitness function are somewhat useful, if you
assume that the sphere approximates a local basin of



attraction. The most practically useful convergence rates for
EC algorithms seem to be for the class of strongly convex
fitness functions. The following theorem due to Rudolph
(1997b) is an extension of a more general result by Rappl
(1989).

A

Theorem 6.1 Let ékl, ékz, ... B, be the sequence of

populations of size N generated by some ES at generation &.
IfE[ L, —L®")] <o and

E[L,, -L®)]8,,,6,,, ... B 1<c L —L®) a.s.

for all £ = 0 where

L, = min{Z(6,,), L(B,,), ..., L(B,, )} and ¢ € (0,1) is
called the convergence rate. The ES algorithm converges
a.s. geometrically fast to the optimum of the objective
function. An algorithm has a geometric rate of

convergence if and only if E[ L, — L(®")] = O(" with
re(0,1).

The condition E[ L,,, - L(8") | 8,,,6,,, ..., 6 1< ¢

[L;— L(G*)Jimplies that the sequence decreases

monotonically on average. This condition is needed since in
the ES that will be considered below, the fitness value of the
best parent in the current generation may be worse than the
fitness value of the best parent of the previous generation,
but on average this will not be the case. Rudolph (1997b)
shows that a (1,A)-ES using selection and mutation only
(where the mutation probability is selected from a uniformly
distributed distribution on the unit hyperball), with certain
classes of fitness functions, satisfies the assumptions of the
theorem. One such class is the (K Q)-strongly convex
functions.

A precise definition of (K, Q)-strongly convex functions
may be found in Rudolph (1997b). Every quadratic function
is (K, Q)-strongly convex, for example, if the Hessian matrix
is positive definite. In the case of twice differentiable
functions, fairly simple tests are available for verifying that
a function is (K,Q)-strongly convex, from Nemirovsky and
Yudin (1983). Other tests are possible that only assume the
existence of the gradient g(0) [see Gopfert (1973)].

The convergence rate result for a (1,A)-ES using
selection and mutation only on a (K Q)-strongly convex
fitness function is geometric with a rate of convergence

c=(1-M;, Q)
where M, ,is equal to the expected value of the maximum

of A independent identically distributed Beta random

variables. The computation of M, , is apparently very
complicated since it depends on both the number of

offspring A and the problem dimension p. Asymptotic

approximations are fortunately available. Assuming p is
fixed and A— oo then

M, ,~ @2plogh) "

To extend this convergence rate from a (1,A)-ES to a
(¥, A)-ES, note that each of the N parents generate L / N
offspring. Then the convergence rate for the (N, A) — ES
where offspring are only obtained by mutation is ¢ <[ 1 —
2p 'log {MN})/ O] for (K, Q)-strongly convex functions.

7. Comparative Analysis

This section represents our preliminary attempt at
interpreting the specific algorithm results in Sections 3 to 6
above and attempting to draw conclusions on what the
results are saying regarding the relative performance of the
four algorithms. We will address the rate of convergence by
focusing on the question:

With some high probability 1 — p (p a small number),
how many L(e) function evaluations, say n, are needed to
achieve a solution lying in some “satisfactory set” S(8")
containing 67

With the random search algorithm in Section 3, we have a
closed form solution for use in questions of this sort while
with the SPSA, SAN, and EC algorithms of Sections 4
through 6, we must apply the existing asymptotic results,
assuming that they apply to the finite-sample question
above. For each of the four algorithms, we will outline
below an analytical expression useful in addressing the
question.

Random Search

We can then use (3.2) to answer the question above. Setting
the left-hand side of (3.2) to 1 — p and supposing that there
is a constant sampling probability P* = P(0,e.(k) € S(8")) ¥V
k, we have

logp

nzm (71)

Although (7.1) may appear benign at first glance, this
expression will grow rapidly as p gets large (due to P’
approaching 0). Hence, (7.1) shows the extreme inefficiency
of simple random search in higher-dimensional problems as
illustrated in Example 7.1 below. Note that while (7.1) is in

terms of the iterate ék, a result related to the rate of

convergence for L(é,,)is given in Pflug (1996, p. 24); this

result is in terms of extreme value distributions and also
confirms the inefficiency of simple random search
algorithms in high-dimensional problems.

Example 7.1. Let D = [0, 1} (the p-dimensional hypercube
with minimum and maximum O values of 0 and 1 for each



component) and suppose uniform sampling on D is used to
generate 0,,..(k) V k. We want to guarantee with probability
0.90 that each element of 6 is within 0.04 units of the
optimal. Let the (unknown) true 6, ', lie in (0.04, 0.96Y".

The individual components of 8" are ©; . Hence,

S(e*) = [6]-0.04,0;+0.04]x[0, —0.04, 8, +0.04]x...x
[0, 0.04,6,+0.04] < D

and P = 0.08”. How many loss evaluations (= number of
iterations) are required to ensure that we land in S(87) with
probability of 0.90 (ie., p = 0.10)? The table below
provides the answer.

p 1 2 5 10
n 28 359 | 7.0x10° | 2.1x10"

The table illustrates the explosive growth in the number of
loss evaluations needed as p increases. U

Simultaneous Perturbation Stochastic Approximation

As mentioned in Section 4, there is no known asymptotic
normality result in the case of noise-free measurements of
L(0) (it is not the limit of the known asymptotic normality
result for the noisy case as the noise level goes to zero).
Nonetheless, a conservative representation of the rate of
convergence is available by assuming a noisy case with
small levels of noise. Then we know from (4.4) that the

approximate distribution of ék with optimal decay rates for

the gains g, and ¢; is N(B' + p./km, /K 3). In principle, then,
one can use this distribution to compute the probabilities
associated with arbitrary sets S(8"), and these probabilities
will be directly a function of 4. In practice, this may not be
easy and so inequalities such as in Tong (1980, Chap. 2) can

be used to provide bounds on P( ék €S(6") in terms of the

marginal probabilities of the ék elements. For purposes of
insight, we can consider a case where the covariance matrix
is diagonal. If S(6") is a hypercube of the form

(85,57 %[S5.85 |x..X[$;,5)], then P(8, e S©") is a
product of the marginal normal probabilities associated with
each element of ék lying in its respective interval [S,‘,S,*],
i=1,2, ..., p. Then we can find the k& such that the product
of probabilities equals 1 — p. To illustrate more specifically,

suppose further that £ = o7/, the wk'" term in the mean is
negligible, that S(8") is centered around 9’, and that &s =

s; —s; V i. Then for a specified p, we seek the n

such that P(8, e S(8")) = P( 0, e [s7.5;]F = 1 - p. From
standard N(0, 1) distribution tables, there exists a
displacement factor, say d(p), such that the probability
contained within  d(p) units contains probability amount (1
- p)'?; we are interested in the k such that 2d(p)cs/k” 3= 8.

From the fact that SPSA uses two L(8") evaluations per
iteration, the value n to achieve the desired probability for

8, € S(8") is then

n= 2(20’([))0)3.

os

Unfortunately, the authors are unaware of any convenient
analytical form for determining d(p), which would allow a
“clean” analytical comparison with the efficiency formula
(7.1) above (a closed-form approximation to normal
probabilities of intervals is given in Johnson and Kotz,
1970, pp. 55-57, but this approximation does not yield a
closed form for d(p)). To compare with the random search
algorithm, consider Example 7.1 given above and consider a
loss function producing a o such that the same number of
function measurements in the p = 1 case (28) is used for
both random search and SPSA (so 6s = 0.08 and o =
0.0586). We then have the following results (for direct
comparison with the results in Example 7.1):

p 1 2 5 10
n 28 48 78 106

Relative to the simple random search algorithm, this
table illustrates the large gains in efficiency possible in
higher-dimensional problems by using SPSA (~10° -fold
reduction in loss evaluations in the 10-dimensional
problem). This gain partly results from the fact that SPSA
operates under more restrictive conditions than the random
search algorithm (i.e., for formal convergence, SPSA
assumes a unimodal, several-times-differentiable loss
function) and partly from the fact that SPSA works with
implicit gradient information via its efficient gradient
approximation (of course, to maintain a fair comparison,
SPSA, like the other algorithms here, only explicitly uses
loss evaluations, no direct gradient information).

Simulated Annealing

Like SPSA, SAN has an asymptotic normality result. Hence
the method for characterizing the rate of convergence for
SPSA may also be used here. Let H(8") denote the Hessian
of L(6) evaluated at 6" and let I, denote the p x p identity
matriz. Yin (1998) showed that for b, = (b/(k log (k"7 +
By))"™,

(log (K7 + Bp) )%, — 8") —— N(0,%) in distribution

where ZH + H'S + (bla)l = 0.

Again, we shall consider the case where the covariance
matrix is diagonal. Assume also that S(8") is a hypercube of
the form [Sl‘ Sy ] X [Sz' Sy ]x...x[S;,S; ] centered around
8", and that 85 = Si+ -8, , V i. The (positive) constant By is

assumed small enough that it can be ignored. At each



iteration after the first, SAN must evaluate L(0) only once
per iteration. So the value » to achieve the desired

probability for 6, e S(8") is

logn'™" = (—2d(p )o )2
o5

Again, to compare this procedure with the other algorithms,
consider a loss function producing a ¢ such that the same
number of function measurements in the p = 1 case (n = 28)
is used for both random search and SAN (so 8s = 0.08 and &
= 0.031390). Also, for convenience, take y = 1/2. We then
have the following results:

) 1 2 5 10
n 28 31 172 438

This table suggests that SAN is less efficient in high-
dimensional problems than SPSA (although it compares
favorably with the random search algorithm). The gradient
approximations in the two algorithms may explain their
relative efficiency. The “Metropolis-type approximation
appears to be much farther away from an exact gradient-
based algorithm than a finite-difference approximation”
[(Gelfand and Mitter (1993, p. 128)]. By contrast, SPSA,
recall, utilizes a (highly efficient) finite-difference-like
approximation to the gradient.

Evolutionary Computation

As discussed in Section 6, the rate-of-convergence results
for EC algorithms are not as well developed as for the other
three algorithms of this paper. Theorem 6.1 gives a general
bound on E[L( ék ) — L(8")] for application of a (N,A)-ES to
strongly convex functions. A more explicit form of the

bound is available for the (1,A)-ES. Unfortunately, even in
the optimistic case of an explicit numerical bound on

E[L( ék ) — L(8")], we cannot readily translate the bound into
a probability calculation for ék € S(8"), as used above (and,
conversely, the asymptotic normality result on ék for SPSA

and SAN cannot be readily translated into one on L( ék)

since L/® = 0 at 8'—see, e.g., Serfling, 1980, pp. 122-
124—although Lehmann, 1983, pp. 338-339 suggests a
possible means of coping with this problem via higher-order
expansions). So, in order to make some reasonable
comparison, let us suppose that we can associate a set 5(0%)
with a given deviation from L(®", i.e., S(G*) =5(6", €) ={0:
L( ék ) — L(8") < &} for some prespecified tolerance € > 0. As

presented in Rudolph (1997b), E[L(6, ) — L(B)]< c* for

sufficiently large & where ¢ is the convergence rate in
Section 6. Then by Markov’s inequality,

E[L(®) - L(E¥)] _ ¢
€ I

1-P(8, € SO <

indicating that P( ék € 5(8%) is bounded below by the ES
bounds mentioned in Section 6.

For EC algorithms there are A evaluations of the fitness
function for each generation & so that »n = Ak, where

logp —log(l/¢€)

k:
2

log|1- log(A/N

og[ 20 og( )}

To compare the (N,A)-ES algorithm with random search,
SPSA, and SAN algorithms assume that the fitness function
is restricted to the (K Q)-strongly convex functions as is
discussed in Section 6. Alsolet A=14, N =7,£=8.3,0=
4, and p = 0.1. The variables were constrained here so that
for p = 1, we would have »n = 28 as is the case for the other
algorithms. We then have the following results for
comparison with the performance of the other algorithms
above.

p 1 2 5 10
n 28 59 150 300

This performance for ES is quite good. However the
restriction to strongly convex fitness functions gives the ES
in this setting a strong structure not available to the
algorithms above. It remains unclear what practical
theoretical conclusions can be drawn on a broader class of
problems. More advanced sensitivity studies for various A,
N, and Q have not yet been completed. Ideally, in the long
run, a more general rate-of-convergence theory will provide
a more broadly applicable basis for comparison.
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