332 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 3, MARCH 1992

Multivariate Stochastic Approximation Using a
Simultaneous Perturbation Gradient
Approximation

James C. Spall, Senior Member, IEEE

Abstract—Consider the problem of finding a root of the
multivariate gradient equation that arises in function minimiza-
tion. When only noisy measurements of the function are avail-
able, a stochastic approximation (SA) algorithm of the general
Kiefer-Wolfowitz type is appropriate for estimating the root.
This paper presents an SA algorithm that is based on a *‘simul-
taneous perturbation’’ gradient approximation instead of the
standard finite difference approximation of Kiefer-Wolfowitz
type procedures. Theory and numerical experience indicate that
the algorithm presented here can be significantly more efficient
than the standard finite difference-based algorithms in large-di-
mensional problems.

1. INTRODUCTION

TOCHASTIC approximation (SA) is a well-known recur-
sive procedure for finding roots of equations in the
presence of noisy measurements. Perhaps the most important
application of SA is in finding extrema of functions as first
described in Kiefer and Wolfowitz [18] for the scalar case
and Blum [2] for the multivariate case. This type of SA has
potential applications in a number of areas relevant to statisti-
cal modeling and control, e.g., sequential parameter estima-
tion, adaptive control, experimental design, stochastic opti-
mization, and neural network weight estimation. This paper
describes an SA procedure that has the potential to be signif-
icantly more efficient than the usual p-dimensional algo-
rithms (of Kiefer—-Wolfowitz/Blum type) that are based on
standard finite-difference gradient approximations. It is shown
that approximately the same level of estimation accuracy can
typically be achieved with only 1/pth the amount of data
needed in the standard approach. The procedure is based on a
‘‘simultaneous perturbation’” gradient approximation.
Let us now describe the setting. Consider the problem of
finding a root 6* of the gradient equation

aL(6)
30

for some differentiable loss function L:R” — R'. When L
and g are observed directly, therc are, of course, many

g(ﬁ) =
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methods for finding 6* (e.g., steepest descent,
Newton-Raphson, scoring). In the case where L is observed
in the presence of noise, an SA algorithm of the generic
Kiefer-Wolfowitz/Blum type is appropriate (see [25] for a
general discussion and related references).

In contrast to SA algorithms based on finite difference
methods, which require 2 p (noisy) measurements of L at
each iteration, the *‘simultaneous perturbation’’ algorithm
here requires only 2q, g = 1, measurements of L at each
iteration, where for large p we typically have g < p. Thus
there exists the potential for a significant improvement in
efficiency provided that the number of iterations does not
increase to negate the reduced amount of data per iteration.
As we will see this potential can be realized in realistic
problems.

The remainder of this paper is organized as follows.
Section II presents the simultaneous perturbation gradient
approximation and the associated SA algorithm. Section IIT
provides theoretical justification for the algorithm, including
results on the strong convergence and asymptotic distribution
of the iterate. Section IV discusses the efficiency of the
algorithm relative to the multivariate form of the
Kiefer-Wolfowitz finite difference algorithm. Section V pre-
sents a numerical evaluation of the simultaneous perturbation
and finite difference algorithms on a fairly large-dimensional
problem and Section VI offers some concluding remarks,
including a mention of some areas for future research.

II. THE SA ALGORITHM AND ASSOCIATED GRADIENT
APPROXIMATION

This section includes a brief discussion of the SA algo-
rithm that is of interest here and discusses the ‘‘simultaneous
perturbation’’ estimate for g(8), £(8), that will be used in
the SA algorithm.

Letting §, denote the estimate for 6 at the kth iteration,
the SA algorithm of interest here has the standard form

§k+l = ék - akgk(ék) (2-1)

where the gain sequence {a,} satisfies certain well-known
conditions (see Section III). Note the close relationship of
(2.1) to the method of steepest descent, the difference being
that in steepest descent g(-) replaces g,(-).

There are a number of techniques for accelerating the
convergence of SA algorithms under special conditions (e.g.,
second-order algorithms such as that in [26] or adaptive
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algorithms as in [17] or [19]), but they will not be considered
in this paper. Rather, we will focus on the performance of
(2.1) with g,(+) as defined in the following, and contrast (in
Sections IV and V) this performance with that of the
Kiefer- Wolfowitz algorithm where a finite difference gradi-
ent approximation replaces g,(-) in (2.1). We believe, how-
ever, that this baseline study provides insight into the poten-
tial usefulness of g,(-) as it might apply in an accelerated
algorithm. The gradient approximation here may also have
applications in the field of perturbation analysis since it
provides insight into the shape of the performance measure
without requiring exact derivatives or a large number of
function evaluations (see, e.g., [3], [15], or [14]).

We now define the ‘‘simultaneous perturbation’ estimate
for g(*). Let A, € R? be a vector of p mutually independent
mean-zero random variables {A,, A,,, -+, A} satisfying
conditions given in Section III (note: perhaps the main condi-
tion is that E | A, |, or some higher inverse moment of A,
be bounded, which precludes A,; being uniformly or nor-
mally distributed). Furthermore, let {A,} be a mutually
independent sequence with A, independent of éo, 6 AR g PR
We need make no assumptions regarding the specific type of
distribution for A, ;, although the numerical studies in Section
V take the A,; as symmetrically Bernoulli distributed. Con-
sistent with the usual SA framework, we have available noisy
measurements of L(-). In particular, at design levels 6 «
¢, Ay, with ¢, a positive scalar, let

YO =L(0, + i A) + eV
P =L(0, — ¢ Ay) + €

where (", el
satisfy

E(ef” — €| %, 0,) =0 as. vk,

) represent measurement noise terms that

%(E {éové|9"'aék};

this condition closely resembles the common martingale dif-
ference noise assumption that appears in the literature for the
setting where A, is deterministic, differing only in the addi-
tional conditioning on A, . The fact that {¢{*’, e’} need not
be an independent sequence is of practical concern, e.g., in
adaptive control problems (e.g., [32] or [28, pp. 375-376])
as well as in general parameter estimation problems involv-
ing the minimization of an integral-based loss function (such
as mean-square error) by taking observed values of the
integrand (e.g., [7]).

One form for the estimate of g(-) at the kth iteration is
then

-y
2c Ay

-y

| 2¢ Ay, |
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Note that this estimate differs from the usual finite difference
approximation in that only two measurements (instead of 2 p)
are used. (The name ‘‘simultaneous perturbation’” as applied
to (2.2) arises from the fact that all elements of the 6, vector
are being varied simultaneously.) Aside from evaluating (2.1)
with g,(-) as in (2.2), we will also consider using (2.1) with
several (conditional on %,) independent simultaneous pertur-
bation approximations averaged at each iteration. In particu-
lar, g,(*) in (2.2) is replaced by
q
&c(0) =a”! Zl g (6,) (2.3)
j=

where each §({(-) is generated as in (2.2) based on a new
pair of measurements that are conditionally (on %,) indepen-
dent of the other measurement pairs. It will be demonstrated
in Sections III, IV, and V that averaging as in (2.3) can
sometimes enhance the performance of the SA algorithm
(relative to using g,() as in (2.2)). Obviously, other averag-
ing methods may also be applicable. It does not appear,
however, that the averaging method of Fabian [8] would
directly apply since the elements of &/ are (conditional on
#,) dependent, violating a key assumption of the Fabian
technique.

Gradient approximations similar to (2.2) or (2.3) in the
sense that only two measurements are used in the analog to
(2.2) have been considered in Kushner and Clark [20, pp.
58-60, 254-256] and Ermoliev [6], [7]. Motivated partly by
the problem of weight estimation (learning) in neural net-
works, Styblinski and Tang [33] consider an algorithm simi-
lar to those of Kushner and Clark and Ermoliev for the
noise = 0 setting and compare this algorithm to one based on
simulated annealing. The gradient approximations of these
authors have somewhat different forms and regularity condi-
tions than (2.2) and (2.3). Kushner and Clark state that SA
with their random directions approximation is no¢ superior
to SA with a finite difference approximation (i.e., the number
of iterations increases enough to nullify the reduced number
of measurements per iteration). Some numerical experience
described in Section V seems to corroborate this statement;
also, theoretical results in [4] comparing asymptotic mean
square errors (analogous to results in Section IV here) indi-
cate that random directions SA will not generally be superior
to finite difference SA. Note that neither of the gradient
approximations, random directions or simultaneous perturba-
tion, is a special case of the other ([4] discusses this further).!
Ermoliev focuses mainly on how this gradient approximation
applies in general stochastic optimization problems; so it is
not clear how effective it is in SA algorithms of the type
(2.1). As mentioned earlier, Sections IV and V consider the
use of (2.2) and (2.3), and finds that they can offer significant
savings in data (> order of magnitude) for a moderately
large-scale problem with even greater savings possible for
larger dimensional problems.

'For example, the random directions procedure is based on sampling
directions uniformly in a p-dimensional sphere (see [20, pp. 58-60] or [12,
pp. 29-31]). In the simultaneous perturbation technique, this type of sam-
pling is forbidden by the regularity conditions.
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II1. STRONG CONVERGENCE AND ASYMPTOTIC
NORMALITY

This section presents several results that form the theoreti-
cal basis for the simultaneous perturbation SA (SPSA) algo-
rithm. The following sections consider the bias in £,(-) and
establish conditions for the strong convergence and asymp-
totic normality of § «- The asymptotic normality result allows
us to theoretically compare the relative efficiency of SPSA
and the multivariate Kiefer-Wolfowitz finite difference SA
(FDSA) algorithm, as discussed in Section IV.

Before presenting the main results, note that
E(gk(ek) | Gk) E(gk(Gk) | Z) a.s. (this follows easily us-
ing the fact that A, is independent of #, and fact that
E|A,}| exists, which implies that P(A,; = 0) = 0). For
convenience in this section and in Section V, we will fre-
quently write A, for ¢, A,, with corresponding elements
A,;. All norms || - || are taken as the Euclidean norm. We
also focus on the g = 1 case in the proofs; trivial modifica-
tions accommodate the g > 1 case.

A. The Bias in g( - )

Lemma 1 below gives conditions under which the bias in
8.(-) as an estimator of g(-) goes to 0 as k— . An
explicit bound for the bias is given in expression (3.2); «,
oy, and a, will denote positive constants, and @ = {w} will
denote the sample space generating the sequence 6, 6,, - - - .

Lemma 1: Consider all k = K for some K < o. Sup-
pose that for each such k the {A,;} are iid. (i=
1,2,---, p) and symmetrically distributed about 0 with
|Agi| < a a.s. and E|Ag}'| < a,. For almost all 6, (at
each k = K) suppose that vV 8 in an open neighborhood of
f, that is not a function of k or w, L®@) =
8*> L /367367 387 exists continuously with individual ele-
ments satisfying | L?, ; (8)| < a,. Then for almost all w € ©

iyigiy
bi(6s)

= E(gk(ék) - g(ék)lék)
(= E( £:(0,) - g(ék) | %))
= 0(cz) (¢, = 0).
Proof: Consider any /€ {1,2,--, p}. First, note that
E[e(? — €7)/2A,,]6,] = 0 a.s. Then by the continuity of

L® near ()k and uniform boundedness of |A,,| for all k
sufficiently large, we have by Taylor’s theorem for all such &

. 1 _
bu(8:) = —E{A;'[L®(87)
12

+L2(6,)]A, ®A, ®A,16,} (3.1)

where _ {;,:' .8, x are on the line segment between 6 + and
0, £ Ay, respectively, and b, denotes the /th term of the
bias bk By the mean value theorem, the term on the r.h.s. of
(3.1), is bounded in magnitude by

0‘2 Ci Apiy By A,

AIcl

2
o,
=<
6

LY YE

o

A’ - (p

-3+ (P - 1)'wed} (32)

where the upper bound follows from the fact that (p — 1)°
summands on the L.h.s. will have no A, term in the numera-
tor. Combining (3.1) and (3.2) completes the proof. Q.E.D.

Note: The randomness in {A,;} plays a critical role in
ensuring that the bias in §,(*) is O(c)) Vv g = 1,2, -
(This follows since terms of the form A,; /A, that arise in
the expansion b,,(8) = E(X,;,,8:0) Ay /Ay) + O(ch)
have expectation 0, thereby removing the O(1) contribution
to the bias that would otherwise result.) It is, however,
possible to construct gradient estimators similar in spirit to
SP that have deterministic perturbations and have O(c,f) bias
if g is large enough (usually > 1). One such estimator is
based on picking A}’ for use in (2.2) and (2.3) as A}’ =
(£8, + 8,-++, £ 8,8)7, § a positive constant, where the +
indicates that we are taking all possible combinations of &
and —§ in the first p — 1 elements of the perturbation vector
as j ranges from 1 to g. Thus we need ¢ = 27~ !, which is
unacceptable for large p. An alternate implementation of this
deterministic perturbation idea (suggested by a reviewer of
this paper) is to use ¢ = 1 and cycle through all 277!
directions over 27~ ! successive iterations. Although g,(*) is
O(1) biased in this approach, it might be hoped that the
biases would tend to cancel each other over the block of
27~ jterations. This cancellation is easily seen to be highly
unlikely when p is large since it depends on §, and @, being
approximately equal over the block. Without bias cancella-
tion, certain elements of § « could get repeatedly pushed in a
(wrong) direction to a point from which they may not be able
to recover.

B. Strong Convergence of ] &

We now present Proposition 1, which establishes condi-
tions under which 6, converges almost surely to 8*. Defining
the error term

e(6,) = fk(ék)

we can rewrite (2.1) as

~ E(2:(6,)16,)

+ b(6) + ec(6,)]

which is in the form of a generalized Robbins-Monro algo-
rithm considered, e.g., in [20, pp. 38-39], [23], or [24].

Let us introduce the following assumptions, which are very
similar to those of a number of other authors, as discussed
below.

ék+1 =0, - ak[g(ék)

Al: a;, ¢, >0V k; a,—>0,c,>0as k— oo;

2The randomness in the perturbations (especially, independence and sym-
metry of {A,;}) is also critical in the asymptotic distribution theory of
Section III-C in providing an invertible asymptotic covariance matrix for 6.
Under the bounded moment conditions given there, cov £,(6) is invertible
even when ¢ = 1, which via (3.5) and (3.6) ensures that the asymptotic
covariance matrix for 6, is also invertible. For any deterministic perturba-
tions of the SP type (irrespective of bias considerations), a minimum of
g = p is needed to achieve this invertibility.
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A2: For some o, a;, a,>0 and V&, Eel*) < ay,
EL@, +A,)*<a,and EA <a,(I=1,2,", ).

A3: |16, < o as. V k.

A4: 6* is an asymptotically stable solution of the differen-
tial equation dx(¢)/dt = —g(x).

A5: Let D(8%) = {x,:lim,_ x(t|x,) = 6%} where
x(#| xo) denotes the solution to the differential equation of
A4 based on initial conditions x, (i.e., D(6¥) is the domain
of attraction). There exists a compact S & D(6%) such that
6 « €S infinitely often for almost all sample points.

Remarks on regularity conditions: Al and A2 are typical
SA conditions. A3 is perhaps the most difficult to verify in
practice. Kushner and Clark [20, pp. 40-41] discuss why A3
is, in fact, not a restrictive condition and could be expected to
hold in most applications.> A4 and A5 are motivated by
considering a limiting form of the deterministic version of
2.1, i.e., 0k+l = 0k - akg(ek) as k — oo. Lai [22] pre-
sents a brief tutorial on the role of A4 and A5 in SA
algorithms. See also the discussion in [23, Section 6]. Slightly
weaker assumptions than A4 and A5 (leading to convergence
to different roots 6* along different sample paths) are dis-
cussed in [24] and [1].

Proposition I: Let A1-A5 and the conditions of Lemma 1
hold. Then as k = o

6,— 6% foralmostall weQ.

(3.3)

Proof: Given Al and A3-AS5, we know from [20,
Lemma 2.2.1 and Theorem 2.3.1] (see also [24] or [22]),
that (3.3) holds if

i)
I b, (8,)|| < @V k and b,(6,) = Oa.s.,
ii)

hmP sup|]Zae(0)||>n =0

m=k i=k

for any > 0.

Now, i) follows immediately by Lemma 1, (3.2), and Al.

Consider ii). Since {>7.,a;e;},,», is a martingale se-
quence, we have from an inequality in [5, p. 315] (see also
[20, p. 27])

SUPIIZae||>n =7 ZEIIZMIIZ

mzk i=k
=n"* 2 aElel* (34)
i=

3Ljung [23] replaces A3 with a weaker condition, liminf, _, .||, || < o
a.s., and gives sufficient conditions for this weaker condition to hold. This
author found, however, that certain other conditions were not as easily
verified as those of Kushner and Clark [20], Lai [22], or Metivier and
Priouret [24], which will be used in the proof of Proposition 1.
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)_
,p}

where the equality follows by the fact that E(e

E(elE(e; |0 ) =0V i<j Now forany /€{l,2,"

we have
Egy(6,)°

< 31E[L(6, +1,) - L(6, - &,)

el — " )] EAkl
(using A2)

and so E| e, || = 2p(a, + ag)a,c; . Then from (3.4) and
Al, ii) has been shown, which completes the proof. Q.E.D.

C. Asymptotic Normality of 6,

Using a result of Fabian [9], Proposition 2 below estab-
lishes asymptotic normality for scaled g ¢ Section IV com-
ments on how this result can be used to draw conclusions
about the relative efficiency of SPSA and FDSA.

Proposition 2 considers gains of the standard form a, =
a/k® and ¢, = c¢/k” where a,c, o,y > 0. The proposi-
tion is stated for the case where g,(-) is not formed from an
average of several g(7(+)’s (i.e., ¢ =1 in (2.3)); the note
after the proof considers the g =2 case. The proposition
also relies on the following strengthened version of condition
A2 of Proposition 1.

A2’: For some 8, ap, @, @, > 0 and V k, E|ef=)]**°
< ag, EIL(G +A) | =, and E|A, | P=a,
(=12, p).

Finally, let H(0) denote the Hessian matrix for L(G),
notation of [9] will also be used when appropriate.

Proposition 2: Assume that the conditions of Lemma 1
and Proposmon 1 hold but with A2 strengthened to A2’ Let
0%, p?, and £2 be such that E[(e{" — i7)?| Z,| = o?
a.s., EAk,z—*p and EA%,— £% as k—*oovl A]so vk
sufﬁmently large and almost all w let the sequence { E[(e{"
—e? | %, Ax = 1]} be equicontinuous at n =0 and
continuous in n on some compact, connected set containing

A, a.s.* Furthermore, let = a« — 2y > 0,3y — «/2 2 0,
and P be orthogonal with PH(@O*)PT = g~! diag
(N, A,). Then

K28, — 6%) S N(u, PMPT), k- oo
where M = 1d*c 0% diag [N\ — B,)™ ', @\, —

B+)“] with B+-—B<2mini)\i if a=1and B,=0 if
a<1,and

0 if3y — /2> 0
— 18, 0)7'T if3y-af2=0

o [(aH *

where the /th element of 7 is

)+ 3ZL(33( O

l#l

- sac’t? [L‘ﬁ}(

‘We emphasize that in the equicontinuity and continuity assumptions, %
depends on the actual values of A;, noton A; =1,V i < k.
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Proof: The result will be shown if conditions (2.2.1),
(2.2.2), and (2.2.3) of Fabian [9] hold; all statements condi-
tioned on Gk or #, are assumed to hold a.s. (on Q) By
Lemma 1, we know that 3 an open neighborhood of ) <V Kk
sufficiently large) such that H(-) is continuous in the neigh-
borhood, and by Proposition 1 we know for large enough &
that 8* lies in this neighborhood. Thus

E[8.(0,)16,]) = H(8,)(6, — 6%)

+ bk(ék) (= E[ gk(ék) | ‘g;(])

where @, is on the line segment between 6 « and 8% In the
notation of [9] we can now write

Oy — 0% = (I - k™ °T,)(0, — 6%)
+ kPR YV, + kT2 ERT,

where T, = aH(0,), V., =k~ V[gAk(()k) — E(&001601,
&, = —al, and T, = —ak®?b,(0,). We now show that
Ty, T,, and E(V, Vk | #,) are a.s. convergent, i.e., condi-
tions (2.2.1) and (2.2.2) of [9] hold.

We see that T, = aH(0%) a.s. by the continuity of H(-)
and a.s. convergence of ] «- Now consider the convergence
of Ty. If 3y — /2 > 0, we see that 7} — 0 a.s. by the fact
that bk(Gk) Ok~ as. If 3y — o /2 = 0, (3.1) and the
facts that 6, > 6* a.s. and L® is uniformly bounded near
6%, imply by the dominated convergence theorem

kQka,(ék) - %CZLG)(B*)E[AZII(Ak ®Aa,® Ak)] —0
a.s.

Then the fact that {A,;} are symmetrically i.i.d. for each k&
implies that the /th element of T, satisfies
L (6%)

1 242
Ty, — —gac't

+ Z [LE(0%) + LG(6%) + LE)(6™)]
1:#/

(The value for u # 0 in the proposition statement uses the
fact that L) = LS) = 1Y) at 6* by continuity, which is
guaranteed by the uniform conditions in Lemma 1 and a.s.
convergence of § «-) We have thus shown that T, converges
for 3y — a/2 2 0. Now define A7' = (AL, -+, ;)"
We have
E(VV/!| %

) = kB85 (a7")

'[L(ék+ A,) -

2¢ck™"

\ T e§€+) 5{—)
ay'(ar") [—W]

+ k™ 2E

2

+ kkzyE{A;l(Ak ) 2ck="
c

e - fk )]

:

) + b (0 )]T.
(3.5)

— k[ g(6,) + be(6)

) &6,

Since the conditions of Lemma 1 imply that for all k
sufficiently large and almost all weQ L(6, £ A,) is uni-
formly bounded in A,, A2’, Holder’s inequality, and the
dominated convergence theorem imply that the first and
second terms on the RHS of (3.5) approach 0 a.s. Also, (3.2)
implies the same for the fourth term. Now, let us consider
the third term in (3.5). By the independence of A, and %,

E[ar'(8:) (¢ - &)1 7]

:f A7 (85) E[ (&0 - €)1 % By @By (3.6)
Q

A

where Q, is the sample space generating the A,’s and P, is
the correspondmg probability measure. By the fact that
E[(elY) — €)% #,]1— 0% as., we know by the mean
value theorem and by the equicontinuity in % at O that
El(ef” — €2 | Z,, Ay = m] = 02 a.s. V sequences {n,}
in the assumed compact, connected sets containing {4} a.s.
such that 5, — 0. Then applying the mean value theorem to
each of the diagonal and off-diagonal elements in (3.6) yields

E(VWVI| %)~ sc7%0% ] as.

This completes the proof of Fabian’s conditions (2.2.1) and
2.2.2).

We now show that condition (2.2.3) of Fabian [9] holds,
which is

Yim E( Sy, 2a e | Vel ) = 0

where .#., denotes the indicator for {-}. By Holder’s
inequality and for any 0 < & < 6/2, the above limit is
bounded above by

vr>0

tim sup P(|| V|2 = k=) (E| v 20+90) T

k— oo

E|[ V]2 \*7 2145y 1/ +8)
< limsup e (EIV, 2¢+) :
ri

k— oo
(3.7)
Note that
HV "2(1+6)<22(1+6)k 2(1+5)-y["g )“2(1+6)
+1 (B )1PH + 1B (8) 17+ (3.8)

From Lemma 1 (including (3.2)), g(8,) and b,(8,) are
uniformly bounded for almost all w €@ and Vk = K; L,
+ A,) is uniformly bounded for almost all (w, w,) € X X @,
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and vV k = K, where K, = K. Thus, the expectation of the
second and third terms within [-] in (3.8) approaches O as
k — oo. Further, invoking A2’ and the fact that 8’ < 6/2,
Holder’s inequality implies that the expected value of the first
term in ['] is O(KX1*¥™). Thus E|V,||***® = O(1),
which shows by (3.7) that (2.2.3) of [9] has been proved.
Q.E.D.

Note: Proposition 2 is stated for the case where ¢ = 1 in
(2.3). If g = 2 and a, ¢ are held constant asymptotic normal-
ity also holds, but with 62 (in M) replaced by ¢°/g. With
g = 2 the asymptotic mean-squared error (with the same
number of measurements y) can generally be reduced. Let us
assume that the first and second moments of the asymptotic
distribution correspond to the first two asymptotic moments
of kP2(§, — 6%), which is true if | k#/2(d, — 0%)|? is
uniformly integrable (see, e.g., [21, pp. 138-140]). Then,
letting n denote the number of measurements and recalling
that k = n/2q, the mean square error (MSE) matrix for

6, — 6 is asymptotic to
PMP7 2\#
k—B( = (;) (qB"PMPT+qu4LT).
(3.9)

Straightforward calculations yield an asymptotlcally optimal
g, that is, one that minimizes E||§, — 6%||? based on (3.9),
as the integer either immediately above or below (1 — ()
-tr PMPT/Bu"y when p # 0.3

IV. RELATIVE EFFICIENCY OF SIMULTANEOUS
PERTURBATION SA AND FINITE DIFFERENCE SA

+ up’

To gain some insight into the relative performance of the
SPSA algorithm and the FDSA algorithm this section com-
pares the result of Proposition 2 with the analogous result for
FDSA. In particular, we focus on relative asymptotic mean
square error (MSE). Under fairly general conditions, it is
shown that SPSA will achieve lower MSE than FDSA for the
same amount of data, which is equivalent to SPSA using less
data to achieve the same level of MSE as FDSA.

In the FDSA algorithm, the finite difference gradient esti-
mate, say g,(*), will replace £,(-) in (2.1). In particular the
Ith component of g,(+), / =1,2,:-, p, is given by

5 (6 L(f, + cu) + 7 = L(6, — )
gk!( k) 2¢,
where 0, denotes the FDSA estimate at the kth iteration, u,
denotes a unit vector in the direction of the /th coordinate in
R? and €{*), (™) denote measurement noise terms with
) — €7 satlsfymg the usual martingale difference condi-
uon (so gk,(O «) is based on measurements at design levels
PEXADY
First, note that, as with Lemma 1 and Proposition 1, &,(*)

has O(c?) bias and §, — 8* a.s. (see, e.g., [20, pp. 51-52]).
Using these results it can be shown (in the manner of

— o

*In contrast to the aforementioned, where @ and c are held fixed, it can be
shown (as in [20, pp. 253-254] or [10}) that if 8 = 2/3 and c is chosen to
minimize the MSE (as a function of g), then averaging does nof reduce the
MSE. This follows from a calculation effect between the increased quality of
estimate for g(-) and the decreased number of iterations.
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Proposition 2) that
k%2(4, — 0%) S N(&, PMPT)
where P is as in Proposition 2, M = ta*c™ 252 diag [\,
B 2N, =87 E[(é““ -4~
% as. v [, and
0 if3y —a/2>0

(aH(0%) - 18,1)"'T if3y —a/2=0
where the /th element of T is — tac’L$)(0%).
Let us now discuss the relative MSE for SPSA and FDSA
for an identical number of measurements 7 (not iterations).
Taking o2 = 67, and invoking the caveat in the note after
Proposition 2 regarding the moments of the asymptotic distri-
bution corresponding to the asymptotic moments of scaled 6,
and Gk, we have as n — o
E||6, — 0*| ﬁtrPMPT/lI+u#
_ - > __—.______—
E|§, — 0%|? (p) tr PMPT +

where k = n/2g and k' = n/2p.

Broadly speaking, we can say that if | x|l = ||| as p
gets large, then the ratio in (4.1) is O(1/ p), indicating that
SPSA is the superior algorithm for large enough p. How-
ever, if | E|/ || nll gets small as p gets large (as would
happen if 3y — «/2 = 0 and the { L{})(6*)} tended to be of
the same nonzero magnitude and sign V i, /), then the ratio in
(4.1) might tend to favor FDSA. The first case (i.e., that
favoring SPSA) seems to arise more frequently in practice,
especially in light of the common setting where p = fi = 0.
It does not seem possible to make more general statements
about the relative superiority of SPSA or FDSA since: i) p?
and £2, which enter M and p, are functions of the distribu-
tion chosen for the {A,;} and ii) the mixed third partials of
L may or may not reduce the wTp contribution to MSE
relative to the fi’fi contribution (where no mixed partials are
present); this obviously depends on the function L being
considered.

Nevertheless, we can illustrate an application of (4.1) by
assuming that p?> = £2 = 1 (as in the Bernoulli + 1 examples
of Section V) and u = [ (e.g., as when the magnitudes of the
mixed partial LE)(0*) terms, i # /, are small relative to the

L$(6%) terms V / or when 3y — «/2 > 0 [so p = ji = 0]).
Then the ratio in (4.1) is approximately (or exactly if u = ji)
equal to 1/p® when g = 1 and both algorithms are run with
the same values of a, ¢ (even those chosen optimally for
FDSA, such as in [10]).® Thus, when 8 = 2/3 (as in Kush-

n=

(“.1)

5Choosing p® = 1 forces the effective measurement noise in SPSA and
FDSA (i.e., measurement noise/2¢; A,, and measurement noise/2¢;) to
have equal variance in the important special case where A, is independent of
the noise. This provides a fair basis for comparing the algorithms since the
effective measurement noise plays a major role in the stability /convergence
of the algorithm. An alternate approach for the Bernoulli setting (which the
discussion above and in the previous sections does not require) is to choose
the A,, magnitude such that the length of the SPSA and FDSA difference
intervals for the gradient approximations, 2¢,||A,|| and 2¢,, are equal;
here we choose | A, | = 1/1/p (now, however, the effective measurement
noise variance in SPSA is p times larger than that for FDSA). From (4.1) it
follows that when u # O the MSE ratio is O(1/p 2+8) (p - o) but that
when p = O the ratio equals p' =% > 1. This is unlike the |A,,| = 1 case,
where SPSA generally has lower MSE than FDSA in both the zero and
nonzero p settings.
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ner and Clark [20, pp. 252-253] and Fabian [10]) and
p = 20, as in the examples of Section 5, FDSA has asymp-
totic MSE approximately 7.4 times larger than SPSA when
q = 1. For other values of g the relative efficiency of SPSA
to FDSA is likely to increase depending on the relative
magnitudes of tr PMP” (= tr PMPT) and uu(~ i’5). We
will see in Section V some other examples where the ratio in
(4.1) can be readily computed. In particular, when 3y — /2
>0(sopu=f=0)and p?> = £2 = 1 (s0o M = M) the ratio
simplifies to g®~!/p® for any common values of @ and c.

An equivalent, but enlightening, way of looking at the
relative MSE is to compare the number of measurements
needed in FDSA to achieve the same level of MSE as SPSA.
Under the earlier-mentioned assumptions that p = i (at least
approximately) and M = M, we have by setting the right-
hand side of (4.1) to unity

1/8

# measurements in SPSA tr PMPT/q + uTu

tr PMPT + 7y

q
- —
# measurements in FDSA D

(4.2)

as the number of measurements for both procedures gets
large. Since 8 and the term inside () are both < 1 we know
that (asymptotically) FDSA will require at least p/q times
more measurements than SPSA. More specifically if u = 0,
at least p times more measurements are needed in FDSA.

V. NUMERICAL EVALUATION OF THE ALGORITHM

A. Introduction

This section presents the results of a study that illustrate
how the SA algorithm with the simultaneous perturbation
gradient approximation of (2.2) or (2.3) compares to the
finite difference procedure. The study was performed on an
IBM 3091 mainframe with MVS operating system; pseudo-
random numbers were generated using the IMSL DRNNOR
normal random number generator and a standard uniform
pseudorandom algorithm based on the remainder of the divi-
sion of two large numbers.

The function we seek to minimize in this study is

L(9) = g][logdet(E(()) + Q,.) + xiT(E(G) + Q‘_)—lxi]

where %(0) = diag(6,,8,, -, 6,), Q, is positive semidefi-
nite ¥ i, and x;e R” are constants.” Recall that we have
noisy observations of the function L(-) at various design
levels. It is of interest to note that the function L(0) arises in
a signal-plus-noise MLE problem (where the X; represent
data distributed N(0, £ + Q;)), and that it has applications,
e.g., in Kalman filter model estimation (the author’s primary
interest) and dose response curve estimation (see, e.g., [29]
and [16]).® More relevant for our purposes here is the fact

"Chin [4] considers a different function L(-) and performs a study similar
to that here. His numerical results are qualitatively the same.

81n an MLE context observing the likelihood L(-) in the presence of noise
and using SA to find the root might be useful if L(-) is approximated in
some computationally efficient random manner. Such stochastic optimization
techniques have been considered in [34), where it is assumed that the
function to be minimized is approximated in an efficient random way.

that L is a function R” — R' for which third-order (actually
any order) derivatives exists continuously on (0, o) X (0, o)
X ¢+ % (0, ), and for which L®(6) is uniformly bounded
in magnitude on any compact subset of this domain (in
particular, for ;s uniformly bounded away from 0). This
implies (subject to conditions on A, , of course) that Lemma
1 is satisfied for 6, in this compact subset, i.e., 8,(0,) is an
unbiased estimator of g(f,) to within an O(c?) bias term.
The {A,,} will be generated as independent Bernoulli ran-
dom variables with outcomes +1, and so the conditions of
Propositions 1 and 2 on A, are satisfied. The measurement
noise for both SPSA and FDSA will be generated as i.i.d.
normal random variables, which clearly satisfies the relevant
conditions. Also note that in the nonidentical Q; case being
considered here, no closed form solution to g(8) = 0 exists;
s0 an iterative algorithm would be needed even if L(-) were
observed without measurement noise.

There are two remaining sections. Section V-B, which
presents the main results, considers the case where p = 20
and evaluates the relative performance of SPSA and FDSA
for several different SA gain sequences and measurement
noise distributions. Section V-C discusses some ancillary
studies that provide additional insight into the relative perfor-
mance of the algorithms, including a comparison of SPSA to
the random directions method of Kushner and Clark [20] that
was mentioned in Section II.

B. Main Study

1) Design of Study and Results: This section compares
the SPSA to the FDSA algorithms for the case where p = 20.
The constants x; in L(f) were generated randomly accord-
ing to an N0, X + Q,) distribution where: T = 2251,
N=160, Q,=A,;AT with A,e R**3° and where each
element of the A; matrices was generated uniformly (and
independently) on (—1,1). This, of course, leads to the
nonidentical {Q;} situation mentioned in Section V-A. The
value 8* (the root of g(6) = 0) was found by application of
a scoring algorithm to L(6) with no measurement noise; this
value for 6* was corroborated by application of a
Newton-Raphson algorithm.

The table below compares the performance of SPSA and
FDSA for two different distributions of the measurement
noise. (The notation e, is used to generically represent
ek, e, e, el as appropriate.) Two different SA gain
sequences were used (g, = 300/k%7% and a ‘‘standard”’
O(1/k) gain, a, = 300/k) while ¢, was the same for all
studies (¢, = 100/k%%°). Note that the combinations of a,
and ¢, satisfy the relevant conditions in Propositions 1 and 2.
The notation SPSA-¢g denotes SPSA with an average of g
individual £,()’s at each iteration of the algorithm as dis-
cussed in Section II (2.3). To effect a fair comparison of the
SPSA to the FDSA algorithm, the runs were initialized with
0o =10, ([0, — 8%| = 770.8 and ||6*| = 1064.6) and same
random number seed (for generating the €'s). Several addi-
tional runs with different x,’s, Q,’s, and §,, were also made,
which confirmed that the relative behavior of SPSA and
FDSA reported in Table I is representative (Spall [31] dis-
cusses some of these additional studies).
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TABLE 1
VaLues oF |6, — 8%||/ |6, — 6%|| anp 18, — %]/ || — 0*|| FoR SLowLY DECAYING AND STANDARD GAIN SEQUENCES

O(1/k%7°!y Gain Sequence O(1/ k) Gain Sequence
€, ~ N(0, 400) €, ~ N(O, 1600) ¢, ~ N(0,400) € ~ N(©, 1600)
n =280 n = 3000 n =80 n = 3000 n =80 n = 3000 n =80 n = 3000
SPSA-1 0.61 0.19 0.96 0.41 0.73 0.40 0.91 0.57
SPSA-2 0.65 0.15 0.80 0.32 0.77 0.42 0.85 0.51
SPSA-4 0.73 0.14 0.79 0.27 0.81 0.46 0.85 0.50
FDSA 0.86 0.49 0.90 0.70 0.87 0.59 0.88 0.73

The noises in Table I were chosen to be large enough to
have a significant effect in degrading £,(-) (and the FDSA
approximation £,(-)), which is appropriate for testing the
efficacy of the algorithms under realistic conditions. The
N(0, 1600) noise contributes, on average, over 50% to the
magnitude of the £,(-) terms in SPSA-1 for the first few
iterations of the algorithm and a greater percentage in later
iterations. That is, for low values of k the magnitude of
L(ék + —A—k) - L(ék - Zk) was generally near 40 while the
mean absolute noise contribution (i.e., E| " — €7)]) was
slightly over 45. For larger values of k, the difference
L@, + Zk) — L(6, — A,) approached O (due to the greater
flatness of L(-) near 6* and fact that the magnitude of A k
approached 0), and so the relative noise contribution to the
calculation g,(-) approached 100% (which in turn was com-
pensated for by the fact that @, — 0). The two columns under
each noise distribution contain the values of normalized
(6, — 6%| and ||§, — 6*|| after n = 80 or n = 3000 mea-
surements y have been processed. Since p = 20, each itera-
tion of FDSA requires 40 measurements while each iteration
of SPSA-g requires 2 g measurements. Thus, for example, in
the columns labeled n = 3000, SPSA-2 has gone through
750 iterations while FDSA has gone through 75 iterations.
The two values of n were chosen to illustrate small- and
moderate-sample behavior of the algorithms.

2) Interpretation of Results: For the small sample n = 80
case, the results were mixed, although overall SPSA tended
to achieve a smaller normalized | - || value (especially for
the O(1/k®™") gain). For the larger sample n = 3000
setting, the evidence for SPSA is much stronger. In every
case, the norm value for SPSA was significantly lower than
the value for FDSA. Furthermore, based on SPSA norm
values not included in the table, it was found that SPSA
reached the terminal FDSA (n = 3000) value with approxi-
mately 1/20 to 1/10 the number of measurements for the
O(1/ k%) gain and 1/8 to 1/4 the number of measure-
ments for the O(1/k) gain.

Let us now discuss the values in the table in light of the
discussion in Section IV on asymptotic relative mean square
error. Since M = M and u = i = 0, we have from (4.1)

RMS(SPSA-g) i

RMS(FDSA)

q*!
pﬁ

(5.1)

as n — oo where RMS(-) represents root mean square error.
For the O(1/k%7°°") gain the ratio in (5.1) varies from 0.41
to 0.69, while the observed n = 3000 ratios vary from 0.29
to 0.59. As predicted by (5.1), the SPSA values in the table

decrease as ¢ increases (of course, g cannot be increased
indefinitely since the number of iterations must also be large
enough to justify the asymptotic theory). For the O(1/k)
gain, the ratio in (5.1) varies from 0.33 to 0.47 while the
observed n = 3000 ratios vary from 0.68 to 0.78; however,
unlike the O(1/k°%"") gain, the SPSA values do not neces-
sarily decrease as g increases.

Although there is some consistency between the asymptoti-
cally based (5.1) and the observed norm values in the table
(especially for O(1/k%7"y), there is also some evidence
that n = 3000 is not large enough for asymptotic theory to
be fully valid. Three observations provide this evidence: 1)
the norm values in the table for the O(1/k) gain are larger
than those for the O(1/k%7°") gain despite the fact that 8
for the former is greater than 3 for the latter and 6, — 0* is
Op(k‘ﬂ/z) (this observed superiority for slowly decaying
gains in a finite-sample setting is consistent with the author’s
other experiences with SA [e.g., [30], [31]] although asymp-
totic theory (e.g., [10], [11] and [13]) indicates that O(1/k)
gains are optimal), 2) the norm values are still dropping
relatively fast near the terminal iterations for the O(1/k)
gain (although the values are dropping only slightly for the
O(1/ k%™ gain), and 3) the previously mentioned ob-
served ratio of number of measurements for equivalent accu-
racy (1/20 to 1/4) tends to be larger than the asymptotically
valid ratios of 1/20 to less than 1/1000 as given by (4.2),
although predicted by (4.2) the observed ratios tend to be
smaller for the O(1/k°%"') gain. The above confirms that
while asymptotic theory provides some basis for understand-
ing the relative and absolute behavior of SPSA, it must be
used with caution in practical problems.

C. Some Ancillary Studies

To acquire further insight into the SPSA algorithm we
performed several additional studies involving SPSA and
FDSA; we also considered the random directions (RDSA)
method of Kushner and Clark [20, pp. 58-60], which was
mentioned in Section II (see [4] for a more detailed theoreti-
cal and numerical analysis of RDSA relative to SPSA). Spall
[31] includes details on a study involving a larger measure-
ment noise variance (¢, ~ N(0, 10)*)) and a study where
p = 5. As expected, these studies show that gradient averag-
ing (g > 1) has a beneficial effect in stabilizing the algorithm
and avoiding divergence when the noise contribution is large
and that the advantage of SPSA over FDSA is not as great as
when p =5 (relative to p = 20). Spall and Cristion [32]
consider a setting where p = 302 in the context of weight
estimation for a neural network; as might be expected in such
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a large-dimensional case, SPSA is shown to have a dramatic
advantage over FDSA. We now discuss a study based on
“‘optimal’” gains as well as the above mentioned study in-
volving RDSA.

The results of Section V-B illustrate the relative perfor-
mance of SPSA and FDSA when both algorithms have the
same gain sequence, which is representative of what would
happen in a practical application where the *‘optimal’’ gain is
unknown or uncomputable. We also considered the relative
performance for p = 20 when each algorithm was run with
its optimal gain (determined numerically). It was found that
SPSA continued to significantly outperform FDSA. In partic-
ular for the eight runs made at the two noise levels of the
table (four different random number seeds at each noise
level), SPSA-4 (the only SPSA algorithm considered) reached
the terminal FDSA (n = 1200) level of accuracy with ap-
proximately 1/14 to 1/4 the number of measurements. This
is comparable to the observed 1/20 to 1/4 range for SPSA<4
that is associated with the identical gains of the table in
Section V-B.

RDSA is similar to SPSA in that it too requires only 2 g
measurements per iteration; it differs, however, in the form
of the gradient estimate and assumptions on the random
variables characterizing the search direction (analogous to A,
here). With each algorithm run with its respective optimal
gain (as described above) it was found that when p = 20,
SPSA-4 (the only SPSA algorithm considered) was signifi-
cantly more efficient than RDSA-4 (and RDSA-4 was more
effective than RDSA-1 or RDSA-2). In particular for the
eight runs made at the two noise levels of the table, SPSA
used from 1/15 to 1/3 the number of measurements used
(1200) by RDSA to reach a given level of accuracy. This
range is close to that mentioned above for FDSA versus
SPSA with optimal gains, which is consistent with the claim
of Kushner and Clark that RDSA and FDSA perform about
equally well. As with FDSA, the relative advantage of SPSA
appears to be higher in larger-dimensional problems. In
particular, for the smaller p =5 case, neither algorithm
appeared to have a significant advantage.

VI. CoNCLUDING REMARKS

For problems in the multivariate Kiefer-Wolfowitz set-
ting, this paper has presented an SA algorithm based on a
‘‘simultaneous perturbation’” gradient approximation. The
bias in the gradient estimate was characterized and the algo-
rithm was shown to have the almost sure convergence prop-
erty of standard (Kiefer-Wolfowitz) finite difference SA
algorithms. Conditions were also presented under which the
SPSA procedure is asymptotically normally distributed. This
result allowed us to show that, in a wide variety of problems,
the asymptotic MSE for SPSA will be smaller than that for
FDSA and that the relative MSE for SPSA (to FDSA) gets
smaller as the problem dimension ( p) gets larger.

The algorithm was compared in a numerical study to
FDSA and the random directions SA procedure of Kushner
and Clark in finding the minimum of a fairly complicated
function. The comparison was performed with the algorithms
run under a common SA gain sequence and also with each

algorithm run under its own optimal gain. It was found that
SPSA was significantly superior to either FDSA or RDSA for
a variety of scenarios, and appeared to be relatively more
effective as the amount of data increases.

There remain several open questions in the theory and
application of SPSA. One is to determine a ‘‘best’ (or at
least suboptimal) distribution for the perturbation random
variables (the A ,;’s); we employed a Bernoulli distribution in
the numerical studies but it is possible that other (perhaps
continuous) distributions may be superior, at least in certain
problems. The asymptotic normality result provides the basis
for determining optimal SA gain coefficients (a, ¢); carrying
out these calculations would be of some interest. It would
also be of interest to examine whether an averaging scheme
such as that in [8], [27], or [33], which might enhance the
rate of convergence, could be developed for SPSA. Simi-
larly, it may be possible to develop an SPSA-type technique
for accelerated SA algorithms (e.g., those with adaptive
gains or second-order effects, as mentioned in Section II).
With respect to applications, the problem of learning in
neural networks is one area of particular promise since the
dimension of the weight vector to be estimated is inherently
high (easily on the order of 102 or 10%); a preliminary look
at network learning via SPSA is given in [32] for a problem
in adaptive control. Another area, not directly related to SA,
is the potential application of the simultaneous perturbation
gradient approximation to the field of perturbation analysis,
as discussed briefly in Section II. Solving any of these
problems is likely to make SPSA an even more efficient
algorithm or a more widely applicable technique.
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