
Abstract— It is known that a stochastic approximation (SA) 
analogue of the deterministic Newton-Raphson algorithm 
provides an asymptotically optimal or near-optimal form of 
stochastic search. In a recent paper, Spall (2006) introduces 
two enhancements that generally improve the quality of the 
estimates for underlying Jacobian (Hessian) matrices, thereby 
improving the quality of the estimates for the primary 
parameters of interest. The first enhancement rests on a 
feedback process that uses previous Jacobian estimates to 
reduce the error in the current estimate. The second 
enhancement is based on the formation of an optimal weighting 
of “per-iteration” Jacobian estimates. This paper provides a 
formal convergence analysis for the algorithm introduced in 
Spall (2006). In particular, we present conditions for the almost 
sure convergence of the Jacobian estimates with the feedback 
and weighting. We also develop results for the rate of 
convergence in both the noisy and noise-free settings.  

Keywords— Stochastic optimization; Jacobian matrix; root-
finding; stochastic approximation; simultaneous perturbation 
stochastic approximation (SPSA); adaptive estimation.

I. INTRODUCTION
TOCHASTIC approximation (SA) represents an 
important class of stochastic search algorithms for 
purposes of minimizing loss functions and/or finding roots 

of multivariate equations in the face of noisy measurements. 
Spall (2006) presents an approach for accelerating the 
convergence of SA algorithms through two enhancements to 
the adaptive simultaneous perturbation SA (SPSA) approach 
in Spall (2000). This adaptive algorithm is a stochastic 
analogue of the famous Newton-Raphson algorithm of 
deterministic nonlinear programming. Both enhancements are 
aimed at improving the quality of the estimates for underlying 
Jacobian (Hessian) matrices, thereby improving the quality of 
the estimates for the primary parameters of interest.  

The first enhancement improves the quality of the 
Jacobian estimates through a feedback process that uses the 
previous Jacobian estimates to reduce the error. The second 
enhancement improves the quality via the formation of an 
optimal weighting of “per-iteration” Jacobian estimates. The 
simultaneous perturbation idea of varying all the parameters 
in the problem together (rather than one-at-a-time) is used to 
form the per-iteration Jacobian estimates. This leads to a 
more efficient adaptive algorithm than traditional finite-
difference methods. The results apply in both the gradient-
free optimization (Kiefer-Wolfowitz) and stochastic root-
finding (Robbins-Monro) SA settings. This paper introduces 
the basic ideas associated with the two enhancements and 
presents a small-scale numerical study.  
_____________________
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The basic problem of interest will be the root-finding 
problem. That is, for a function g( ): p p , p  1, we 
are interested in finding a point satisfying g( ) = 0. Of 
course, this problem is closely related to the optimization 
problem of minimizing a differentiable loss function L = 
L( ) with respect to some parameter vector via the 
equivalent problem of finding a point where g( ) = L  = 
0. Let = be a point satisfying g( ) = 0. The stochastic 
setting here allows for the use of only noisy values of g and 
the estimation (versus exact calculation) of the associated
p p Jacobian matrix H = H( ) ( ) Tg . Note that the 
Jacobian matrix is a Hessian matrix of L when g represents 
the gradient of L. As described in Spall (2000), simultaneous 
perturbation ideas that are used for gradient estimation in 
Spall (1992) can also be used for the per-iteration Jacobian 
matrix estimation as part of an adaptive stochastic 
approximation algorithm.  

A number of others have looked at ways of enhancing the 
convergence of SA, including adaptive methods for Jacobian 
estimation (e.g., Fabian, 1971; Ruppert, 1985; and Wei, 
1987) and iterate averaging (e.g., Polyak and Juditsky, 
1992). A relatively recent review of such methods is in Spall 
(2003, Sect. 4.5); as discussed in the review, these methods 
are typically costly in number of measurements needed and 
may not yield the desired improvements in practical 
efficiency for the primary parameters of interest . There are 
also means for adaptively estimating a Jacobian (especially 
Hessian) matrix in special SA estimation settings where one 
has detailed knowledge of the underlying model (see, e.g., 
Macchi and Eweda, 1983; Yin and Zhu, 1992; and Kushner 
and Yin, 2003, pp. 8 10); while these are more efficient 
than the general adaptive approaches mentioned above, they 
are more restricted in their range of application. This 
motivates the need for theoretically sound and practically 
efficient methods for Jacobian estimation, as considered 
here and in Spall (2006).  

II. SUMMARY OF ALGORITHM FORM AND PER-ITERATION
JACOBIAN (HESSIAN) ESTIMATE

The algorithm here has two parallel recursions, with one 
of the recursions being a stochastic version of the Newton-
Raphson method for estimating  and the other being a 
weighted average of per-iteration (feedback-based) Jacobian 
estimates to form a best current estimate of the Jacobian 
matrix:   

1
1

ˆ ˆ ˆ ,( ) ( )k k k k k k k k ka H G H f H , (2.1a) 

1
ˆ ˆ(1 )k k k k k kw wH H H , k = 0, 1, 2,…, (2.1b) 

where ak is a non-negative scalar gain coefficient, ˆ( )k kG is
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some unbiased or nearly unbiased estimate of ˆ( )kg , fk:
p p  {invertible p p matrices} is a mapping designed 

to cope with possible noninvertibility of kH , 0 wk  1 is a 
weight to apply to the new input to the recursion for kH ,

ˆ
kH  is a per-iteration estimate of H = H( ), and ˆ

k  is the 
feedback-based adjustment that is aimed at improving the 
per-iteration estimate. The two recursions above are 
identical to those in Spall (2000) with the exception of the 
more general weighting wk in the second recursion (wk = 
1 ( 1)k  in Spall, 2000, equivalent to a recursive calculation 
of the sample mean of the per-iteration H( ) estimates) and 
the inclusion of the adjustment ˆ

k . Note that at k = 0 in 
(2.1b), 1kH = 1H  may be used to reflect prior information 
on H if 0 < w0 < 1; alternatively, 1H may be unspecified—
and irrelevant—when w0 = 1. Because ˆ

kH  is defined in 
Spall (2000), the essential aspects of the parallel recursions 
in (2.1a, b) that remain to be specified are wk and ˆ

k .
Given that kH  may not be invertible (especially for small 

k), a simple mapping fk is to add a matrix kIp to kH , where 
k > 0, k  0, and Ip is a p p identity matrix. In the case 

of optimization, where g( ) is a gradient and H( ) is a 
Hessian matrix, one may also wish to impose the 
requirement that the Hessian estimates be symmetric. 
(Bhatnagar, 2005, discusses Hessian estimation without 
imposing symmetry at each iteration.) In this case fk: p p

 {symmetric positive definite p p matrices}. Given that 
kH  is forced to be symmetric, one useful form for fk when 

p is not too large is to take fk such that kH
= 1/ 2( )k k k pH H I , where the indicated square root is the 
(unique) positive definite square root (e.g., sqrtm in 
MATLAB) and k > 0 is some small number as above.  

Let us now present the basic per-iteration Jacobian 
estimate ˆ

kH , as given in Spall (2000). As with the basic first-
order SPSA algorithm, let ck be a positive scalar such that ck

 0 as k  and let k [ k1, k2,…, kp]T be a user-
generated mean-zero random vector with finite inverse 
moments; further conditions on ck, k, and other relevant 
quantities are given in Spall (2000). These conditions are 
close to those of basic SPSA in Spall (1992) (e.g., k being a 
vector of independent Bernoulli 1 random variables satisfies 
the conditions on the perturbations, but a vector of uniformly 
or normally distributed random variables does not). 
Conditions for the gain sequences are given in Spall (2000).  

The formula for ˆ
kH  at each iteration is 

1 1 1
1 2

1 1 1
1 2

1 1 1
1 2

, , , for Jacobian 
2

1
ˆ 2 , , ,                     (2.2)

2

, , , for Hessian,
2
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where (1) (1)ˆ ˆ( ) ( )k k k k k k kk kc cG G G= , and, 

depending on the setting, the function (1)
kG  may or may not 

be the same as the function Gk introduced in (2.1a). In 
particular, when forming a simultaneous perturbation (or even 
finite difference) estimate for g( ) based on values of the loss 
function L( ), there are advantages to using a one-sided
gradient approximation in order to reduce the total number of 
function evaluations (vs. the standard two-sided form that 
would typically be used to construct Gk). This is referred to as 
the 2SPSA (2nd-order SPSA) setting in Spall (2000). In the 
root-finding case, it is assumed that direct unbiased 
measurements of g( ) are available (e.g., Spall, 2003, 
Chap. 5), implying that (1)

kG =Gk.
III. CHARACTERIZATION OF ERROR IN JACOBIAN ESTIMATE

AND CALCULATION OF FEEDBACK TERM
The feedback method below rests on an error analysis for 

the elements of the estimate ˆ
kH . We present a summary 

here in support of the results to follow; greater detail is in 
Spall (2006). Subsection III.A considers the case where 

(1)
kG  is formed from possibly noisy values of L; Subsection 

III.B considers the case where (1)
kG  is formed from possibly 

noisy values of g. Subsection III.C presents the feedback 
term. The probabilistic big-O terms appearing below are to 
be interpreted in the a.s. sense (e.g., 2( )kO c implies a 
function bounded that is a.s. bounded when divided by 2

kc ,
ck  0); all associated equalities hold a.s. 

A. Error for Estimates Based on Measurements of L 
This subsection considers the problem of minimizing L;

hence H represents a Hessian matrix and the symmetric 
estimate in the second line of (2.2) applies. When using only 
measurements of L as in the 2SPSA setting mentioned above 
(i.e., no direct measurements of g), the core gradient 
approximation ˆ( )k kG  in (2.1a) requires two measurements, 

ˆ( )k k ky c  and ˆ( )k k ky c , representing noisy 
measurements of L at the two design levels ˆ

k k kc , where 
ck and k are as defined above for ˆ

kH . These two 
measurements will be used to generate ˆ( )k kG  in the 
conventional SPSA manner, in addition to being employed 
toward generating the one-sided gradient approximations 

(1) ˆ( )k k kk cG  used in forming ˆ
kH . Two additional 

measurements ˆ( )k k k k ky c c  are used in generating 
the one-sided approximations as follows: 

1
1
1

(1) 2

1

ˆ ˆ
ˆ ( ) ( )( )

k

k k k k k k k k k
k k kk

k

kp

y c c y c
c

c
G

(3.1)
with k  = 1 2[ , ,...., ]Tk k kp  generated in the same 
statistical manner as k , but independently of k (in 
particular, choosing ki  as independent Bernoulli 1
random variables is a valid—but not necessary—choice), 
and with kc  satisfying conditions similar to ck (Spall, 2000).

Let us define
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1 1 1
1 2, , , ,k k k k kp pD I

together with a corresponding matrix kD  based on replacing 
all ki  in Dk with the corresponding ki  (Ip is the p p
identity matrix). From (2.2) and (3.1), the term dependent on 
the noises k is 1 1( )k kO c c , implying  

( )
3

1 1ˆ ˆˆ , (3.2)
( )( ) ( ) ( ) ( )L k

k k k k k kk
k

O c
O c O c c

c
H H H

where from (2.2) (Hessian estimate in second line) and (3.6)  

(The superscript L in ( )L
k  represents the dependence of 

this form on L measurements for creating the H estimate, to 
be contrasted with ( )

k
g  in the next subsection, which is 

dependent on g measurements.) Note that the ( )kO c  and 
3( )k kO c c  terms in (3.2) are both due to third-order effects 

in L (the ( )kO c  term is a mean-zero term while the 
3( )k kO c c  term is a non-zero bias effect).  

B. Error for Estimates Based on Values of g 
We now consider the case where direct (but possibly noisy) 

values of g are available. Hence, direct measurements ( )kY
= ( ) ( )kg e  are used for Gk in (2.1a) and for (1)

kG  in Gk
appearing in (2.2), where ek is a mean-zero noise term (not 
necessarily independent or identically distributed across k).
The analysis in this case is easier than that in Subsection III.A 
as a consequence of having the direct measurements of g. As 
in Subsection III.A, it is sufficient to work with the first line of 
(2.2) in characterizing the error for the second line (relevant 
for the Hessian estimation here). The noise contribution in this 
case is 1( )kO c . Hence, based on a Taylor expansion of the 
two gradient expressions entering Gk, we find

( ) 2 1ˆ ˆˆ ( ) ( ) ( ) ( )k k k k kk O c O cgH H H , (3.4)
where from (2.2) and (3.10)  

( )
1 1
2 2

for Jacobian 
for Hessian.( ) k

Tk
k k

org HD
H HD D H  (3.5) 

C. Feedback-Based Estimate of H Matrix
Using the analysis in Subsections III.A and III.B, let us 

consider the form for ˆ
k 0 through the use of feedback, 

as discussed in this subsection. If H were known, setting 
ˆ

k  equal to ( ) ˆ( )kk H  would leave only the 
unavoidable errors due to the noise and the bias at each 
iteration, where ( )

k  represents either ( )L
k  or ( )

k
g , as 

appropriate (expressions (3.3) and (3.5), respectively). 
Unfortunately, of course, this relatively simple modification 
cannot be implemented because we do not know H!

A variation on the idealized H estimate of the previous 
paragraph is to use estimates of H in place of the true H.
That is, the most recent estimate of ˆ( )kH , as given 
by 1kH , replaces ˆ( )kH  in forming ˆ

k . Therefore, the 
quantity ˆ

k  appearing in (2.1b) is given by 

ˆ
k

( )
1

( )
1

when measurements used,

when measurements used.

L
kk

kk

L
g

H

H g

IV. OPTIMAL WEIGHTING WITH NOISY MEASUREMENTS

The results in this short section are available in more 
complete form in Spall (2006); this summary is given here for 
the sake of providing essential information needed to properly 
interpret the convergence results in the remainder of this paper. 
As discussed above, the second way in which the accuracy of 
the H estimate may be improved is through the optimal 
selection of weights wk in (2.1b). We consider separately below 
the cases where (1)

kG  is formed from noisy values of L and 
noisy values of g. The optimal weights wk derived here assume 
that the noise contributions are nontrivial in the sense that 

( ) ( ) ( ) ( )var k k k k  for all k with L
measurements and ( ) ( )cov pk ke e I  for all k with g
measurements, where  > 0. (Section VII provides detailed 
treatment for the noise-free cases: ( ) ( ) ( )0 and .)k k ke 0

Consider first the case of L measurements. Given that the 
noise terms 

( )
k  and 

( )
k  are uncorrelated across iterations 

(e.g.,
( ) ( )cov ,j k = 0 and 

( ) ( )cov ,j k  = 0 for j k),
we may find the weights wk that minimize the variance of 
the elements in nH . It is fairly straightforward to find the 
solution via the method of Lagrange multipliers: 

0

2 2

2 2
k k

k k
i ii

c c

c c
w .

Now consider the case of direct noisy values of g.
Following the logic above, the optimal wk is:

0

2

2
k

k k
ii

c

c
w .

V. CONVERGENCE THEORY WITH NOISY MEASUREMENTS
Much of the convergence and efficiency analysis in Spall 

(2000) will hold verbatim in analyzing the enhanced form 
here. In particular, under conditions for Theorems 1a and 1b 
in Spall (2000), it is known that ˆ

k  a.s. in the setting 
of either L measurements or g measurements. On the 

other hand, because the recursion (2.1b) differs from Spall 
(2000) due to the weighting and feedback, it is necessary to 
make some changes to the arguments showing convergence 
of kH . Let k  = 0

ˆ , 1
ˆ ,…, 0

ˆ ˆ;k H , 1Ĥ ,…, 1
ˆ

kH

( 0 = 0
ˆ ).

This section gives analogues to Theorems 2a and 2b in 
Spall (2000), showing convergence of kH  with L
measurements and with g measurements, respectively. For the 
case with only L measurements, the conditions here are 
identical to the original Theorem 2a for 2SPSA with the 
exception of a slight modification of C.1  to C.1  and C.8 to 
C.8  below:
C.1 . The conditions of C.1 hold plus ck = ( 1)c k , and 

( ) 1
2
1
2

L
k k k kk

T
k k k k                 .

H D HD D H HD

D HD D H HD (3.3)
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kc  = ( 1)c k , with c > 0, c > 0, and 0 <   1/4.
C.8 . For some  > 0 and all k m, , , the following hold 
a.s.: 2 2ˆ ) ( )( k k k k k k km ky c cE ,

2 2ˆ ) ( )( k k k k km ky cE
( ) ( ) 2 2) ( )( k km kk kE , and 

2
k kE H . (Note that the first two bounds are 

similar to the bounds in C.2 in Spall 2000, but are neither 
necessary nor sufficient for C.2.)  
Theorem 1 (2SPSA setting). Suppose only noisy 
measurements of L are used to form Gk and (1)

kG  (see (3.1)). 
Let conditions C.1  and C.8  above hold together with 
conditions C.0, C.2, C.3 , C.4 C.7, and C.9 of Spall (2000). 
Then, kH ( )H  a.s. as k .
Proof. First, note that the conditions subsume those of 
Theorem 1a in Spall (2000) (C.0 C.7); hence we have a.s. 
convergence of ˆ

k  to . We first use a convergence result 
in Chow and Teicher (1988, p. 249) to establish the 
convergence for a particular sum of martingale differences. 
We then use the martingale difference conclusion to 
establish the result to be proved on convergence of kH .

Let us first show that: 

0 0

2 2

2 2

ˆ ˆ ˆ |( )n
k k k k k k

n
k i ii

c c E

c c
0

H H
a.s. (5.1) 

Let ˆ
kh  and ˆ k  represent corresponding (arbitrary) elements 

of ˆ
kH  and ˆ

k , respectively. Note that 

0
2 2 ˆ ˆˆ( ( | )n
k k k k k kk c c h E h  is a martingale with 

bounded second moments for all n. Hence, from a 
martingale convergence result in Chow and Teicher (1988, 
p. 249), (5.1) will be true if

2

2
0

0

4 4

2 2

ˆ ˆˆ( ( | )n k k k k k k k

nk
i ii

c c E h E h

c c
<  a.s. (5.2) 

Because ˆ( )k kE  = 0, the conditional expectation 
appearing in the numerator of (5.2) satisfies  

2 2

2 2

2

2 2

ˆ ˆ ˆˆ ˆ
ˆ ˆ2

ˆ2 (1)

( ( | )

( ) a.s. ,

( )
( ) ( )

( )

k k k k k k k k

k k k k

k k

k k

E h E h E h

E h E

E h O
O c c

where the two equalities follow by C.8 . Hence, from 
C.1 , the left-hand side of (5.2) is given by 

4
1

2 240
0 1

4 1

4 4 2 2

2 2

1 log

( )

( ) a.s. if 0 1/ 4,
( ) a.s. if 1/ 4.

n
n

k k k k

n nk
i ii

x dxc c O c c
O

c c x dx

O n
O n

The above expression indicates that (5.2) is satisfied, in turn 
indicating that (5.1) holds.

Let us analyze ˆ
k kE H  as appears in (5.1) to show 

convergence of kH . It is sufficient to work with the 
Jacobian form in the first line of (2.2). Expanding the right-
hand side of (3.1), the bias in the ijth component of ˆ

kH  is 
( ) ( )31

6 ( ) ( )k k k kk k
k

k k ki kj

c
E

c c

L L
.

Using C.1  and C.3 ,
( ) ( )( ) ( )k kL L  = O(ck) a.s., 

with the implied constant in the big-O bound proportional to 
the magnitude of the uniformly bounded fourth derivative of 
L. Hence, by C.9, the above expectation exists and is 2( )kO c
a.s., indicating that

ˆ
k kE H = ˆ( )kH + 2( )kO c  a.s. (5.3) 

From (5.3), the continuity of H at all ˆ
k , and the a.s. 

convergence of ˆ
k  to ,

0 00 0

0 0

2 2 22 2

2 2 2 2

2 2

2 2

ˆˆ |

(5.4)

( ) ( )( )

( ) (1)

( ) a.s.                            

n n k k k kk k k k
n n

k ki i i ii i

n k k
n

k i ii

c c O cc c E

c c c c

c c

c c

o

HH

H

H

as n , where the result follows by the fact that the 
denominator 0

2 2n
i ii c c  (from C.1 ). Given that nH

= 0 0
2 2 2 2ˆ( )ˆn n
k k k k i ik ic c c cH , (5.1) and (5.4) together 

yield the result to be proved. Q.E.D.
We now show convergence of kH  in the root-finding case 

with only g measurements; this result is an analogue of 
Theorem 2b in Spall, 2000. Following the pattern above, 
C.1  and  C.8  in Spall (2000) are modified to a C.1  and 
C.8 :
C.1 . The conditions of C.1  hold plus ck = ( 1)c k ,
with c > 0 and 0 < 1/2.
C.8 . For some  > 0 and all ,k , the following hold a.s.: 

22 ( ) ( )ˆ ,) ( )( k k k k k k kk kcE Eg e e

2( ) ( ), , and ,( ) k k k kk k EE 0e e H

where ( )
ke  = ˆ )(k k k kce .

Theorem 2 (root-finding setting). Suppose noisy 
measurements of g are used to form Gk . Let conditions 
C.1  and C.8  above hold together with C.0 , C.2 , C.3 ,
C.4 C.7, and C.9  of Spall (2000). Then, kH ( )H  a.s. 
as k .
Proof. First, note that the conditions subsume those of 
Theorem 1b in Spall (2000) (C.0 , C.1’, and C.2 , and 
C.3 C.7); hence we have a.s. convergence of ˆ

k  to .
Following the steps in the proof of Theorem 1, let us first 
show that: 
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0 0

2

2

ˆ ˆ ˆ |( )n
k k k k k

n
k ii

c E

c

H H
0 a.s. (5.5) 

From the martingale convergence result in Chow and 
Teicher (1988, p. 249), (5.5) will be true if

2

2
0

0

4

2

ˆ ˆˆ( ( | )n k k k k k k

nk
ii

c E h E h

c
<  a.s.  (5.6) 

 ( ˆ
kh and ˆ k  are as defined below (5.1)). Hence, by (C.8 ),

2

2 2

ˆ ˆˆ
ˆ ˆ

( ( | )
(   )  a.s( )

k k k k k

k k k k

E h E h

E h O c

Hence, from C.1 , the left-hand side of (5.6) is given by 

2
1

2 220
0 1

2 1

4 2

2

1 log

( )

( ) a.s. if 0 1/ 2,
( ) a.s. if 1/ 2.

n
n

k k

n nk
ii

x dxc O c
O

c x dx

O n
O n

The above expression indicates that (5.6) is satisfied, in turn 
indicating that (5.5) holds. By the boundedness of the third 
derivative of g (see C.3 ), ˆ

k kE H  = ˆ( )kH + 2( )kO c
a.s. Then, analogous to (5.4),

0 00 0

2 22

2 2

ˆˆ | ( ) ( )( ) ( )a.s. (5.7)
n n k k kk k k

n n
k ki ii i

c O cc E

c c

HH H

as n , where the result follows by the fact that the 
denominator 0

2n
ii c  (from C.1 ). Thus, (5.5) and 

(5.7) together yield the result to be proved. Q.E.D.
Spall (2000) includes an asymptotic distribution theory for 

ˆ
k , finding that ( 2 ) / 2 ˆ( )kk  and / 2 ˆ( )kk  are

asymptotically normal for the 2SPSA and root-finding 
settings, respectively, with (different) finite magnitude mean 
vectors and covariance matrices. The conditions under 
which the asymptotic normality results hold are slightly 
beyond the conditions for convergence. While the rates of 
convergence (governed by the exponents ( 2 ) 2
and 2 ) are identical to standard SA rates of convergence 
for first-order algorithms (e.g., Spall, 2003, Sects. 4.4 and 
7.4), the limiting mean vectors and covariance matrices are 
near-optimal (2SPSA) or optimal (root-finding) in a precise 
sense. The improved Jacobian estimation above would not 
alter these asymptotic accuracy results, as the Spall (2000) 
results are fundamentally based on the Jacobian matrix 
estimate achieving its limiting true value (to within a 
negligible error) during the search process. In practice, 
however, as a consequence of the Jacobian estimate 
reaching a nearly true value earlier in the recursive process, 
it would be expected that the (finite-sample) convergence 
accuracy in ˆ

k  would improve when using the feedback and 
weighting above.

VI. RELATIVE ACCURACY OF JACOBIAN ESTIMATES WITH 
NOISY MEASUREMENTS

It is fairly simple to compare the accuracy of the Jacobian 
estimates based on the optimal weightings above with the 
corresponding estimates based on simple averaging (as in 
Spall, 2000) in the special case where the noise terms k and 
eki (as appropriate) have constant (non-zero) variance 
(independent of k and ) and the two perturbation vector 
sequences { k} and { }k  are each identically distributed 
across k. Note that feedback (Subsection III.C) does not 
affect the results here, as the asymptotic variance of the 
Jacobian estimate is dominated by the noise contribution.

In the 2SPSA setting of only noisy loss measurements, the 
above assumption on the noise terms (constant variance) and 
sequences { k} and { }k  implies that the variance of an 

individual element in the summands ˆ
kH  is asymptotic to 

2 2
k kKc c  for large k and some constant K > 0 (see 

Subsection III.A). Hence, under the conditions on ck and kc
given in Theorem 1, the variance of an individual element in 
a simple average form for nH  is given by  

4
02 2

0
1 4 1

2 21 1

(4 )
2

( )~

1 if 0 1/ 4, (6.1)if 1/ 4,   

n n
k k

k
O c c K x dx

n n
K n
K

where “~” denotes “asymptotic to” (note that for  = 1/4, the 
variance does not go to zero, consistent with the lack of 
convergence associated with Theorem 2a in Spall, 2000). 
For the weighted average case (Section IV), the 
corresponding variance of an individual element in nH  is

4
1

2 240
0 1

4 1 4 1

4 4 2 2

2 2

(1 4 )
log 1 log

( ) ~

( ) if 0 1/ 4, (6.2)( ) if 1/ 4.

n
n

k k k k

n nk
i ii

K x dxc c O c c

c c x dx

K n o n
K n o n

The root-finding setting follows the line of reasoning 
above. Here, the variance of an individual element in the 
summands ˆ

kH  is asymptotic to 2
kK c  for large k and some 

constant K > 0 (see Subsection III.B). Hence, under the 
conditions on ck in Theorem 2, the variance of an individual 
element in a simple average form for nH  is given by  

For the weighted average case (Section IV), the 
corresponding variance of an individual element in nH  is

2
02 2

0
1 2 1

21 1

(2 )
2

( ) ~

1 if 0 1/ 2,
if 1/ 2.

n n
k

k
O c K x dx

n n
K n
K

(6.3)
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k k
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ii

K x dxc O c
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K n o n

Given the above, Table 1 shows the asymptotic ratio of 
variances for several popular values of . For the 2SPSA 
setting, these are computed by taking the ratio of the right-
hand sides of (6.1) to (6.2) (yielding 1 (4 )(1 4 )1 ); for 
the root-finding case, it is (6.3) to (6.4) (yielding 
1 (2 )(1 2 )1 ). The table illustrates how the benefits of 
weighting grow with the value of  in both the 2SPSA and 
root-finding settings.

TABLE I. Asymptotic ratio of variances of Jacobian estimate: 
Unweighted to weighted. (Note:  = 0.101 Is a  popular practical choice in 
SPSA and 2SPSA settings and  = 1/6 is asymptotically optimal for SPSA 
and 2SPSA [e.g., Spall, 2000, and Spall, 2003, Sect. 7.5]; N/A = not 
applicable [invalid  for unweighted and weighted settings].)

Ratio in 2SPSA 
setting

Ratio in root- 
finding setting

Ratio in root-finding setting 
0.101 1.20 1.04 
1/6 1.80 1.13 
0.24 12.76 1.30 
0.25  1.33 
0.45 N/A 5.26 
0.49 N/A 25.25 
0.50  N/A 

VII. RATE OF CONVERGENCE OF JACOBIAN/HESSIAN
ESTIMATES WITH NOISE-FREE MEASUREMENTS

While most of the applications for SA are in cases of 
minimization and/or root-finding in the presence of noisy L
or g measurements, the algorithms are sometimes used with 
perfect (noise-free) measurements. For example, SPSA is 
used for global optimization with noise-free (and noisy) 
measurements in Maryak and Chin (2001); some theory on 
convergence rates in the noise-free case is given in 
Gerencsér and Vago (2001). Hence, there is some interest in 
the performance of the adaptive approach here with noise-
free measurements. Although the general form for the  and 
H recursions in (2.1a, b) continue to apply, the values for ak
and wk that are desirable (and possibly optimal) in the noisy 
case are not generally the preferred values in the noise-free 
case. In particular, the optimal weightings for wk of Section 
IV are not recommended in the noise-free case (although, of 
course, convergence still holds due to the noise-free case 
being a special case of the noisy case).

In the case of noise-free measurements of L, for example, 
decaying gains satisfying different conditions than the 
standard SPSA conditions are given in Maryak and Chin 
(2001) to ensure global convergence with a possibly 
multimodal loss function; further constant gains ak = a are
considered in Gerencsér and Vago (2001) when the loss 
function is quadratic. In the noise-free case of direct 
measurements of g, constant gains ak = a may be used to 
ensure convergence of what is effectively a quasi-Newton-
type algorithm. 

We present below a rate of convergence result for the 
Jacobian estimates in the noise-free case. Theorem 3 
considers the settings of L measurements under the 
restriction of quadratic loss functions; for that reason, this 
theorem is best interpreted as a “local” theorem pertaining to 

losses that are at least approximately quadratic in the 
vicinity of . For convenience, let k = ( )kH H ; we 
write T

k kE , but note T
k k k kE E . As a 

consequence of the quadratic loss function, there are no 
restrictions on the ck values in Theorem 3 (i.e., unlike 
Theorems 1 and 2 above, ˆ

kH has no 2( )kO c  or other bias).
Theorem 3 (2SPSA setting). Suppose L is a quadratic 

function and only noise-free measurements of L are used to 
form Gk and (1)

kG  (see (3.1)). Suppose 0 < w0  1 and wk = 
w k , k = 1, 2,..., where 1/2 <  < 1 and 0 < w  1. Suppose 
that C.8  in Section 5 and C.2 and C.9 from Spall (2000) 
hold (see the Appendix here; note that y( ) = L( ) in the 
setting here) and that k and k  and are identically 
distributed at each k and across k. Further, suppose that H  > 
0 and that f k in (2.1a) is such that 

2
k kE H H  = 

12 (1 )wko e  and 2 21( )kf H H H  is 
uniformly bounded over the set of symmetric H in p p .
Then, trace ( )T

n nE  = 
12 (1 )wnO e .

Proof. Available by request.
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