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Model-Free Control of Nonlinear Stochastic
Systems with Discrete-Time Measurements

James C. SpallSenior Member, IEEEand John A. Cristion

Abstract—Consider the problem of developing a controller for problems for which “formal” automatic control methods can
general (nonlinear and stochastic) systems where the equationsapply. It is obvious that one should not be limited by customary
governing the system are unknown. Using discrete-time measure- 0 al_hased approaches given the wide range of successful

ments, this paper presents an approach for estimating a controller , del-free” troll . t H f le h
without building or assuming a model for the system (including ~MOU€I-IrE€E€” CONLIOIIErs In nature. Humans, for éxample, have

such general models as differential/difference equations, neural little problem solving certain control problems that would vex
networks, fuzzy logic rules, etc.). Such an approach has potential even the must sophisticated model-based automatic controllers.

advantages in accommodating complex systems with possibly By definition, an automatic controller requires some func-
time-varying dynamics. Since control requires some mapping, " manning that takes current (and maybe past) information

taking system information, and producing control actions, the b h d d | h ff f
controller is constructed through use of a function approximator aPOUt the system and produces control actions to aifect fu-

(FA) such as a neural network or polynomial (no FA is used ture system performance. The approach here uses the system
for the unmodeled system equations). Creating the controller measurements to determine the control function without the
involves the estimation of the unknown parameters within the need to estimate or assume a separate model for the system.

FA. However, since no functional form is being assumed for . . . .
the system equations, the gradient of the loss function for use The approach here is based on using a function approximator

in standard optimization algorithms is not available. Therefore, (FA) to represent the controller (no FA—or other mapping
this paper considers the use of the simultaneous perturbation such as fuzzy logic rules base—is used for the system).
stochastic approximation algorithm, which requires only system Associated with any FA will be a set of parameters that must be
measurements (not a system model). Related to this, a con-getermined, which will be one of the key aspects of this paper.
vergence result for stochastic approximation algorithms with Popular FA's include, for example, polynomials, multilayered
time-varying objective functions and feedback is established. It ! ' '
is shown that this algorithm can greatly enhance the efficiency feed-forward or recurrent neural networks, splines, wavelet
over more standard stochastic approximation algorithms based networks, and trigonometric series. By results such as the
on finite-difference gradient approximations. well-known Stone-Weierstrass approximation theorem (e.g.,
Index Terms—Direct adaptive control, gradient estimation, Rudin [38, pp. 146-153, 176, 209]), it can be shown that
nonlinear systems, simultaneous perturbation stochastic approx- many of these techniques share the property that they can be
imation. used to approximate any continuous function to any degree
of accuracy (of course, this is merely an existence result,
I. INTRODUCTION so experimentation must usually be performed in practice to
._ensure that the desired level of accuracy with a given FA is
A DAPTIVE control procedures have been developed iny;, o ochieved). Each FA technique tends to have advantages
variety of areas for controlling systems with Irnperfecé\nd disadvantages, some of which are discussed in Poggio
information about the _syste_m (e.g., manufacturing proce Sd Girosi [36], Laneet al. [22], and Chen and Chen [8] (e.g.,
control, robot arm r_nampgla_tlon, aircraft control, etc.). Suc olynomials have a relatively easy physical interpretability,
procedures are typically I|m|ted_ by the need to assume t t the number of parameters to be determined grows rapidly
the forms of the system equations are known (and usu th input dimension or polynomial order). Since the approach

Ilnea_r) while _the parar_neters _may_be unknown. In comple& this paper is generic, the methods will be presented without
physical, socioeconomic, or biological systems, however, tpg

¢ £ th ‘ i woicall i ft gard to which type of FA is to be used, although we
orms of the system equations (typically non ”.‘e.ar) are onelii demonstrate the approach using polynomials and neural
unknown as well as the parameters, making it impossible

determine the control law needed in existing adaptive contro tworks.

roced:Jres This rovi(;IZzs the mlotivr:l(tlioln Q1]‘0r dgvlglo in aOthers have considered the problem of developing con-

P ) P : P gtroIIers based on FA's when there is minimal information

control procedure that does not require a model for th . .- .
apout the system equations. The majority of such techniques

underlying system. In this way, we expand the range %re indirect control methods in the sense that a second FA is

M ot ved N ber 8. 1996 revised N ber 14 199i;ltroduced to model the open-loop behavior of the system. This
anuscript received November 8, ; revised November 14, ; . . . . . e
Recommended by Associate Editor, E. Yaz. This work was supported in pglrl)en'IOOp FA is typically determined in a system identification

by the JHU/APL IRAD Program and the U.S. Navy under Contract Noo02rocess from sample input—output data on the system prior

98-D-8124. _ , o _ , to operating the system in closed-loop and constructing the
The authors are with Johns Hopkins University, Applied Physics Labora- Il EA ith | k he FA's:

tory, Laurel, MD 20723-6099, USA (e-mail: james.spall@jhuapl.edu). controller (W|t neural networks as the S, see, e.g.,

Publisher Item Identifier S 0018-9286(98)05809-7. Narendra and Parthasarathy [31], Ratoal. [34], or Sartori

0018-9286/98$10.001 1998 IEEE



SPALL AND CRISTION: MODEL-FREE CONTROL OF NONLINEAR STOCHASTIC SYSTEMS 1199

and Antsaklis [45]). In contrast, the direct control approadased only on measurements of the system as it operates
here does not require any open-loop system identificatian, closed-loop. Usually such algorithms rely on well-known
instead constructing the one (controller) FA while the systemfigite-difference approximations to the gradient (for examples
operating in closed-loop. Thus we avoid the need for open-loopsuch algorithms in control, see Saridis [44, pp. 375-376] or
“training” data, which may be difficult or expensive to obtainBayard [2]). The finite-difference approach, however, can be
and the need to estimate perhaps twice as many parametery costly in terms of the number of system measurements
(for constructing two FA's). Further, the approach here offersquired, especially in high-dimensional problems such as
potential advantages in being better able to handle changstimating an FA parameter vector, (which may easily have
in the underlying system dynamics (since it is not tied to dimension of order 10 or 1C?). Further, real-time imple-
prior system model) and being more robust in the face ofentation of finite-difference methods would often suffer
widely varying control inputs (i.e., the indirect approach magince the underlying system dynamics may change during
perform poorly for closed-loop controls outside of the rangde relatively long period in which measurements are being
of open-loop controls used in the prior identification step). collected for one gradient approximation (see Section IV here).

Let us briefly discuss how the approach here contrasts wiffe will, therefore, consider an SA algorithm based on a
other “model-free” approaches. We are aware of many claiff@multaneous perturbation” method (Spall [46]), which is
made in the literature that a particular control technique fgpically much more efficient than the finite-difference SA
“model-free.” However, we question most of these claims argorithms in the amount of data required. In particular,
the basis of the hidden or implicit system modeling requirethe simultaneous perturbation approximation requires only
(We wish to raise this issue not because there is anythiage or two system measurements versus the hundreds (or
inherently wrong with these other approaches, but to hefpore) typically required in finite-difference methods. A special
clarify that our use of “model-free” is to be taken literally.)case of the control approach here—focusing on the “direct
For example, fuzzy controllers are frequently claimed approximator” method (see Section Il below), perfect state
model-free; nevertheless, in all fuzzy controllers there is raeasurements, and a neural network as the FA—is consid-
requirement for a rules base (or associative memory matrixjed in Spall and Cristion [52]. Some applications of the
that describes the dynamics of the system in a linguistic-tygénultaneous perturbation optimization method in control are
fashion. Although such information is not in the classical forrgiven in Maeda and De Figueiredo [26] (robotics), Kattal.
of differential or difference equations, it is still a representatiofl 7] (integrated transit/traffic control), and Nechyba and Xu
of the dynamics that seems to qualify as a model. Simil§32] (human-machine interface control). Note that the general
arguments can be made for other controllers claimed as modwgnvergence result presented here is relevant to most of these
free (e.g., some neural network controllers). applications.

Although the model-free approach here is appropriate for The remainder of this paper is organized as follows.
many practical systems, it is generally inappropriate for sy§ection Il describes two related methods (based on different
tems where a reliable system model can be determined. Qeeels of prior information about the system) for using FA’s to
reason, of course, is that with a reliable model, the controlleentrol nonlinear systems. This section also describes why it is
will generally achieve optimal control more quickly (fewemot possible to determine the gradient of the loss function, in
suboptimal “training” steps). Further, a reliable model alloweontrast to the approaches of Narendra and others mentioned
in some cases for theoretical analysis of such issues as stab#ippve where they introduce an additional FA to model the
and controllability and for the calculation of state estimate¥en-loop system. Section Il discusses the SA approach to
for use in system performance monitoring and feedback to th& parameter estimation using the simultaneous perturbation
controller. (We say “in some cases” because in the stochagtiethod and presents a theoretical result on the convergence
discrete-time setting, there are currently almost no practica®y the estimate. Section IV presents numerical studies on
useful stability results for adaptive nonlinear systems.) Sanrigto different nonlinear systems, and Section V offers some
and Slotine [43], Levin and Narendra [23], [24], Jagannath&®ncluding remarks and areas for further investigation.
et al. [16], Fabri and Kadirkamanathan [13], and Ahmed
and Anjum [1] are examples of approaches that rely on
controller FA’s but introduce stronger modeling assumptions
(e.g., deterministic systems or specific knowledge of how
the controller enters the system dynamics) as a means of )
performing a stability analysis. However, for systems whef® The System and Generic Form of Controller
only a flawed (if any) model is available, attempts to do such We consider general dynamic processes, typically involving
analysis can lead to suboptimal (or worse) controllers am@nlinear dynamics and stochastic effects. It is assumed that
faulty stability and controllability analysis. It is such casea sequence of discrete-time measurements of the process is
that are of interest here. available and that the goal is to choose a corresponding

As we will show, it is not possible in our model-free framesequence of controls to optimize a function of future system
work to obtain the derivatives necessary to implement standangasurements. We let the sequence of discrete-time measure-
gradient-based search techniques (such as back-propagatiosnts be
for estimating the unknown parameters of the FA. We will,
therefore, consider stochastic approximation (SA) algorithms Y1, Y2, Y3, (1a)

Il. OVERVIEW OF APPROACH TO
CONTROL WITHOUT SYSTEM MODEL
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with corresponding controls

( 1b) ————»| FA Control »| Process Yt

Uo, Uy, U2, ", target, t,., u,

A

(so u affects yr+1, yrr2, €tc.). In general, we assume no
particular analytical structure (e.g., state-space, NARMAX,
continuous- or discrete-time process evolution, etc.) behind the
process generating the measurements. Based on information
contained within measurements and controls upytoand
ug_1, our goal is to choose a contral. in a manner such that
we minimize some loss function related to the next measure-
menty;4+1 (or to the next specified number of measurements).
Often, this loss function will be one that compatgs, against
a target valuet,41, penalizing deviations between the two.
Without sacrificing generality, most of this paper will focus
on this target-tracking control problem, although the approach .
would apply in other (say, optimal control) problems as well, flyd Delay
as discussed briefly in Section 114B. FA Ve | k< k+t
In the approach here, a function approximator (e.g., neural
network or polynomial) will be used to produce the control (b)
ug, as outlined in Section I. We will consider an FA of fixedkig. 1(a) Control system with FA as direct approximator to optimalvhen
structure across time (e.g., the number of layers and nodes it & {vx}- (b) Self-tuning control system with FA as approximatofid /. )
neural network is fixed), but allow for underlying parameter&e"® = Te(fk(Zi): tiia) and L = {yi -
in the FA (e.g., connection weights in a neural network) to
be updated. Since past information will serve as input to thequires some prior information about this structure. In par-
control, this fixed structure requires that be based on only ticular, it requires that enough information be available to
a fixed number of previous measurements and controls (imite w, = 75 (fi({x), tx+1), Wherem(-) is a known control
contrast to using all information available up to tifaéor each law that depends on some unknown functidf(-) that is
k). Suppose our “sliding window” of previous informationapproximated by the FA. As demonstrated in Section IV, a
available at timé:, say/;, containsM previous measurementsvery important type of process to which this second method
and N previous controls; akin to Parisini and Zoppoli [35]can apply is an affine-nonlinear (i.e., generalized bilinear)
the choice ofAM and N reflects a tradeoff between carryingsystem such as that in Chen [7] and Dochain and Bastin [11].
along a large quantity of potentially relevant information ands we will see in Section 1V, when reliable prior information
the corresponding requirements for a more complex FA. Thus, available, the self-tuning method of Fig. 1(b) may yield
when the system is operating without the FA parameters beiagcontroller superior to the direct approximation method of
updated, we have from (1a) and (1b) Fig. 1(a).

Delay
Yi k< k+1

@

Controller
——— ] A
target, t,,] Tdlfio fesr) Uy

Process Yisr

L = . e L C UL T SR A i i . L.
k= A Ut U ML U1 Uk, U N B. Formulation of Estimation Problem for Determining FA

(when the FA parameters are being updated, thd;sef M We now introduce some of the principles involved in
and N previous measurements and controls will contain “tesgletermining the FA for use in generating the contrg).
values, as discussed in Section IlI-A). Section Ill will provide a more detailed discussion on the
We will consider two methods to the problem of a conestimation procedure and an associated convergence proof.
trolling system in the face of uncertainty about the system Associated with the FA-generating, will be a parameter
dynamics governing the evolution of sequence (1a), as illugectorg,, that must be estimated (e.g., the connection weights
trated in Fig. 1(a) and 1(b) for the target-tracking problefih a neural network). Recall that we assume that the FA
in the important special case whetg = {y.} (for the structure is fixed across time. Hence the problem of finding
more general definition of, as given above, the figuresthe optimum control function at timk is equivalent to finding
would be modified in an obvious way; in addition, the procesge §,, ¢ R, p not a function ofk, that minimizes some loss
may include direct-state feedback, which is not shown). Winction L (6;) (and the optimal control value would be the
the direct approximation method of Fig. 1(a), the output Qutput ofw,, after the optimab;, has been found). A common
the FA will correspond directly to the elements of thge |oss is the one-step-ahead quadratic tracking error
vector, i.e., the inputs to the FA will b&, (= here) and - -
t1+1 and the output will beu. This approach is appropriate L#(6x) = E[(yr+1 — trs1) Ak(yrts — tegr) +uy Brun]
when there is no known analytical structure generating the (2

measurements. In contrast, the self-tuning method of Fig. 1(b?1 . . ) _
whereA; and By, are positive semi-definite matrices reflecting

1The method here attempts to find the best controller given such chargge relative weight to put on deviations from the target

teristics as degree of controllability, relative number of elementg,inand d h iated with | | f Th
Yr+1, etc. Since the system may inherently be less than fully controllabl@,n on the cost associated wi arger valuesug €

perfect tracking may be unachievable in even deterministic systems. approach of this paper would also apply with nonquadratic
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and/or nontarget-tracking loss functions. Such functions might  1ll. PARAMETER ESTIMATION BY SIMULTANEOUS
arise, e.g., in constrained optimal control problems where PERTURBATION STOCHASTIC APPROXIMATION:
we are trying to minimize some cost (without regard to a IMPLEMENTATION AND CONVERGENCE

specific target value) and penalty functions or projections arérys section is divided into three sections. The first gives

used for certain values afi..1 and/oru, to reflect problem 5 g mmary of how simultaneous perturbation SA (SPSA) is
constraints (e.g., Sadegh [41]). For convenience, however, fig,y in implementing the control strategies of Fig. 1(a) and
remainder of the paper will illustrate points with the targety,) The second section establishes conditions under which the
”ac"'”g problem exempllﬂeq by (2). Note that althqugh (2) iga parameter estimates from SPSA converge to the optimal
a one-time-step error function, much of the adaptive contighignt values for the given structure of the FA. The final
literature focuses on minimizing a loss function over an infinitgstion provides some comments on the regularity conditions
horizon; Saridis [44, pp. 291~-296] and Moden and Soderstrqffne convergence result and considers the setting where there
[29] are two of a number of references that discuss thenq asymptotically unique (time-invariant) optimal parameter

relationship between the two approaches. Note also that fcior as would often occur, say, when the underlying system
the unconditional loss functiot;(6;) were replaced by a has nonstationary dynamics.

conditional loss as is sometimes seen in the control literature
(e.g., (2) replaced by an expected tracking error conditional ]
on previous measurements and controls), the same optiftalOVerview of the Approach
6, would typically result. This follows since under standard Recall that we are seeking the FA parameter vector at
conditions justifying the interchange of a derivative and agach time point that minimize(6y), i.e., we are seeking
integral (e.g., Fleming [14, pp. 237-23A)L°™! /a6, = 0 a §; such thatg,(f;) = 0. Recall also that since gradient-
implies E(9L™4/06,,) = OF(L{™)/06), = 0L, /06, = 0 based search algorithms are not applicable, we will consider
at the optimab,,, whereL°™! represents the conditional lossa gradient-free SA-based approach.

With a control of the form in Fig. 1(a) or (b), the problem Spall [46] gives a detailed analysis of the SPSA approach
of minimizing L (6 ) implies that for eaclk we are seeking to optimization in the classical setting of a time-invariant

a (minimizing) solutioné; to loss function L(-) and corresponding fixed minimum. It is
shown that the SPSA algorithm has the usual almost sure (a.s.)
9Ly dul 0Ly convergence and asymptotic normality properties of finite-
9k(0k) = 0, 00, Oup difference SA (FDSA) algorithms of the Kiefer—Wolfowitz

form but that the asymptotic normality result indicates that

Since the functions governing the system are incompletéhPSA can achieve the same level of asymptotic accuracy as
known, the termoL,/ou; is not generally computable. FDSA with only 1/p the number of system measurements in
Hence, gx(f;) is not generally available in either of themany practical problems. This is of particular interest in FA’s
methods in Fig. 1(a) and (B).Thus the standard gradientfor nonlinear, multivariate problems singecan easily be on
descent algorithm (e.g., back-propagation—see, Narendra &l order of 18 or 10°. Of course, in the control setting here
Parthasarathy [31]), or any other algorithm involvigg(d,) the loss functionLy(-) is generally time-varying, and hence
or a direct noisy measurement @f(6;), is not feasible. it cannot be automatically assumed that the results of Spall

Because gradient-descent-type algorithms are not generédi§] apply. We, therefore, yvill present conditions under which
feasible in the model-free setting here, we consider a stochagfie SPSA estimation errdh, — ¢; converges a.s. to zero as

approximation (SA) algorithm of the form in the time-invariant loss setting. Unfortunately, it does not
appear possible to similarly produce an asymptotic normality
6), = 6r_1 — as(gradient approx,, (3) result for the time-varyind.,(-) setting, which would provide

a formal proof that asymptotically SPSA achieves the same
to estimate{6, }, whered,, denotes the estimate at the giverllevel of accuracy as FDSA. with only/pth t_he numt_)er of
. . NS ) e measurements for the gradient approximations. This follows
iteration, {a;} is a scalar gain sequence satisfying certal

regularity conditions, and the gradient approximation is suénom the fact that the limiting mean and variance of the
Y ' asymptotic normal distribution in Spall [46] are based on the

that it does npt require full knowledge of the form of th fixed) values of the second and third derivatives of the loss
process equations. The next section is devoted to describ ”H . . .
ufiction and, of course, such fixed values do not exist in

in- more detail the gradient-free SA approach to this proble%e time-varying setting here. Nevertheless, we feel that the

general advantage of SPSA in the fixed loss function case

2This contrasts with implementations of so-called indirect feedback cop - ;
trollers (e.g., Narendra and Parthasarathy [31, Sec. 6]), where a separatefggemer with the a.s. convergence of SPSA established below

is used to model the unknown system dynamics and the identification ai@f the time-varyingLy(-) setting provide ample theoretical
adaptive control are performed as if the FA model was identical in structure¢s/idence of the advantage of SPSA over the standard FDSA

the true system dynamics. One special case wigf@y, ) can be computed is ; ; ; :
in the self-tuning setting of Fig. 1(b) whetg.(-) is known to enter the process approach in this control prObIem' This will be auQmemed by

addictively (sincedLy /du; then does not depend on unknown dynamics)@Mmpirical evidence in Section IV.

such additive control models are considered, e.g., in Sanner and Slotine [43]n line with (3) the SPSA algorithm has the form

for continuous time and Jagannatheinal. [16] for discrete time. Of course,

in the more general setting of direct approximation control [Fig. 14a}ps) R R R

would still be unavailable since such adaptivity is not assumed known. O = Or—1 — arir(Op—1) 4)
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wheregk(ék_l) is the simultaneous perturbation approximalas advantages in highly nonstationary systems. This follows
tion to gk(ék_l). Although several variations are possible (sekom the relationship of (5) or (6) to the underlying gradient
below), the core approximation is such that ftle component g (6x—1): if the dynamics change significantly, (5) may be a
of gu(fr—1). £ =1.2,---,p, is given by poor approximation to the gradient, while the instantaneous
F _j ) approximation (6) always provides a quantity that [to within
. (5) O(c})]is an unbiased estimate of the gradient. A guideline for

Zer e when one should consider the instantaneous form (6) is when
where N X condition C3) from the proposition is not satisfied for (5); this
« L are estimated values afi (6,1 % cv/Ax) USING  condition is a stochastic analogue of a well-known condition
the observec},;,ijj)1 and uéi), e.g., forLy(6x) as in (2), for nonlinear optimization. Thus, although the focus here is on
L® = (yﬁ)l _tkH)TAk(y’(i)l —trq1)+uT B, the “standard” SP gradient approximation in (5), the closely

. uéﬂ:) are controls based on an FA with parameter vectiglated one-measurement form in (6) may be preferable in

O = 01+ ck Ay, where Ay = (Agr, Aga, -+ - Agp) T Some cases. : . .
is a random vector. Usually, thgA,,;} are independent There are several ways in which a practical control strategy
. y o7 H

; s be developed using the SPSA algorithm in (4) and (5)
bounded, symmetrically distributed (about zero randoﬁ’?.n . )
variablestyi identica){ly distribute((j at each )with with obvious analogues for (4) and (5)]. These differences

E(A,jf) uniformly boundedvk, i, although the condi- result from whether or not it is desired to produce a “nominal

(&)
tions for convergence below are stated more genera?’f}‘%L

gk[(ékfl) =

1 based on a control with updatei = 6y (only w1
(see Section IlI-C for comments on regularity conditionsg required in implementing (4) gn.d ), \.Nh'Ch ube =
(+) ) r—1 T cpAyr) and whether or not it is possible to reset the
* y,., are measurements basedm:),(ﬁE : . .
. {’é+]} is a sequence of positive nufnbers satisfying cert system from a given state value to the previous state value.
k pall and Cristion [52] discuss these strategies in greater

;Z%ﬂiggg?:gﬁg?ﬁer(tﬁgcgzcgm;q3{;;%‘ a?e ZY:t’iond(retail for neural network—basgd contrc_JI when one has direct
or nonstationary, as discussed in Sections I1I-B and HI_CS%hgasuremen_ts of the states n a nonlinear state-space model;
' . ] ) lese strategies could be readily extended to the more general
The key fact to observe is that at any iteration only tWgetting here. As an illustration of one of these strategies,
measurements are needed to approximggte) (i.e., the nu- suppose that we wish to produce a sequence of system
merators ing (-) are the same for af components, reflecting measurements that includes nominal measurements, i.e., the
the simultaneous perturbation about alelements ing;_1). sequence iS{yo,yfr),yf),yl,yéﬂ,yéﬂ,yg,---}, and that
This is in contrast to the standard FDSA approach whefige system cannot be readily reset from one state to the previ-
2p measurements are needed (i.e., for #itle component gys state gwhich is the usual case). Then, as in Section II-A,
of the gradient approximation, the quantity; is replaced gach ofuf’ 7u§€—)7 anduw;, are produced using the previois
by a vector with a positive constant in thth place and measurements and controls, which comprise the information
zeroes elsewhere; see, e.g., Ruppert [39]). A variation on thgg I,EJ’), I}E—)’ and I (say), respectively (note that the
gradient approximation in (5) is to average several gradiegements ofI, here will differ from those in Section II-A
approximations, with each vector in the average being basgflere no parameter update is taking place). Thus, for example,

on a new (independent) value of, and a corresponding NeWs 1y — N — 2 and the most recent measuremer’gj,sl )1, then
pair of measurements; this may enhance the performance, of (- . A

. . L . . . tfhe next controke,, ’ is based orfy, = 0,1 — cr A, try1,
the algorithm in a high-noise setting as discussed in Spall ", +) +)
[46] and Spall and Cristion [52], even at the expense dIkk = {hyk+l’y’“’_“k _’“’“‘r;l}' atively simole. th
the additional loss function evaluations. A further variatio To keep the notation in this paper relatively simple, the

on (5) is to smooth the gradient approximation across tier scussion focuses on the case wheérts changed at every

. : . discrete-time point during the “training” process of building
by a weighted average of the previous and current gradletﬁ_i controller. The same basic ideas can be applied vhen

estimates (analogous to the “momentum” approach in bac .
SN . . ; s changed less frequently (say, to allow transient effects to
propagation); such smoothing can sometimes improve the

performance of the algorithm (see Spall and Cristion [5 ecay). An example of such a setting is the vehicle traffic con-

for a thorough discussion of smoothing in SPSA-based dire%c?I p_roble_m in Spall and Chin .[50] wh_en%(l.e., the control ,
. Unction) is changed on a daily basis even though traffic-
adaptive control).

A slightly more fundamental modification is to replace th responsive control actions (the control fungtion outpu_ts) are
two-measurement gradient approximation in (5) with the Ongbanged much more frequ_e_ntIyA (per_h_aps_ minute by minute).
One must also pick an initi#, 6, to initialize the controller.
measurement form Random initialization is one possibility (see Section 1V). How-
6) ever, in some real-world systems, it will be useful to exploit
GWANY] simulations and/or other prior information to provide a more
as discussed in Spall [47]. Although [47] shows that (5) resrecise initialé. With a simulation, one could implement the
mains generally preferable to (6) in terms of overall efficienayontrol strategy above using the simulation as a proxy for the
of optimization based on loss function measurements (evesal system. The final trained value fércould then serve
though (5) uses twice the number 6f measurements), (6) as the initial@ for use with the real system (in the idealized

£

A~

Ore(Or—1) =
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limiting case where the simulation was run for a large number C5) For anyr < 0 and nonemptys C {1,2,---,p}, there
of SPSA iterations and was a perfect representation of the exists ap’(r,S) > 7 such that

real system, and where the real system was nonstationary, ) 2 igs(0 —67)igri(6)

this initial ¢ would be the optimall = 6* based on the h,?li‘jp S (0 07 )igra(6) <las.
convergence theory in Section IlI-B). If historical data are for all (6 — 9*)i|zc< 7 wheni & S and |(6 — 6%),] >
available on “reasonable” controls and responses, then one /(r,5) wheni € S. -

can use standard offline optimization (e.g., back-propagation)
to trainé so thatug(-) is a control function that can effectively
reproduce the historical input—outputs. So if the historic
data represented a prior suboptimal control strategy, the SPSA b, — 6" — 0 as. @)
approach would allow for a graceful transition to a more nearly

optimal controller.

Proposition: Let conditions C1) through C5) hold, and
SHPpose there existséd such thatf;, — 6* ask — oco. Then

Proof: The proof will proceed in three parts. First we
will show thaté, = 6;, — 8* does not diverge in magnitude to
oo on any set of nonzero measure. Second, we will show that

B. The Convergence of the Weight Estim%&e éyk. converges a.s. tq some random vector; third we show that
. ) this random vector is the constant zero, as deswed;
Let us now present conditions such that, as infhe) = Part 1. Letting M;, = apgr(0r—1) andM;, = ar(gr(6r—1)

L(:) case of Spall [46], [47].6; will converge a.s. for
the case of varyinglL,(-). The proposition below applies
to either the two- or one-measurement approximation form ~ b ~ b ,

in (5) or (6). Note that general convergence results such Or+1 +ZMj =0, —ZMJ- (8)
as in Benvenisteet al. [4, Part Il] do not directly apply =t =1

here due to the time-varying loss function and underlyingince C1) and C2) imply thaﬁzi;l M!} represents a mar-
system evolution. Unlike Spall [46], the connection to thgngale sequence (itk)

true gradient is not used explicitly in the regularity conditions

here [this is especially relevant when (5) is used since the , k -

system evolution betweed " and L{~ complicates the B ZMJ < ZE”MJH <00

interpretation ofjx(6x_1) as an estimate afi(6x_1)]; hence, =1 J=t

certain conditions related t.(6x_1) being a nearly unbiased where the finiteness follows from C1) and C2). Then by (8)
estimator of the gradient (e.g., mean zero on the measurem@td the martingale convergence theorem

—gu(0r_1)), we can write

k

noise difference) are not used here, while other conditions k
imposing “gradient-like” behavior are imposed [C3) and C4)]. ék+1 + Z M; as ¢ 9)
Section IlI-C provides some discussion on the conditions j=1

relative to the control problem here. Note that having t
optimal parameters converge (i.6;, — 6*) does not imply
the (say) pointwise convergence.i(-) to some fixed.(.); in Since the arguments below apply along any subsequence,

fac'ijj;k(e,t)n;ay bg p(te.rpetltljlaélzyt\)/alryingATven Wthé%;]:tet?k' e will for ease of notation replace the “lim sup” with
as discussed In section 111- below. AISo note hat e TeSU,» \ithout loss of generality. We will show that the

below differs considerably from the convergence result in Sp% ent{HékH — o)} has probability zero in a multivariate

and Cristion [51], which requires stronger conditions (e.g.,uné—Xtension to scalar arguments in Blum [5] and Evans and

formly bounded increme_nts for the_itera_tes) and is oriented Weber [12]. Furthermore, suppose that the limiting quantity
the “smoothed” SP gradient approximation. Wellef| denote ¢y \jnpounded elements # is +oo (trivial modifications

aay yector norm, 1. represent "'[‘f'”]'ffr']y f’fg?"‘i*zji a”‘f cover a limiting quantity including-oc limits). For r, S, and
(6 _)i represen ' components ot e indicated vec orSpl(T, S) as in C5), the event of intere$f|6,|| — oo} can be
(notation chosen to avoid confusion with time subsckiptand represented as ' :

g1(Or—1) = E(Ggu(Or—1) | br—1). ié vi € §)
ki — OQO V1

S

Nfhere X is some integrable random vector.
Let us now show thatP(limsup,_, ||fk]| = o) = 0.

Cl) ap,er. > OVEk; a — 0, . — 0 ask — oo
ﬁak:oo, ﬁakck2<oo. =~ ’ . =~ .
C2) %: is symmetric%l?y tj(istr{buzed abowtand for some = U {0 2 p/(7,5) Vi € 5,6k S TV E S,
p > 0andVk, £, E[(LS /A1) < p. 70
C3) For someK < oo any p > 0 and for eachk > K ] )
suppose that if|§ — 6*|| > p, there exists &@;(p) > 0 k> K(7,5)} ﬂh’fr_{suf’{Mki <0Vie S}, (10a)
such tha(§ —6*)7'g,.(8) > 6x(p) whereéy(p) satisfies =
> ey arbr(p) = oc. ) }
C4) Foreach =1,2,---,p,and anyp > 0, P({gxi(fr—1) U {0y, — oo Vi € S}ﬂhziriigf{Mki <0Vie S}
p VEY) = 0. (10b)
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where K(7,5) < oo and the superscript denotes set com-  Part 3: Let us now show that the unique finite limit from
plement. We now analyze the two principal events shown Part 2 is zero. From (12) this follows if

(10a) and (10b). For the event (10a), we know that there exists o0

a subsequencéko, k1, ko, - -} such that{ékji > (7, 5) p< lim 6 # 0, ZMk
Vi € S}n{M,,; < 0Vi € S} is true. But, from C5), k=00 P
this implies that6 gi,41(6x,) < 0 Vi sufficiently large, o,
contradicting C3). Hence the first event on the right-hand su?e
of (10) has probability zero for any, S. Now consider the
second principal event, as shown in (10b). From (9), we kn
that for almost all sample point$, ;- , My; — —oo Vi € S
must be true. But this implies from C4) that for a& S can
My,; > 0 occur i.0. However, at each, the event{M;; < 0
Vi € S}¢is composed of the union @f™($) _ 1 events,
each of which has\{;; > 0 for at least oneg € S. This, of
course, requires thatfy; > 0 i.o0. for at least oneg € S , - I
which creates a contradiction. Hence, the probability of the Z a’“ze’“—lzig’”(e’“—l) =z Z Oy (15)
event in (10b) is zero for ang. Taking the union over, S R=RAL el h=RAL

[shown in (10a and (10b)] of the zero-probability events yieldsyt since C4) implies thaty;(fx_.) can change sign only

< oo) =0. (14)

ppose the event in the probability of (14) is true and let
C {1,2,---,p} represent those indexésuch thatdz; # 0

ask — oo. Then, by the convergence in Part 2 there exists

Hr almost any sample point in the underlying sample space
some0l < a < b < oc and K (a,b) < oc (dependent on the
sample point) such thatk > K, 0 < a < |6;] < b < o0
wheni € I (I # @) and || < a when¢ € I°. From C3),

and takingé, = 6x(a), it follows that

n n

P(||6x]| — o0) = 0, completing Part 1 of the proof. a finite number of times (except possibly on a set of sample
Part 2: To show thatd;, converges a.s. to a unique (finite)yoints of measure zero) and sin,| < b, we know from
limit, we show that (15) that for at least oné € /
r o Al
P<hm inf6); < a < b < limsup 9;”> =0 Vi (11) lim sup M < (16)
k— o0 n—oo Ek:K+1 My,
for any a < b. There exist two subsequences, one withrom C3), we haVeEZ;KH aréx = oc. Then by (16)
convergence to a point a and one with convergence to al > j—x41 Mril = oco. Since, for thea < & above, there

point > b. From (9) and the conclusion of Part 1, each d#xists such ak for each sample point in a set of measure
these subsequences has a sub-subseqyéndesuch that ~ one (recalling thatd,, converges a.s. by Part 2), we know
from the above discussion that there also exists at least one

Ky ¢ € I (¢ possibly dependent on the sample point) such that
limsup | >~ My;| < oo as. (12) |52 je41 Mii| = 0. Sincel has a finite number of elements,
{=oo k=1 | > e, Myi| = oo with probability greater than zero for at

least onei . However, this is inconsistent with the event in
Supposing that the event within the probability statement pf4), showing that the event does in fact have probability zero.
(11) is true, we know from C4) and (9) that for apy> 0 and  This completes Part 3, which completes the proof. [
corresponding sample point we can choese- n sufficiently
large so that for eachand combined sub-subsequence (fros. comments on Regularity Conditions for Proposition
both sub-subsequences mentioned above) and Extension to Perpetually Varyirgj

ki, This section provides some interpretation of the above
Z M| < p (13a) regularity conditions and discusses the feasibility of a unique
limiting #* existing together with some discussion on SA
o algorithms wherg;, is not converging to any fixed*.
b—a Condition C1) presents some standard conditions on the
it e’wnﬂr Z Myi| = 3 (13b) g gains (as discussed below, however, in a system with
k=kj, ~ nonstationary dynamics—whe# does not converge—it is
ekjni <a<b<O i (13c) generally best to not satisfy this condition). C2) ensures
that the variability ofg,(-) is not so large as to potentially
Picking p < (b — a)/3 implies by (13a) and (13b) that cause divergence of the algorithm. Note that this condition
is closely related to the important bounded inverse moments
<2(b—a)/s. condition for Ay, in SPSA, since by Holder’s inequality, C2)
holds if E[(L{7)2+%] and E[A;2 '] are both bounded for
However, (13c) requires that certainé, 8 > 0. This bounded inverse moments condition
prevents, e.g., takingx, as uniformly or normally distributed.
— ékjni >b—a However, takingAy, as symmetrically Bernoulli-distributed
to satisfy this condition has proven effective in our numerical
which is a contradiction. Hence, (11) holds, completing th&udies, and, in fact, is shown in Sadegh and Spall [42] to
proof of Part 2. be the optimal choice of distribution in static optimization

k;

Jrn—1

O, i

ekjn ekj i

O,

G ?
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problems based on asymptotic principles. C3) ensures thiE®], Benveniste and Ruget [3], Macchi and Eweda [25], or
if we are at a valued,_; not at§*, the estimateg, () is, Benvenisteet al. [4, pp. 120-164]), which is relevant whé

on average, sufficiently steep (as well as pointing tow&)d is nonconvergent. This is likely to occur, say, when the process
so that there will be a tendency to push the next valye or measurement dynamics are perpetually time-varying due to
toward #*.2 One case where C3) may be violated is wheryclic behavior or when they change due to a failure or wear
(5) is used and there are strong system transients betweenaheé tear of components in the system. In fact, because of their
times associated witl?\k,l + e Ag andék,l — Ay (in such ease of use, such constant gains are sometimes applied in SA
cases, it may be desirable to lengthen the time interval betwden SA-type) algorithms even wheff, = 6* Vk (see, e.g.,
changes ird to allow the transients to decay). Note that th&ushner and Huang [19] or Kuan and Hornik [18]), although
nonuniformity (in k) that is allowed foré,(p) permits L, (-) it is known that they preclude the formal a.s. convergence of
to “flatten out” in some fixed region arourtd ask gets large decaying gain algorithms.

provided that this flattening does not occur too fagt4) is

a very weak condition that says . is uniformly bounded IV. EMPIRICAL STUDIES

away fromé*, then it cannot be bouncing around in a manner __ . i , i

that causes the elements of the mearjgf) to change sign _Thls sectlon presents the results_of numerical studies on two
an infinite number of times. C5) is another weak conditioﬂ'ﬁerent nonlmear systems. In the first study we present results
that ensures fok sufficiently large that each element @f(6) for controlling a wastewater treatment system, where the

makes a nonnegligible contribution to products of the forl&i'ynamics are in the_ so-calleq affine-nonli_near_form. This study
(6 — 6%)75,.(0) [see C3)] wher(d — 6*); # 0 Vi. A sufficient includes a comparison of direct approximation (DA) versus

condition for C5) is that for each gi:(6) is uniformly (in &) self-tuning (ST) controllers, SPSA versus FDSA estimation
bounded>0 and <oc when |(8 — 6*);| > p > 0 Vi. algorithms, and one-measurement SPSA [see (6)] versus two-
The assumption in the proposition that there exists a fixggeasurement SPSA [s_ee (_5)]' In the_ _second study we consider
6* such tha# — 6" is reasonable for a range of applications"?‘ system where the noise is not additive and where the control
In fact. the keven stronger assumption tHét = 6* vk only begins to have an effect after a certain time lag. For
holds in many applications, including settings whdrg(#) this second study we compare two different .FA,S: a ne_ural
is perpetually varying at ang (as results from, among otherN€twork and a polynomial. This study also briefly examines

things, a time-varying target;). For example, stationary the Ponak—Ruppert |ter§te averaging techmq'ue.

dynamics and measurement processes result in a control lafpecause of tlme-varylng dynamics, the first s_tudy_ uses
that can generally be expressedi@s= u(-) for someu(-) not CONStant SA gainga, = a,¢. = c) for the estimation
indexed by (see, e.g., Nijmeijer and van der Schaft [33, ctfigorithms. The dynamics in the second study are time-
14]). Then, there will generally exist@ that yields the best Nvariant; hence decaying gains are used, which fulfills the
possible approximation ta(-) under a mean-square-type |03§equ!rements for convergence given in the proposition of
function (this6* may not be unique unless the FA is minimapection 111-B.

in some sense—see e.g., Sussman [53]). The more general

condition of the propositiond; — 6*, allows for a system A. Wastewater Treatment System

with transient effects. This section presents the results of a study on a wastewater

Let us close this section with a brief discussion of thgeatment system from Dochain and Bastin [ Qur interest
constant gain setting where we takg = a > 0 and/or here is to compare the SPSA (one- and two-measurement
cx = ¢ > 0Vk. Itis well known that SA algorithms with such forms) and FDSA estimation algorithms as well as the DA
gains are better able to track a time-varying rg#j) than the and ST control approaches of Fig. 1(a) and (b). Models for
usual decaying gain algorithms (see e.g., Kushner and Huagilar wastewater treatment systems may also be found in the

bioremediation literature (e.g., Cardello and San [6]). This is

3This condition does not preclude from converging to a local minimizing @ Model of affine-nonlinear multiplicative control form (e.g.,

point8* (the same issue arises, of course, in gradient search algorithms s@ihen [7]).

as back-propagation); Chin [9] discusses a technique by which SPSA can bqn this wastewater treatment system influent wastewater is
used as a global optimizer for arbitrary initial conditions. An alternate glob. !

| . ; . s
optimizing approach that seems likely to apply here is described in Yakowﬁ{St mixed (as de.termlneq by a ?Ontm”er? with a d”Ut'Or‘
[56] for the FDSA algorithm. We have yet to investigate such approaches$ubstance to provide a mixture with a desired concentration

control problems, instead relying on the standard approach of experimentiggcontaminants. This diluted mixture is then sent to a second
with different initial conditions to see that we are converging to the sal

e .
minimum. In fact, this issue is not always critical since in some syste[r%@nk at a controlled flow .rate_z. In Fhe second tank the mlxture.
converging to only a local minimum may offer performance that is sufficientigoes through an anaerobic digestion process, where the organic
improved for the allowable resources expended. material in the mixture is converted by bacteria into by-

“In some special cases, the conditional expectaidr) can be replaced by nroducts such as methane (Metcalf and Eddy [28, p. 420]).
the true gradient. Then condition C3) resembles the well-known “steepne?s"

condition in stochastic approximation derived from Lyapunov theory (€.9.,spjore detailed information and additional references on this wastewater
Lai [21] and Ruppert [.40])' TWQ of the special cases are when “the O,r,]ﬁéatment system model may be found in Spall and Cristion [52]. That paper
measurement form (6) is used fg(-) or when the system can be “reset’ ., qjgers a model with process noise but no measurement noise. A similar
when the two-measurement form (+5)) 1S “Sﬁ‘(j)('-e-' the system can be placed At,niroller model was used except for a time-invariant target vector. Also
the same state prior to generatinbA andu, ', as, say, with some robotic included in the study of Spall and Cristion [52] were the effects of gradient
systems). In these special caggg6.) equalsgx(6;) plus anO(c}) bias averaging at each iteration (not considered here). The model here, however,
that can be absorbed intq (p). has a greater degree of nonstationarity.
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Therefore, the system consists of two controls (the mix d¢iie components of the two 2 2 matrices in (17a) (the “one”
wastewater/dilution substance and the input flow rate) and tetements are a result of the transformation of a differential
states (an effluent depolluted water and methane gas, whétfuation to a difference equation). For the target sequgnce
is useful as a fuel). Since this system relies on biologicale used a periodic square wave, with val(eg, .13)? for the
processes, the dynamics are nonlinear and usually time-varyfingt 48 time points and1,.1)” for the second 48 time points,
(Cardello and San [6]). Also, the system is subject to comhere the second (water purity) component is as in Fig. 4 in
straints (e.g., the input and output concentrations, the meth@wchain and Bastin [11] (we also varied the first component
gas flow rate, and the input flow rate all must be greater thfmethane production rate] to provide for time variation in both
zero), which presents an additional challenge in developiegmponents). The controllers for both the DA and ST methods
a controller for the system. (Note that Dochain and Bastimere NN's with two hidden layers, one of 20 nodes, and one
[11] controlled only the output substrate concentration or tlef 10 nodes (as in Narendra and Parthasarathy [31] and Chen
methane production rate—not both—using the input flow raf@]). The inputs to the controller were the current and most
as their only control, and they used an indirect controller wherecent statd A/ = 2) and the most recent controlV = 1),
a general form for the model of the wastewater treatmeyielding a total of eight input nodes for the DA controller
system was assumed to be known with unknown parametétse target vector for the next state was also included) and six
that were estimated.) input nodes for the ST controller. In the notation of Narendra
The study here is based ofy, = A (a constant weighting and Parthasarathy [31], @¥s 20,102 Network was used for the
matrix) andB;, = 0 in the loss function (2) (i.e., a minimum DA controller, which hasl80 + 210 + 22 = 412 weights to
variance regulator). The performance of the technique wibk estimated, and aNs 20,105 network was used for the ST
mainly be evaluated by presenting an estimate of the rogbntroller, which hasl40 + 210 + 55 = 405 weights to be
mean-square (rms) error for the measurements, i.e., an estingatémated.
of {E[(yx — tx)T A(yx — t1)]}Y/2. For our studies, we used Fig. 2 shows the main results for our study of the model in
a two-dimensional diagonal weight matrix with a value (17a)—(17c), based on the procedure outlined in Section IlI-A
.01 as the first diagonal element and .99 as the secomith the two-measurement form faj(-) in (5) (including
diagonal element (reflecting the relative emphasis to be givéhie generation of the optional nominal state for purposes
to methane production and water purity, respectively). We witlf plotting the weighted total system rms error). As with a
also present some results on the actual (versus measured) gragtical wastewater system, there is no system resetting in
state tracking error. The (feedforward) neural networks (NN'ghe course of the SPSA estimation (see Section 1lI-A). The
considered here have nodes that are scaled logistic functipms error curves in the figure are based on the sample mean
(i.e.,1/(1+¢~) for input z). Each node takes as an infub  of ten independent runs, where the elementé,dbr each run
the weighted sum of outputs of all nodes in the previous laygkre generated randomly (and independently) from a uniform
plus a bias weight not connected to the rest of the netwofk .1, .1) distribution for the DA controller and a uniform
as in Chen [7]. For the weight estimation we will considef—.01,.01) distribution for the ST controller. We choag =
the SPSA and the FDSA algorithms. For the SPSA algorithms, 1.6375)7, process noiser,, = .001, and measurement
we take the perturbationd;; to be Bernoulli£1 distributed, noises, = .01, so the initial-weighted total system rms error
which satisfies the relevant regularity conditions mentioned i® 1.51 (which includes the effects of the measurement noise)
Section Il and the minimum achievable long-run weighted total system
The nonstationary model we used for producing the megns error is some number greater than .01 (see footnote 6). To
surements closely follows that of Dochain and Bastin [11, eqsuther smooth the resulting error curves and to show typical
(8) and (9)] with the addition of additive (independent) procegserformance (not just case-dependent variation), we applied an
and measurement noise, i.e., expanding window smoother (which allows for rapid changes
in the early iterations and little change in later iterations)

; 1 10 : —Txi; O
<ik+1’l> = <——§6LZLS%T 1) <i“> + <—Tikl T) to the error values based on the average of ten runs. The
P2 ) r2 r2 curves shown in the figure are based on this combination of

> < Ukl ) + <wk1> (state) (17a) across-realization averaging and across-iteration smoothing.
Uk1Uk2 W2 For this nonstationary system, we used constant SA gains
(A4 + .15sin(20k/96)) k2 of the forma;, = a and ¢, = ¢ with a,c > 0. We attempted
fire = A+ Ty to tunea andc in each algorithm to approximately maximize
(bacterial growth rate) (17b) the rate of decay in weighted total system rms error (as would
yx = 2 + v (Measurement) (17c) typically be done in practice); the values satisfidll < a <

.5 and .005 < ¢ < .1. The choice ofa, ¢ is important for
wherew;, ~ N(0,¢621), v, ~ N(0,021), and the sampling adequate performance of the algorithm (analogous to choosing
period isT = .5. The DA control algorithm, of course, the step-size in back-propagation). For example, choosing
has no knowledge of the model (17a)—(17c). The ST contrmlo small may lead to an excessively slow reduction in error,
algorithm has some prior information about the form of thehile choosing an: too large may cause the system to go
model, namely that the state equation (17a) has the genenastable (so for practical problems, wheepriori “tuning”
affine-nonlinear form shown, but with no knowledge of thenay not be feasible, it might be appropriate to begin with a
functional form of the nonzero/nonone elements appearing retatively smalla and gradually increase it until there is an
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Total no. of required measurements

SPSA-DA 200 i
SPSA-ST 200
FDSA-DA 82,400 B

Iterations

Fig. 2. Root mean square errors for DA and ST controllers and a relative number of required loss function measurements in wastewater treatment system.

adequate convergence rate but little chance of going unstabédative performance, the same pattern holds for actual rms
Spall [49] also includes some practical guidelines for choosisgate (versus measurement) tracking error. For example, the
the gain sequences). rms state error for SPSA-ST at 20 iterations was 0.0389 (versus
Fig. 2 shows that all of the SPSA and FDSA algorithm8.0981 for the measured tracking error shown in Fig. 2), at
yield controllers with decreasing weighted total system rn%0 iterations was 0.0070 (0.0128), and at 100 iterations was
error over timé We see that the overall performance 00.0059 (0.0127). Of course, in a real system the state tracking
SPSA-DA is somewhat better than FDSA-DA. Further, SPS/Arror would not be measurable.
ST has the best terminal performance, reflecting the valueln Fig. 2 we see that the SPSA-DA algorithm has slightly
of the additional information used. The critical observatiohetter overall performance than the FDSA-DA algorithm.
to make here is that the SPSA algorithms achieved thdihis appears to be a result of the significant nonstationary
performance with a large savings in data: each iteration of thgnamics shown in (17b). Since the FDSA-DA algorithm
SPSA algorithms required only two measurements, while eagquires 412 times more measurements than SPSA-DA at
iteration of the FDSA algorithm needed 824 measuremené&ach iteration, the system dynamics change more over the
Hence Fig. 2 illustrates that the SPSA algorithms yieldedcurse of one gradient approximation. Therefore, the FDSA-
slightly lower level of rms error than the standard FDSMA algorithm will have inherent difficulties in achieving the
algorithm with a 412-fold savings in measurements. The datame performance as the SPSA-DA algorithm since in SPSA
savings seen in Fig. 2 is typical of that for a number of othéne dynamics change only a negligible amount over the course
studies involving SPSA and FDSA that we have conducted ofa gradient approximation. In contrast, the wastewater study
model (17a)—(17c) as well as on other nonlinear models (seeSpall and Cristion [52] has a smaller level of nonsta-
Spall and Cristion [52]); in fact, even greater data savings aienarity, and consequently the FDSA-DA and the SPSA-DA
typical with more complex NN's (as might be needed in higherdgorithms have more nearly equivalent overall rms errors
dimensional systems). Note also that the curves in Fig. 2 hgwerformances (of course, FDSA-DA still requires many times
the typical shape of many optimization algorithms in that thetee number of measurements of SPSA-DA to achieve this
is a sharp initial decline followed by a slow decline. Hencegerformance).
the rms error is reduced over 90 percent, (which may be allAs a final study on this system, we evaluated the one-
that is required in some applications), by the SPSA algorithmseasurement SPSA form (6) in the DA context. After 100 iter-
(DA and ST) within approximately 20 iterations. In terms o#tions, the rms error was 0.195, somewhat greater than 0.0983
for the two-measurement form, but still much improved from
61t does not appear possible to analytically know the minimum achievatiB€ 1.51 initial error at half the cost of the two-measurement
total measured rms errors for each algorithm since they involve the combirfem.” It is expected that the ideal application for (6) is in
effects of the process and measurement noise as well as the nonstatiogygtems with even greater nonstationarity where the underlying

dynamics and requisite nondecaying SA gains (which preclude formal co . . .
vergence of thaék). As an approximate indication of these lower bounds(,jyn""mICS change Slgnlflcantly at each measurement point.
SPSA-DA and SPSA-ST achieved total measured rms errors of 0.0845 and

0.0104, respectively, after 10 000 iterations versus values of 0.0983 and 0.0127After 10000 iterations, the rms error for the one-measurement form was

at 100 iterations. 0.0889, relatively close to the error of 0.0845 for two-measurement SPSA.
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B. Nonadditive Noise Model TABLE |
. . L RMS ERRORs FROM NONADDITIVE NOISE
The second model we consider is one where the noise is not MODEL (MINIMUM ACHIEVABLE RMS = 0.707)
additive and the control is added to the dynamics. In particular, —
as in Yaz [56], the data are generated according to Nir:t'g: Neural Net | Polynomial
(-5 3 n 0 0 N x|l 0 1.500 1.500
Ybtt =1 o9 1.1 )% T \o 1 )" AR 10 1,530 0.971
50 0.755 0.778
Y, ur € R? (18)

100 0.727 0.746
wherew, is an independent scalar Bernoulli5 noise process 1000 0.719 0.708

and || - || denotes the Euclidean norm. Aside from the multi-
plicative (possibly unstable) mode in which the noise enteosder polynomial function, the controller would often drive
(18), this model is interesting since only one of the two contrthe system into an unstable mode. Higher order NN'’s, on the
elements affects the system, and since the first elementotfier hand, were able to keep the system under control, but
yr can only be affected by a control after a delay of onperformed no better than the NN presented here. The lower
time period. We used a periodic square wave target sequerareler FA’'s may have performed better in the system of (18)
wheret;, = (1,0)% for the first five iterations of the period because of the inherent instability of the system (see Yaz
andt; = (—1,0)7 for the second five iterations, which yields[57]); in higher order FA’s, there is a greater possibility of
a long-run best possible rms error bfy/2 based on the samepoorly initialized parameters (or combinations of parameters)
guadratic loss function considered in Section IV-A, with #hat may cause the system to go unstable.
diagonal weight matrixA a with a value .5 for both of the We also considered averaging the iteraigsover time in
diagonal elements an& = 0. Since this system has time-the context of the polynomial DA controller (so the con-
invariant dynamics (and fixed; = 6*), the proposition of troller used the averaged value instead of the most recent
Section Il is relevant here. iterate). This averaging method has been shown theoretically
In this study we looked at two different function approxito yield asymptotically minimum variance estimates in the
mators using the DA method [which, of course, assumes general Robbins—Monro SA setting with nontime-varying loss
knowledge of the dynamics in (18)]. As in Fig. 1(a), only théunction (Polyak and Juditsky [37]) and to offer improved
most recent measurement (and next target) are fed into fegformance in some SPSA settings (Dippon and Renz [10]
controller (i.e.,M = 1, N = 0). One FA was aN,;5. and Maryak [27]). By its nature, of course, averaging seems
neural network, which hag5 + 30 + 12 = 67 weights to be most appropriate for systems that have stationary—or perhaps
estimated (including bias weights). The hidden layer nodasymptotically very slowly time-varying—dynamics (e.g., the
were hyperbolic tangent functions (i.€¢7 — e~ %) /(¢* +¢7 %) case of the proposition). In our primary study, we initialized
for input z) and the output nodes were linear functionghe averaging at the 50th iteration (so as to ignore the initial
The second FA was a third-order polynomial, which has #farameter estimates, which will typically not be close to the
parameters to be estimated (close to the 67 weights useddptimal&*). Unfortunately, however, the averaged results were
the NN FA so as to maintain an approximate equivalence stightly poorer than the nonaveraged results (e.g., at iteration
complexity of the FA). 100 the rms value was 0.761 and at iteration 1000 it was
Table | shows the results of the study with model (18)709 versus 0.746 and 0.708, respectively, for the nonaver-
The rms errors were calculated as in the wastewater treatmagéd results in Table 1). This slightly poorer performance
study above, with values formed from the same averagras consistent even as we varied aspects of the study. For
ing/interpolation scheme. The decaying SA gains were of tegample, if the initial point for averaging to commence was
form a; = a/k%°? and ¢, = ¢/k1°t with .1 < @ < .5 changed from iteration 50 to both higher and lower values
and .3 < ¢ < 5 (the gains satisfy condition C1) of theor if the target sequence was changed to a constant, the
proposition; although not used here, @p of the forma;, = averaging approach consistently yielded a slightly higher rms
a/(k + A)%%2 A > 0, usually provides superior practicalerror than the nonaveraging approach. The averaging method
performance as discussed in Spall [49]). We also used stmould be most useful in practical finite-sample situations
average of four individual SP gradient approximations for eaethen the iterate is bouncing approximately uniformly around
gradient estimate to enhance algorithm performance given the solution. However, we found that the latest SPSA-DA
relatively large noise level (even at the expense of the dterates consistently produced better rms results than the earlier
additional measurements required per iteration). Numerigtdrates (which were not bouncing “uniformly” arourt);
analysis of the iterate§, (for both the polynomial and the so by using past iterates, the averaging method appears to
NN) indicate convergence to a fixeti as predicted by the be folding in too many relatively poor values. A similar
proposition. result is discussed in Wang [54, p. 37] and Maryak [27]. The
As seen in Table I, both the NN and polynomial FA’'s proaumerical results here are in contrast to the numerical results
duced good results, although the polynomial was slightly bettef Kushner and Yang [20], where it is shown that the averaging
in the long run. We also looked at higher order polynomialkcheme yields significant improvements in a Robbins—Monro
and NN’s in controlling this system, but the orders chosdmoncontrol) setting. We expect that in certain other control
here seemed to work well. In fact, when using a fourtlproblems, this type of averaging may be more effective and
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may offer significant improvements over the nonaveragirgparch algorithms, including, e.g., standard gradient descent).

implementations. A number of techniques have been proposed to accelerate the
convergence of SA algorithms or to enhance convergence to a
V. SUMMARY AND CONCLUSIONS global minimum (see, e.g., Spall [48], Chin [9], or Yakowitz

This paper has considered the problem of controlling nonlif65]), and it would be of interest to explore the applicability
ear stochastic systems with unknown process and measuren@érsuch techniques to SPSA in a control context. Constraints
equations. Our approach differs fundamentally from conveare usually handled on a problem-dependent basis (such as the
tional methods in adaptive control: rather than modelingastewater example in Section IV-A), but general approaches
the system and performing a stability analysis en route wgth SPSA are described in Sadegh [41] and Fu and Hill [15];
building a controller, this method avoids the construction dhese approaches have yet to be implemented in a control
an open-loop model and focuses directly on regulating tisentext. Another open problem is one common to many
system via the construction of a closed-loop control functioapplications of function approximators: namely, to develop
So, the approach here addresses the shortcoming notegyuitielines for determining the optimal (at least approximately)
Narendra and Parthasarathy [31, p. 19] that “At presestructure for the FA, e.g., optimal number of hidden layers and
methods for directly adjusting the control parameters basgddes in a neural network. Related to this is the problem of
on the output error (between the plant and reference [targalifowing for the FA structure to change if, say, the number
outputs) are not available.” The approach encompasses ®@fccontroller inputs or outputs change (Nechyba and Xu [32]
different methods—DA control and ST control—where DApresent an approach for neural networks). Although solving
applies when there is very little information available about tr&ny of the above problems would enhance the SPSA-based
system dynamics and ST applies when some (still incomple&gproach to control, the approach as it currently stands still
information is available. has broad applicability to many practical systems where little

Since we are not assuming full knowledge of the structui® known about the equations describing the system.
of the equations describing the system, it is not possible
to calculate the gradient of the loss function for use in
standard gradient-descent-type search algorithms. Thereforelhe authors appreciate insightful comments from Dr. L.
we describe a stochastic approximation-based method for fherenscer of the Hungarian Academy of Sciences and Dr. I.-J.
estimation of the controller, which is based on a “simultaneoif$ang of JHU/APL, especially regarding the main convergence
perturbation” approximation (Spall [46]). This method relieesult.
on observing the system at one or (usually) two levels of the
control to each iteration of the algorithm. Both theoretical
and empirical evidence indicate that this SPSA method fop] M. S. Ahmed and M. F. Anjum, “Neural-net-based self-tuning control
weight estimation is much more efficient (in terms of the‘g’] gf ré?ngg;:rrd?lglt%’r‘v%rfi ncqgtnr:cr)’dvg'r gf)‘tiﬁf’al Seochactc noniinear and
number of system measurements needed) than more standardagaptive control, IEEE Trans. Automat. Contrvol. 36, pp. 1046-1053,

Kiefer—Wolfowitz-type SA methods based on finite-difference  1991.

; ; ; [3] A. Benveniste and G. Ruget, “A measure of the tracking capability
apprOX|matlon§ to the gradlent. of recursive stochastic algorithms with constant gainEEE Trans.
There remain several open problems to address to further automat. Contr.vol. AC-27, pp. 639-649, 1982. _
enhance the app“cabmty of the approach here. One, perharjél A. Benveniste, M. Metivier, and P. PrioureAdaptive Algorithms and

. " e . Stochastic Approximation New York: Springer-Verlag, 1990.

!S to develop general Condltlon_s for Stablllty and Contm"ab'l'[S] J. R. Blum, “Approximation methods which converge with probability

ity, although the extent to which these conditions could be ~ one,” Ann. Math. Stat.vol. 25, pp. 382-386, 1954.

checked in a specific application is limited by the model-fred6] R. J. Cardello and K.-Y. San, “The design of controllers for batch
. . bioreactors,"Biotech. Bioeng.vol. 32, pp. 519-526, 1988.

framework. Further, it seems that very little work has beenyz; F.c. chen, “Back-propagation neural networks for nonlinear self-tuning

done on such issues for general nonlinear, stochastic, discrete- adaptive control'"EEE Contr. Syst. Magpp. 44-48, Apr. 1990.

. P ] T. Chen and H. Chen, “Universal approximation to nonlinear operators
time systems (although for deterministic systems, one ma[f? by neural networks with arbitrary activation functions and its application

consult Mouseet al. [30], Nijmeijer and van der Schaft [33, to dynamical systems,IEEE Trans. Neural Networksvol. 6, pp.
Ch. 14], or references mentioned in Section 1). Essentially, we = 911-917, 1997.

- . 9] D. C. Chin, “A more efficient global optimization algorithm based on
feel that stability analysis should not be a necessary aspect ifl gy indyi and Tang, Neural Networkspp. 573-574, 1994.

building all controllers since that would prevent the solutiofLo] J. Dippon and J. Renz, “Weighted means in stochastic approximation of
of many real-world problems. In practice, systems can oftﬁﬂ[] minima,” SIAM J. Contr. Optimiz.vol. 35, pp. 1811-1827, 1997.
N

. f | havi . D. Dochain and G. Bastin, “Adaptive identification and control algo-
be monitored for anomalous behavior and sometimes s rithms for nonlinear bacterial growth systeméyitomatica vol. 20, pp.

down or converted to a default control if instabilities are  621-634, 1984.

a threat. Another issue is to develop ways to increase tH@l S: N Evans and N. C. Weber, "On the almost sure convergence of a
’ general stochastic approximation proceduijll. Austral. Math. Sog.

rate at which the required parameter estimates approach the yq. 34, pp. 335-342, 1986. .
globally optimal values. This is especially relevant in systenitﬁ] S. Fabri and V. Kadirkamanathan, “Dynamic structure neural networks

: : s : : for stable adaptive controls of nonlinear systemEEE Trans. Neural
where precise control is needed within a short time since Networks vol. 7, pp. 1151-1167, 1996.

SPSA has the property of bringing the iterate to within thp4] w. Fleming, Functions of Several Variables New York: Springer-
vicinity of the optimum in relatively few time points but Verlag, 1977. e . ,
h taki long time to complete the convergence to tl[lle5] M. C. Fu and S. D. Hill, “Optimization of discrete event systems via
t e.n aking .a gu p X verg . simultaneous perturbation stochastic approximatidrghs. Inst. Indust.
optimum (this property, of course, is common to all first-order  Engineers vol. 29, pp. 233-243, 1997.
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