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Abstract The focus of this paper is understanding the
effects of demand forecast error on a tactical decision policy
for a single node of a manufacturing supply chain. The demand
forecast is treated as an external measured disturbance in a
multi-degree-of-freedom feedback-feedforward Internal Model
Control (IMC) based inventory control system. Because fore-
cast error will be multifrequency in nature, the effect of error
in different frequency regimes is examined. A mathematical
framework for evaluating the effect of forecast revisions in
an IMC controller is developed. A Simultaneous Perturbation
Stochastic Approximation (SPSA) optimization algorithm is
implemented to develop an optimal tuning strategy under these
conditions. For the IMC-based inventory controller presented
it is concluded that the most desirable performance may be
obtained by acting cautiously (e.g. implementing small changes
to factory starts) to initial forecasts and gradually becoming
more aggressive on starts until the actual demand change is
realized.

I. INTRODUCTION

A supply chain is composed of the (interconnected) com-
ponents necessary to transform raw materials into a salable
product. Maintaining an ef cient supply chain is necessary
for a company’s nancial survival. In many instances, such
as in the semiconductor manufacturing arena, supply chain
performance will suffer from both long production times
and demand forecast errors [4].

Control-oriented approaches have been recently proposed
to deal with the problems inherent in manufacturing sup-
ply chains [2][4][8]. In these approaches, the demand is
treated as an exogenous signal. This paper extends these
approaches by attempting to gain a broader understanding
of disturbance/demand modeling and the effects of forecast
error on an Internal Model Control (IMC) [6] based tactical
decision policy.

The presence of error in a demand forecast will adversely
affect decision-making in a supply chain. Inaccurate market
research, order changes, outdated demand models, and mis-
forecasting of product/business cycles may have a negative
effect on the pro tability of a supply chain dependent

1To whom all correspondence should be addressed. phone: (480) 965-
9476; fax: (480) 965-0037; e-mail: daniel.rivera@asu.edu

corporation. Eliminating error from a demand forecast may
be impossible; however, it may be possible to mitigate its
detrimental effects. Therefore, it is important to understand
the effects of error on a supply chain decision policy.

The relationship between demand forecast error and
deviation from an inventory setpoint is studied for a control-
oriented tactical decision policy in a single node of the man-
ufacturing process. An understanding of this relationship
represents one step towards a fundamental understanding
that will allow manufacturing planners to deal with inher-
ently erroneous forecasts in an educated manner.

This paper begins with a discussion of the modeling of
an inventory position using a uid analogy. In Section II, a
model-based inventory controller relying on Internal Model
Control is presented. The multi-degree-of-freedom formu-
lation allows the controller to be independently tuned for
setpoint changes, forecasted demand changes, and unfore-
casted demand changes. In Section III, the closed-loop
transfer functions describing forecast error are derived and
the effect of erroneous forecasts is studied in both the
time and frequency domains. A mathematical framework for
the implementation of forecast signal revisions within the
IMC decision policy framework is developed. Finally, a Si-
multaneous Perturbation Stochastic Approximation (SPSA)
optimization algorithm is employed to determine optimal
controller tuning parameters for a variety of systems.

II. REPRESENTATION OF THE SYSTEM AND
CONTROLLER

A. Inventory/Level Control

A single node of a manufacturing supply chain can be
modeled using a uid analogy. The factory is represented as
a pipe with a particular throughput time, 6. The inventory is
represented as a tank containing uid. Delivery to customer
from inventory is modeled as a pipe with a transportation
time of 64 (Fig. 1). Note that the delivery time (6y) is
considered to be zero for this and all other examples
presented. The dynamics relating uid level (net stock, y(t))
to inlet pipe ux (fab starts, w(t)) and outlet pipe ux ( d(t),
composed of the forecasted customer demand, dp(t — 6r),

202



Starts
(Manipulated)

F
o (forecast
(production time) @4 horizon)
1 1

/ \ | 1

| _@_ ! ! Forecast
-— I
1
Net Stock

-——— Demand
(Controlled) | Actual

v (t) ;d(t)—dF(— £t d ©

(delivery time)

Fig. 1. Fluid analogy and combined feedback/forward control scheme.

plus unforecasted customer demand, dy(t)) is represented
in (1). Note that f5 is the forecast horizon.
y(s) = p(s)u(s) - par(s)paz(s)dr(s) - paz(s)du (s)

u(s) - e 0ss (%)dp(s) - (%)dy(s)

(1
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y(s) = =

It is desirable to meet customer demand and maintain
the inventory level at a specied target. This can be ac-
complished by adjusting the factory starts. A combined
feedback/feedforward control scheme will use both the
inventory position and a forecast of future product demand
to determine quantity of factory starts. This is shown
schematically in Fig. 1.

B. Three-Degree-of-Freedom Internal Model Control

A multi-degree-of-freedom Internal Model Control
(IMC) [6] structure is considered as the decision policy
in this work. With this structure independently tuned con-
trollers can be utilized for setpoint tracking (i.e., meeting
an inventory target), measured disturbance rejection (i.e.,
meeting forecasted demand), and unmeasured disturbance
rejection (i.e., satisfying unforecasted demand).

The plant and disturbance models (p(s) and p4(s), re-
spectively) are represented by integrators with a time delay
(the production time 6 for the plant model and the forecast
horizon O for the disturbance model). Note that p(s)
and p4(s) represent estimates of the plant and disturbance
models, respectively. The components of the disturbance
model are pg;, the time delay, and pg4o, the integrator.

The aforementioned controllers correspond to g, for
setpoint tracking, qr for measured disturbance rejection,
and g4 for unmeasured disturbance rejection. Eqn. 2 is the
general form of the closed-loop transfer functions relating
net stock to setpoint changes 7(s), measured disturbances
dr(s), and unmeasured disturbances d (s).
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Fig. 2. 3 DoF IMC Structure with forecast error introduced.
y(s) = p(s)lar(s)r(s) + qr(s)dr(s) — qa(s)(p(s)u(s)

+as)u(s) — pals)d(s))] - 1)

2

The controllers shown in (3), (4), and (5) are designed for
Hy-optimality [5] and have been augmented with low-pass
IMC lters [6]. The feedforward controller gz (s), shown in
(5), is selected based on the relationship between production
time and forecast horizon. The controller implemented if
fr > 6 could accomplish perfect control given an exact
demand forecast and a value of O for the user-adjustable
parameter A\p. The controller implemented if 8 < 6 can
not accomplish perfect control since the effect of any con-
trol action would occur after a demand change had already
been realized. Note that for the measured disturbance IMC
controller, a Iter is not needed for physical realizability
when 07 > 0.
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Fig. 3. Response to setpoint change, anticipated demand, and unforecasted
demand for the 3 DoF IMC inventory control structure (A, = 9, Ap =
3, Mg = 3).

Fig. 3 shows the closed-loop response to a setpoint
change, forecasted demand change, and unforecasted de-
mand variability. A demand forecast is received at £ = 100.
The forecast shows that a positive demand change of 1000
units will occur at ¢ = 120. In this example the forecast
horizon (8 = 20) is greater than the production time
(60 = 10). The rst feedforward control action can be seen at
t = 110. The controller compensates for the lost inventory
and returns the inventory level to the steady-state target.

C. Time and Frequency Domain Response to Forecast Error

As noted previously, the focus of this paper is the effect of
forecast error on the controlled and manipulated variables.
An erroneous forecast will be modeled by adding a non-
zero signal to the demand forecast signal (see Fig. 2). For
the purposes of this example the demand signal will be
considered to be constant and the forecast error will be fed
directly to the feedforward controller.

Note that the transfer functions relating starts and in-
ventory position to the forecast error are composed of two
parts. The rst part of each equation is contribution from the
feedforward (forecast) controller. The second part of each
equation is the contribution from the feedback (inventory
excess/backlog) controller.

Eqns. 6 and 7 are the closed loop transfer functions
that relate inventory position, y(s), and starts, u(s), to the
forecast error, er(s). The feedforward controller, gr(s),
is chosen from (5) based on the relationship between the
forecast horizon, 0, and the production time, 6.

y(s)

er(s)

= qr(s)p(s) — qa(s)pa(s)p(s) (6)

= qr(s) — qa(s)Pa(s) (7
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Fig. 4. IMC controller policy response to forecast error of +1000 units

for Ay = 5,A; = 5. Note that the forecast signal is received 0 days
before the demand change is supposed to occur (8 = 10,0 = 20).

Given the closed-loop transfer functions that relate inven-
tory and starts to forecast error, the time-domain response
to a forecast error signal can be determined. Fig. 4 shows
the response to an erroneous forecast of +1000 units for
a forecast time (67) of twenty days and a production time
() of ten days. The forecast signal is received at ¢ = 1.
At ¢t = 11 the feedforward action is visible, the controller
is attempting to compensate for the anticipated demand
change at ¢ = 21. At ¢ = 21 no demand change is
realized and the feedback control action is implemented.
The controller then decreases starts to return the inventory
level to the speci ed target.

To more broadly understand the effect of tuning, the
frequency response of the system will be examined. Fig. 5
shows frequency response for values of the user-adjustable
parameters A\p = 5 and Ay = 5 (Case 1). The notched
shape of the amplitude ratio suggests that the effect of
forecast error at low and high frequencies will be attenuated,
while the effect of forecast error within the notch bandwidth
will be ampli ed. Note that this will affect both starts and
inventory level responses.

Fig. 5 also shows the frequency response of the system
given different values of the user-adjustable tuning param-
eters, (Case 2: A\ = 5 and Ay = 1). Decreasing the value
of \; makes the feedback controller more aggresive. As a
consequence, the feedback controller will have a greater ten-
dency to act on noise or high-frequency components of the
forecast error signal. The maximum amplitude ratio shifts
to the right (toward increased high-frequency ampli cation)
for both the inventory and starts. In addition, the amplitude
ratio for the manipulated variable shifts upward (resulting
in increased ampli cation at all frequencies).
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Fig. 5. Amplitude ratio describing the response to forecast error
(eiand ei) for different tunings. The feedforward controller is tuned
identically in both cases (Ar = 5). The feedback controller is tuned more
aggressively in Case 2 (A\g = 5 in Case 1 vs. Ay = 1 in Case 2).

III. FORECAST ERROR ANALYSIS UNDER REVISION

A. Closed-Form Transfer Functions For a System Under
Forecast Revision

In practice it is desirable to revise a forecast as more
accurate estimates of a demand change become available.
This will be implemented as an initial forecast followed
by a series of revisions. Fig. 6 is a block diagram describ-
ing the forecast revision process under a multi-degree of
freedom IMC feedback/feedforward structure. This section
is concerned with the development of closed-loop transfer
functions that relate the forecast error to changes in the
starts and inventory.

The following is a list of assumptions and de nitions
used during the development of a model for implement-
ing forecast revisions. An erroneous demand forecast is
received, d = dr + er, where dr is the actual realized
demand and e is the forecast error. The demand change
will occur at day §r. The time period from day 0 to day 6
is the overall forecast window. The rst forecast ( y; = 0)
will become available before the throughput time window is
entered. Forecast revisions will be received at day ; (within
the throughput time window). Each forecast signal will be
modeled as K;er where vazl K; = 1 given N forecast
signals (N — 1 revisions). For a speci ¢ forecast revision,
the expected demand change will occur at day ©f; + ;.
The time period © f ; is the signal speci c forecast window .
Each feedforward controller that acts within the throughput
time window will use § — ©p; in place of the parameter
6 in (5) to represent the difference between the throughput
time and the time at which a demand change is expected.

Given the assumptions listed above, the closed-loop starts
response (8) will be composed of the feedforward (forecast)
signals and the feedback (inventory excess/backlog) signal.
The closed-form inventory response, (9), is obtained by

Q.

S|

A

Fig. 6. Three DoF IMC Structure with N forecast signals. Each forecast
revision signal is handled via a separate IMC controller. Each controller
(qF,;) utilizes a separate adjustable parameter ();). This allows for a
different response to each forecast revision signal. The initial forecast is
received outside of the production window, revisions are received within
the production window. The feedback control acts only on forecast error,
ep =d—dp.

multiplying (8) by the plant model, p(s). By implementing
the controllers presented in (3) - (5), the transfer functions
that relate inventory and starts to a forecast error signal can
be developed.

u(s) o
e ( ) = [Kie—ws sz(s)] _Qd(s);ﬁd(s) 8)
FAS =1
(s) al
631‘(8) = Z [Kie—"/is qF,i(S)] — Qd(s)ﬁd(s) p(s) )

i=1
B. Monte Carlo Simulation Analysis of Forecast Revisions

Fig. 7 shows the response of the IMC inventory control
system to a series of forecast revisions leading to an actual
demand change. An initial forecast is received at ¢ = 0 for
a single demand change of ~ 41100 units at ¢ = 50, (the
actual value of the demand change at ¢ = 50 is +1000
units). The current forecast is shown by the dashed line in
the ADemand Forecast plot. The error limits for the current
forecast are shown by the dots in the ADemand Forecast
plot, for a given simulation the forecast at any time will fall
within the limits.

Since the rst forecast is available outside of the through-
put time window ((6F = 50) > (0 = 40)), the rst feedfor-
ward controller waits 8 — 6 days before implementing a
change in starts (visible at t = 10 in the AStarts plot). The
Tuning plot shows the value of the user-adjustable parameter
A for the controller that is currently acting on the forecast.

Forecast revisions are implemented at ¢ = 20, 30, and 40.
The feedforward action is immediately visible in the
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AStarts plot since controllers acting within the throughput
time window have no time delay. The demand change
of 41000 units is realized at ¢ = 50. The feedback
controller then reduces starts to compensate for the fact that
the previous forecast was an overestimate of the demand
change.

Changes in inventory can be seen ¢ days after a controller
move (see Alnventory plot). Note that value of each forecast
revision signal can assume any value between the funnel-
shaped limits shown in Fig. 7. While there is uncertainty
in the forecast for all ¢ < 50, the accuracy of the forecast
signals increase with time.

IV. SIMULATION-BASED OPTIMIZATION

A general understanding of the relationship between the
effect forecast error and control system tuning was pre-
sented in Section III. Given that a framework for implement-
ing forecast revisions has been developed, it is desirable
to understand how such a control system can be tuned
to mitigate the effects of forecast error/uncertainty. A Si-
multaneous Perturbation Stochastic Approximation (SPSA)
search provides a mechanism for this [7].

SPSA is an appealing method for the stochastic optimiza-
tion of the proposed control system; since every additional
forecast revision implemented in the proposed framework
adds another dimension to the search space in which an
optimal set of controller tunings will be found. SPSA
has shown exhibited superior performance when used to
optimize systems with a high number of parameters [7].
SPSA has also shown greater accuracy than comparable
stochastic approximation methods [3].

As noted previously, deviation from setpoint is minimized
by tuning the controllers more aggressively (lower values
of the adjustable parameter, \). However, changes in starts
become more aggressive as well. Eqn. 10 was used as an

objective function to measure the performance of the tactical
decision policy discussed in this study. Using this equation,
the SPSA [7] algorithm was used to conduct simulation
based optimization of the independent controller tunings.

100 100
J=TY (y—r’+0) (Auw)? (10)
t=50 t=1

The SPSA algorithm consists of the following steps.

1) Initialization: An initial guess of the optimal \ values
is made (). The coef cients of the gain sequences
(ag, c) are selected using guidelines provided by
Spall [7].

2) Perturbation Vector Generation: A random per-
turbation vector (Ag) is generated. Each element
of the vector is independently generated using a
Bernoulli £ 1 distribution with a probability of % for
each possible outcome.

3) Objective Function Evaluation: Two measurements of
the objective function are obtained: f (ék +cpAg) and
F(Or — crAy).

4) Approximate the Gradient: The simultaneous pertur-
bation approximation of the gradient, g(ék), is deter-
mined using (11). Note that the common numerator
in all components of §(f},) re ects the simultaneous
perturbation of all the components in Op.

o O+ ernAy) — f(Or — cpy)
a(0y) = 2, (11

5) Update the Estimate: The standard stochastic approx-
imation form (12) is used to update 6y to € 1.

Ori1 = O — arg(Ox) (12)

Fig. 8 shows the results of using the SPSA algorithm
to optimize controller tunings for the 2-dimensional search
space depicted in Fig. 4. Also depicted in Fig. 8 is the
optimization path for the Finite Difference Stochastic Ap-
proximation (FDSA) algorithm [1]. The FDSA algorithm
closely (but not exactly) follows the gradient descent path
towards the optimum.

For the case shown in Fig. 8, both the SPSA and FDSA
algorithms converge to the optimum value in approximately
25 iterations. SPSA requires two simulations (one gradi-
ent measurement) per iteration while FDSA requires four
simulations per iteration (two gradient measurements, one
for each parameter). This is consistent with the theory that
for a p-dimensional optimization problem, FDSA typically
requires p times as many measurements (simulations) as the
SPSA algorithm [7].

Fig. 9 shows the results of using the SPSA algorithm
to conduct a simultaneous search for the optimal band of
control system tuning parameters for the system depicted
in Fig. 7. Note that optimal performance, for the chosen
objective function, is obtained by implementing detuned
control initially and eventually becoming more aggressive
on the manipulated variable as the forecast signals increase
in accuracy.
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Fig. 8. SPSA and FDSA optimization algorithm paths for a 2-dimensional
search space. A single feedforward controller is used (tuning is shown
by Ar). The feedback controller is tuned by manipulating A4. Note that
increasing values of lambda denote increasing controller detuning.

The adjustable parameter for the initial feedforward
controller converges to Ar = 9. This controller will be
more detuned than the other controllers for a given forecast
signal. The three feedforward controllers that act within the
production window (gr1,qr2,and gry) become more ag-
gresive (A values become smaller) as the system progresses
towards the realization of the demand change. Finally, the
tuning parameter for the feedback controller converges to
Ag = 4. This value is smaller than the adjustable parameter
values for the other controllers and denotes more aggressive
controller behavior.

V. CONCLUSIONS AND FUTURE WORK

The effect of forecast error on a multi-degree-of-freedom
IMC single node inventory control system has been studied.
The magnitude and shape of the amplitude ratio for the
forecast error transfer function was determined to be a
function of the user-adjustable tuning parameter . It was
shown that the use of a combined feedback/feedforward
controller caused high and low frequency forecast error
signals to be attenuated, while forecast error signals of
intermediate frequency are ampli ed. It may be worthwhile
to characterize the frequency spectrum of a forecast signal
and reduce the error within this intermediate bandwidth.

The use of aggressively tuned controllers may yield the
least deviation from inventory setpoints for the controller
considered in this study. However, based on the nature
of the forecast error considered, it was found that the
use of detuned feedforward controllers in conjunction with
an aggressive feedback controller may provide the most
desirable overall response (in terms of trading off inventory
deviation vs. starts changes).

There are three signi cant conclusions that should be
given attention as a result of this work. If the decision
policy described in this work is subjected to raw demand
forecast changes, it will be most responsive to signals
containing error with power in the intermediate frequencies.
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Fig. 9. SPSA optimization algorithm path for a 5-dimensional search
space. A single feedforward controller is used (tuning is shown by Ar)
outside the throughput time. The three feedforward controllers acting
within the throughput time window are represented by Ap1, Ap2, and
Apy. The feedback controller is tuned by manipulating Ag. Note that
increasing values of lambda denote increasing controller detuning.

If decisions need to be made on how to best model fore-
casts, one should focus on reducing forecast error over the
intermediate bandwidth where sensitivity to error is greatest.
Finally, the tactical decision policy presented can be tuned
to attenuate the effects of forecast error.

Future work consists of an equivalent analysis for Model
Predictive Control based decision policies [8]. The SPSA
technique will be used to determine the optimum move
suppression for a series of forecast revisions. Eventually
this framework will be extended to larger and more diverse
network topologies and Multi-Input-Multi-Output problems.
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