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he need to engage and negate highly maneuverable threats imposes stringent per-
formance requirements on missile interceptors. The design challenges are signifi cant and 
require advances in interceptor airframe, sensor and propulsion systems, and guidance and 
control (G&C) algorithms. In essence, the G&C algorithms must orchestrate the vari-
ous interceptor components to maximize lethality across the threat space. To this end, 
traditional G&C designs use a decoupled architecture involving three discrete algorithms. 
Separate designs and weak functional interactions among the algorithms make interceptor 
performance optimization diffi cult. In this article, we introduce an alternate G&C archi-
tecture wherein the traditional elements are replaced by a single component that performs 
all three functions. This integrated G&C (IGC) paradigm facilitates a level of synergism 
between fl ight control and guidance functions that is diffi cult to emulate within a decou-
pled framework. Moreover, the IGC design process unifi es interceptor performance opti-
mization versus the decoupled approach. Using a six-degree-of-freedom simulation tool, 
we compare a prototype IGC algorithm to a benchmark G&C system using a decoupled 
structure. We show that the IGC concept signifi cantly improves the mean and standard 
deviation of the fi nal miss distance against stressing threats. 

INTRODUCTION 
Modern missile interceptors must engage and negate 

a variety of threats, including tactical ballistic missiles 
(TBMs) and high-performance cruise missiles. The 
need to engage such diverse and ever-evolving threats 
poses a signifi cant challenge to interceptor design. For 
example, TBMs can have high velocity and, upon reen-
try, can exhibit complex coning motion and slowdown 
as they move through the atmosphere. Likewise, high-
performance cruise missiles can fl y at supersonic speeds, 
have high lateral acceleration capability, and can exe-
cute maneuvers that are diffi cult to anticipate. Given 

the types of payloads these threats can deliver, the mis-
sile interceptor design must ensure a high probability of 
payload kill (Pk) across a diverse threat space, despite 
the engagement stressors. What is more, the interceptor 
design must suffi ciently outpace the projected capabili-
ties and characteristics of both evolving and new threat 
missiles. Hence, next-generation interceptors will inevi-
tably be required to fl y faster, longer, and with more effi -
ciency; see farther and with better resolution; and effec-
tively outmaneuver the threat such that the required 
lethality is achieved.
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Qualitatively, the aggregate capability of the inter-
ceptor subsystems will defi ne a maximum performance 
potential. For a given interceptor confi guration, the 
central role of the guidance and control (G&C) algo-
rithms is to functionally integrate the subsystems to 
ensure that all requirements are met and that lethal-
ity is consistently maximized. To do this, several critical 
G&C functions must be considered. First, the missile 
must maintain stable fl ight and converge on the target 
such that the fi nal distance between the interceptor 
and threat (fi nal miss distance) is minimized. Pointing 
to allow seeker (onboard target sensor) acquisition and 
tracking is also a critical function. Another important 
task is to manage the interceptor energy to maximize 
range or time-of-fl ight capability. Often, the direction 
of approach must be controlled as well to maximize 
Pk. Clearly, the G&C algorithms must perform a vari-
ety of complex functions. In this light, neglecting the 
role that G&C plays in maximizing interceptor capa-
bility will lead to suboptimal performance and, possi-
bly, higher-cost hardware to achieve a required level of 
performance.

Typically, guided missile fl ight is partitioned into three 
phases: boost, midcourse, and terminal. The complexity 
and criticality of each phase depends on the mission for 
which the interceptor was designed. Furthermore, not 
all guided missiles use all three phases.1 However, all 
precision guided missiles have a terminal phase, which 
is the last and generally most critical phase. 

Depending on the interceptor and mission, the ter-
minal phase can begin anywhere from tens of seconds 
down to a few seconds before intercept. The purpose of 
the terminal phase is to remove the residual errors accu-
mulated during the prior phases and ultimately to reduce 
the fi nal distance between the interceptor and threat 
below some specifi ed level. For systems that use a fuze 
and fragmentation warhead, this fi nal miss distance must 
be less than the warhead lethal radius. In this case, the 
warhead lethal radius accommodates some lack of pre-
cision. On the other hand, a direct-hit missile can only 
tolerate very small “misses” relative to a selected aimpoint 

Traditional Guidance and Control Architecture
The G&C system must functionally integrate the 

interceptor subsystems to ensure that all requirements 
are met and that lethality is consistently maximized 
across the range of threats of interest. Traditional G&C 
paradigms address this using a decoupled architecture 
comprising a guidance fi lter, guidance law, and autopi-
lot. This decoupled structure is notionally illustrated in 
Fig. 1. 

As indicated in the fi gure, the traditional architec-
ture separates guidance and fl ight control functions. 
The guidance fi lter takes noisy target measurement data 
and estimates the relevant target states, the selection of 
which is design dependent.2 For example, a Cartesian 
guidance fi lter can provide estimates of target position, 
velocity, and acceleration with respect to a Cartesian 
reference frame. Equivalently, relative (threat-inter-
ceptor) position, relative velocity, and target accelera-
tion can be estimated. In general, a Kalman fi lter or 
an extended Kalman fi lter is used.3 The guidance law 
takes the instantaneous target state estimates as input 
and determines what the interceptor direction of travel 
should be to intercept the threat. One of the oldest and 
most frequently used guidance laws is proportional navi-
gation,1,4,5 which generates guidance commands pro-
portional to the line-of-sight rate between the guided 
missile and target. The autopilot is responsible for stabi-
lization and command following.1,6,7 It receives the guid-
ance commands and issues the relevant aerodynamic 
(e.g., fi n), thrust-vector, or divert control commands 
necessary to achieve the commanded acceleration. The 
inertial navigation system determines the instantaneous 
missile position and the direction in which it is currently 
heading. We focus here on the guidance fi lter, guidance 
law, and autopilot functions.

Certain attributes of the decoupled approach are 
worth noting. First, it is typical to design each compo-
nent separately and, as suggested by Fig. 1, a variety of 
synthesis techniques may be adopted for each component 
design (only the dominant techniques are indicated). In 
some sense, this implies an unstructured approach to 
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Figure 1. Traditional guidance and control designs use a decoupled architecture contain-
ing guidance fi lter, guidance law, and autopilot components.

before compromising lethality. In 
either case, it is during this terminal 
phase of fl ight that the interceptor 
must have a high degree of accu-
racy and a quick reaction capability. 
Moreover, near the very end of the 
terminal phase (often referred to as 
the endgame), the interceptor may 
be required to maneuver to maxi-
mum capability in order to converge 
on and hit a fast-moving, evasive 
target. In this article, we focus on 
the terminal phase of fl ight with an 
emphasis on consistently minimiz-
ing the fi nal miss distance.
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interceptor performance optimization. Differing synthe-
sis techniques for each component add to the unstruc-
tured nature of the decoupled design approach. Second, 
it is fair to say that little a priori consideration is made 
of desirable G&C component functional interaction 
(synergism) during the design process. Instead, simplify-
ing assumptions are made to achieve an implementable 
solution. As a result, the system as a whole is iteratively 
tuned, adjusted, and/or modifi ed until satisfactory per-
formance is achieved. This usually leads to an overly 
conservative design. Hence, one can surmise that over 
the last 20 to 30 years, interceptor performance improve-
ment has been realized largely by improving the inter-
ceptor subsystems (e.g., changing the missile airframe, 
improving the terminal sensor, adding side thrusters, 
etc.). Subsequently, existing (or incrementally evolved) 
G&C architectures and algorithms are used to integrate 
and control the advanced interceptor hardware. Instead, 
we suggest that innovative G&C architectures, coupled 
with modern synthesis techniques, can facilitate an opti-
mal integration of the missile subsystems, thereby lead-
ing to a consistently high Pk across the threat space. 

Integrated Guidance and Control Architecture
Exploiting the synergistic coupling that exists 

between the guidance (i.e., the information and predic-
tion aspect of the problem) and fl ight control functions 
helps to achieve optimal interceptor performance. In 
contrast to the decoupled approach, a tightly integrated 
G&C (IGC) paradigm facilitates G&C synergism in 
addition to offering a structured approach to perfor-
mance optimization. Figure 2 illustrates a notional IGC 
architecture. Note that G&C component separation has 
less meaning in an IGC design, that is, information and 
control are inseparable.

Synergistic Coupling and IGC
Many interceptor subsystems have interactions that 

can be exploited to optimize performance. For instance, 
at the G&C component level, an inverse relationship 
exists between information and prediction quality (i.e., 

guidance system accuracy) versus the necessary band-
width of the fl ight control system to render a kill. An 
IGC system can explicitly accommodate this relation-
ship. In part, this is due to the explicit knowledge of 
the airframe-plus-autopilot response that is available to 
the “guidance portion” of a fully integrated system. This 
is an important factor when, for example, one consid-
ers the generation of “optimal” guidance commands for 
tail-controlled (i.e., non-minimum phase) airframes.8 
In contrast, traditional guidance policies rely on simpli-
fying assumptions regarding the acceleration response 
characteristics (e.g., fi rst-order lag response) of missile 
interceptors.4

Figure 3 illustrates a typical (normalized) tail-con-
trolled missile acceleration response to a unit-step accel-
eration input. The non-minimum phase characteristic 
is circled in the fi gure. Also shown is the acceleration 
response assumption typically made in a traditional 
guidance policy. Note that as the homing time falls 
within the missile time constant (the time it takes the 
response to achieve 63% of the command), the conven-
tional guidance policy will issue acceleration commands 
in a direction opposite to what is needed. In contrast, an 
IGC approach predicts the missile response more accu-
rately, thus providing signifi cantly improved endgame 
performance: an IGC system generates guidance com-
mands that account for the non-minimum phase accel-
eration response characteristic typical of tail-controlled 
missiles. This is crucial for endo-atmospheric intercep-
tors requiring a high Pk.

Structured (Unifi ed) Approach to Performance 
Optimization

Referring again to Fig. 2, a dynamic game, or mini-
max, formulation is used to synthesize the IGC system. 
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Figure 2. With an integrated guidance and control system, there 
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Dynamic game theory is a superset of standard optimal 
control theory.9–11 Formulating the design problem in 
this way adds an additional level of integration between 
the information and control functions that is not real-
ized in conventional systems. The well-known result is 
that the control solution is a function of information 
uncertainty.9,11 The implication is twofold: (1) the esti-
mation and control functions are optimized together, 
and (2) the synergy between information quality and 
control action is better exploited, unlike in the decou-
pled designs. Thus, the optimization criterion can explic-
itly focus on larger objectives such as maximizing Pk. In 
fact, in an IGC system, one can explicitly specify and 
account for critical engagement parameters like fi nal 
miss distance and endgame approach angle to maximize 
interceptor lethality. On the contrary, conventional 
guidance systems are adjusted in an ad hoc way to indi-
rectly improve lethality.

Scope
The idea of integrating the G&C functions in a 

homing missile is not new. A number of papers have 
addressed the IGC concept over the past 20 years, with 
differing assumptions and varying levels of fi delity.11–17 
Our goal is to address the IGC problem to suffi cient 
detail such that it can be applied to a tactical system 
design.

To synthesize a feedback control law, a mathematical 
model of the process to be controlled (the plant) is fi rst 
defi ned. Our model is nonlinear and contains a combi-
nation of homing-loop kinematic (guidance) and missile 
body-motion states. We formulate the IGC problem as 
a fi nite-time-horizon dynamic game using partial-state 
information (measurement feedback).9 The prototype 
IGC minimax design objective is to fi nd a controller that 
minimizes the fi nal miss distance and interceptor con-
trol energy under worst-case process and measurement 
disturbances. (Target maneuver and target sensor errors 
are examples of process and measurement disturbances, 
respectively.) 

Because of the nonlinear nature of the problem, we 
use an approximation technique known as the state-
dependent Riccati differential (difference) equation 
(SDRDE) method to obtain a solution.18,19 This is a 
generalization of the state-dependent (algebraic) Ric-
cati equation (SDRE) method fi rst described in Ref. 20 
and later in Refs. 11–13, 16, and 21. However, because 
published theoretical results or empirical data to sup-
port the SDRDE approach are scarce, many unanswered 
questions as to feasibility and applicability remain. We 
have found that, from a strictly performance-driven per-
spective, the SDRDE methodology is a viable solution 
technique for this class of problems, but this approach 
is computationally intensive. Moreover, the SDRDE 
technique requires a state-factorable representation of 
the plant dynamics. We address this by using a missile 

aerodynamic database during operation. (This database 
is constructed through wind tunnel experiments and 
is no different from that used for conventional G&C 
designs; i.e., the need to develop this database is not 
driven by the IGC design.) During operation, the data-
base is interrogated at each sample-instant to estimate 
the missile forces and moments, and an appropriate state 
factorization is performed. This technique is general in 
nature and has performed well in simulation with two 
different high-fi delity nonlinear aerodynamics models.

We begin the subsequent discussion by focusing on 
the modeling and control-theoretic aspects of designing 
an IGC system. First we set up the problem, state the rel-
evant assumptions, and summarize the theoretical solu-
tion framework we employ. Next, we summarize the mod-
eling aspects of an IGC problem. Together, these discus-
sions illustrate the structure of the IGC solution and are 
included for completeness. A cursory reading will give 
the reader enough background to move on through the 
article. As within any control problem, there are “tuning 
knobs” within the IGC solution structure that must be 
adjusted to provide optimum performance. Thus, we 
continue this article by discussing simulation-based 
performance optimization (that is, using the computer 
to iteratively seek the best tuning) and present simula-
tion results showing IGC system performance versus a 
benchmark G&C system.  

THE IGC SOLUTION FRAMEWORK 
The IGC plant model can be expressed by the follow-

ing nonlinear input-affi ne continuous-time equations:

 

&x f x b x u D x w x x

y

( ) ( , ) ( , ) ( ) ( , ) ( ), ( )t = + + =t t t t t 0 0

(( ) ( , ) ( , ) ( )
( ) ( , ) ( , ) (
t t t t
t t t t

= +
= +

c x E x w

z h x g x u )) .

 (1)

The fi rst part of Eq. 1 describes a nonlinear plant with 
state vector x(t) � �n, driven by control input vector 
u(t) � �m and subject to a set of exogenous input vari-
ables represented by vector w(t) � �r, which includes 
disturbances to be rejected and possibly references to be 
tracked. The second part of the equation defi nes a set 
of measured variables represented by vector y(t) � �p, 
which are functions of the state vector x(t) and exogenous 
input vector w(t). The third part of the equation defi nes 
a performance output vector z(t) � �s. The designer 
specifi es the performance output vector to be those com-
ponents of the state and control vectors deemed crucial 
to the design problem. Above, f(x, t), b(x, t), c(x, t), 
h(x, t), and g(x, t) are nonlinear vector functions and 
D(x, t) and E(x, t) are matrices of appropriate dimen-
sions. It is assumed that all the functions are smooth 
and that f(x = 0, t) =0, c(x = 0, t) = 0, and fi nally that 
b(x, t) ≠ 0�x holds for every t.
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Extended Linearization
As is characteristic in aerospace applications, the IGC plant model is nonlinear. Typically, this issue is addressed 

within a linear design framework using a gain scheduling approach.22 One fi rst develops a set of linearized plant 
models at a large number of fl ight conditions and designs a control law for each linearized model using an appropriate 
synthesis technique. The control law parameters (gains) are scheduled during fl ight as functions of dynamic pressure 
and possibly altitude, Mach, time of fl ight, etc. We have adopted an alternate approach to controller design based on 
the extended linearization concept.11,13,20,21 Extended linearization is the process of factoring a nonlinear system such 
that it has a “linear-looking” structure with plant matrices that are state-dependent. Then, any number of synthesis 
techniques may be applied. For example, consider how the following nonlinear plant is parameterized to derive a 
linear-looking but state-dependent structure:
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This example illustrates one of an infi nite number of possible parameterizations that can be applied to bring the 
nonlinear plant to state-dependent form.

We can bring Eq. 1 to a state-dependent form. Applying a linear control synthesis technique to such a system 
suggests that the control solution is recomputed periodically in the fl ight computer. Therefore, we will implement a 
discrete-time control solution. At each sample-instant, the continuous-time (state-dependent) system is discretized23 
as indicated below.
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Here, A(x, t), B(x, t), C(x, t), D(x, t), E(x, t), H(x, t), and G(x, t) are state-dependent matrices of compatible dimen-
sions, and k represents discrete time. Above, the relationship of the discrete-time elements to continuous-time coun-
terparts is straightforward. Note that state dependence in the discrete-time system is implied but not explicitly shown. 
We will discuss state factorization for our problem in more detail below.

Linear-Quadratic Dynamic Game Formulation
For the moment, we ignore the fact that the plant matrices are state-dependent. The IGC problem is posed as a 

dynamic game with partial state information (PSI); that is, we consider a measurement feedback structure of the form 
uk = U({yl}

k
l  = 0),  where k represents the current discrete time. In a dynamic game, the system disturbances, rather than 

being modeled as white noise, are modeled as an opposing player whose strategy is to maximize the control actions neces-
sary to achieve intercept. The control uk must counter these worst-case disturbances. The control objective is to keep a 
function of the performance output zk and terminal state xN (state vector at the fi nal time) small, despite unpredictable 
disturbances wk and initial estimation errors x x0 0− ˆ .  This is accomplished by solving the following discrete-time, soft-
constrained dynamic game, subject to Eq. 3 (Ref. 9):

 min max ( , ) ˆ
u w Q Q
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2 2
0 0

2 2
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In Eq. 4, known as the performance index of the game, |.|M represents a Euclidian norm weighted by matrix 
M x, ˆ

0 is the initial state-vector estimate, and N is the time over which the optimization is carried out. The desired 
disturbance attenuation level � is a bound on the worst-case amplifi cation of the disturbances to the performance 
index by the controlled system. This must satisfy � � �*, where �* denotes the limiting achievable disturbance 
attenuation performance level. 

Recall that the role of the disturbance wk is to maximize the performance index. As � → ∞, the game con-
verges to the standard, disturbance-free, optimal control problem with quadratic cost. The initial estimation 
error and terminal penalty weighting matrices Q0 and Qf are assumed to be positive defi nite, Q0, Qf  > 0. Also, 
the following point-wise conditions are assumed to hold: G G Rk

T
k k� > 0,  H H Qk

T
k k� ≥ 0,  E E Nk k

T
k� > 0,   

.
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 Here, (·)T represents the matrix transpose and, as in Ref. 9, we defi ne the 
relations H G Pk

T
k � k  and D E Lk k

T
k� .

Control Solution for a State-Dependent Linear-Quadratic Dynamic Game
It is well known that solving the linear-quadratic PSI dynamic game over a fi nite time horizon involves the solu-

tion of two generalized Riccati differential (difference) equations (GRDEs).9,11,21 Here, we summarize the results and 
illustrate the online control computations that are performed at each sample-instant. We fi rst defi ne the discrete 
time-to-go variable s as s N k=� − ,  where k and N, as previously defi ned, are the discrete time and terminal time 
variables, respectively. For notational convenience, we also defi ne the following matrices.
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For a given disturbance attenuation parameter � satisfying �  � �*, the following steps are performed at each 
sample-instant:

1. Parameterize the nonlinear system described in Eq. 1 and subsequently discretize the state-dependent repre-
sentation to obtain the discrete-time representation described by Eq. 3.

2. Propagate the following estimator GRDE (EGRDE) from discrete-time k to k + 1 :

 � �
k k k k

T
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−
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−= + =
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% %A A Q� �1
0 0

1, .  (6) 

3. Solve the following control GRDE (CGRDE) to obtain Ms+1:
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4. Compute the state estimates x̂k  and control solution ûk  at time k according to the following set of 
equations:
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5. Repeat steps 1 through 4 at the estimator and control update rates.

In Eq. 8, x̂k  represents the state-vector estimate at time k, taking into account measurements at time k. Note that 
the control ûk  explicitly accounts for estimation uncertainties as represented by the presence of the EGRDE term �k. 
Therefore, we say that the control is risk-averse. Alternatively, if we had full state information (FSI), �k is zero and the 
control solution ûk  collapses to the more familiar FSI form.

rank [ ] ,A HT
k k

TT n= and rank [ ] .A Dk k
T = n
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Some additional comments are in order. Unlike the typical RDE, a GRDE is one in which the sign of the 
quadratic term is a function of the disturbance attenuation variable �. Hence, the existence of a solution to a GRDE is 
�-dependent and the selection of � is part of the design process. Generally, we desire the smallest possible � that will 
still ensure solutions to the EGRDE and CGRDE. Assuming that � has been chosen to satisfy � � �*, the following 
conditions must also be satisfi ed:

 	( [ ] ) and (� � � �k k k k
T

k k k k sQ I C N C M+ <− − − −
+

1 1 1 2� 	 %
11

2) ,< −�  (9) 

where 	(
) denotes the spectral radius (maximum eigenvalue) of the argument.
The EGRDE, which is akin to the error covariance matrix in a discrete-time Kalman fi lter, is straightforward to 

solve (propagate) forward in terms of discrete-time k. In contrast to the EGRDE, the solution of the state-dependent 
CGRDE poses a challenge. The key issue is that, at the control update rate, the CGRDE must be solved backward 
from the terminal time N  to the current time k to obtain a control solution at time k. The terminal penalty matrix 
Qf serves as the boundary condition. If we assume the state trajectories over the solution interval [k, N ] are such that 
the (state-dependent) plant matrices remain approximately constant, then effi cient solution methods can be applied. 
We simply mention here that we use the negative exponential matrix technique24,25 to solve the CGRDE at the 
control solution rate.

Regarding implementation, two other comments are in order: (1) the estimator and control solution rates can, 
in general, differ, and (2) measurements (e.g., from dissimilar sensors) can enter the controller at differing rates. 
It is straightforward to extend the approach discussed above to handle these issues, but we do not address them in 
this article.

Approximation Error of the CGRDE Solution
The algorithm described above assumes constant plant matrices when solving the CGRDE (at each sample-

instant); hence, some approximation error will result in the solution of the state-dependent CGRDE and, to a lesser 
extent, the EGRDE. Short of implementing the iterative procedure that would be necessary to precisely solve the 
actual state-dependent control solution, one can make a qualitative estimate of the approximation error when con-
stant matrices are assumed. This has been done for the system we discuss in the next section by examining the sensi-
tivity of the performance index, Eq. 4, with respect to deviations in the state trajectory. This sensitivity is central to 
the design of an optimal controller. Assuming constant plant matrices, we found that the initial rate of change of this 
value, with respect to time, differed minimally from that which would result when assuming varying plant matrices. 
These qualitative results add credence to the SDRDE technique as applied to this class of problems. The performance 
results we show later in the article further support this conclusion.

THE INTEGRATED PLANT MODEL 
The PSI dynamic game formulation yields a coupling between estimation uncertainty and control action: the 

result is that both EGRDE and CGRDE solutions are required to compute the feedback control solution. This is in 
contrast to traditional feedback control algorithms wherein estimation uncertainty does not directly infl uence con-
trol action. In this section, we summarize the more explicit aspect of a fully integrated missile G&C system, namely, 
the appropriate defi nition of an integrated plant model. Therefore, we must defi ne a suitable plant model, of the form 
shown in Eq. 1, that includes homing loop kinematics and target acceleration states (i.e., the guidance elements), 
missile dynamics, and other (possible) elements necessary to effectively perform the missile G&C task. Doing so 
provides an explicit coupling between the guidance and fl ight control functions. A derivation of the plant model 
and a discussion of why certain design choices were made are beyond the scope of this article but, for completeness, 
we outline the structure of the integrated plant model. The interested reader is referred to Refs. 4, 8, 18, and 19 for 
additional modeling details.

States, Measurements, Controls, and Performance Options
The reader is reminded of the plant structure illustrated in Eq. 1. Furthermore, recall that, once the model has 

been defi ned, it must be brought to the state-dependent form illustrated by Eq. 3. According to this structure, an 
overview of the state x(t), measurement y(t), control u(t), and performance output z(t) vectors is given in Eq. 10.
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  (10)

States

Equation 10 highlights the fact that the state vector x(t) contains both guidance and missile dynamic states. For 
simplicity, a planar depiction of the homing geometry is shown in Fig. 4, where the target–missile relative positions 
in the x/y axis, { , },r rx

I
y
I  are shown with respect to the inertial reference frame I. For our purposes, the guidance states 

are defi ned as target–missile relative positions, { , };r ry
G

z
G  relative velocities, { , };& &r ry

G
z
G  and target acceleration com-

ponents, { , },a aT
G

T
G

y z
 normal to an inertial (guidance) reference axis system. The superscript G indicates quantities 

with regard to the inertial guidance frame. A target acceleration model is defi ned in the guidance frame y and z axis 
as the fi rst-order lag process shown below. In this model, �T represents the target maneuver time constant and �T(t) 
is a disturbance input. 

 &a t a t t i y zT
G

T
T
G

T
Ti i

( ) ( ) ( ), , .= − + =1 1
� �

�  (11)

Figure 5 illustrates the missile body-axis system (the origin is the missile center of gravity) and many of the param-
eters necessary to describe missile body motion in this axis system. Assuming missile airframe x–z axis symmetry, 
and that the mass distribution is such that Iyy = Izz, then the force and moment equations can be expressed as shown 
in  Eq. 12 (Ref. 8):
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The boxed insert lists the defi ning terms, where we note that tx, cx, and sx denote tan(x), cos(x), and sin(x), 
respectively. According to Eq. 10, 12 missile dynamic states are defi ned: AoA (
), AoS (�), body rates (p, q, r), roll 

x( )

( )

( )

( )

( )

( )
( )
( )

t

r t

r t

r t

r t

t
t

p t

y
G

y
G

z
G

z
G

=

&

&




�

qq t
r t

t

t

t

t

t

t

r

r

p

p

y

( )
( )

( )

( )

( )

( )

( )

( )

err�

�

�

�

�

�

&

&

&&�y

T
G

T
G

t

a

a

y

z

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪
⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

relative kinematics

body mootion

actuator

target

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎫

⎬
⎪

⎭
⎪

y( )

( )

( )

( )

( )

( )
( )
( )t

r t

r t

a t

a t

p t
q t
r t

y
G

z
G

m

m

y

z

=
&�eerr( )

( )

( )

( )

( )

( )

t

t

t

t

F t

g t

r

p

y

x

�

�

�

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

u( )

( )

( )

( )

t

t

t

t

r

p

y

c

c

c

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

�

�

�

z( )

( )

( )

( )

( )

( )
( )
( )

t

r t

r t

r t

r t

t
t

p t

y
G

y
G

z
G

z
G

=

&

&




�

qq t
r t

t

t

t

t

t

r

p

y

r

p

c

c

( )
( )

( )

( )

( )

( )

( )

err�

�

�

�

�

�

&

&

&

(( )

( )

t

tyc
�

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

F F W T

F F W

F F W

x x x x

z z z

y y y

=

=

=

�

�

�

+ +

+

+



JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 25, NUMBER 2 (2004) 129

INTEGRATED GUIDANCE AND CONTROL FOR HOMING MISSILES

VEHICLE FORCE, MOMENT, AND MOTION/ORIENTATION TERMS

Fi  Total force component in i = {x, y, z} body axis
Fi Aerodynamic force component in i = {x, y, z} body axis
Wi Weight component in i = {x, y, z} body axis
Mi Aerodynamic moment component about i = {x, y, z} body axis
Tx Thrust in x body axis
{u, v, w}, Velocity components in i = {x, y, z} body axis
{p, q, r} Angular rates about {x, y, z} body axis
m, Iii Vehicle mass and moment of inertia in {x, y, z} body axis

 = tan�1(w/u) Angle of attack (AoA)
� = tan�1(v/u) Angle of sideslip (AoS)


T v w u= +−tan ( / )1 2 2 2  Total AoA
�T = tan�1(v/w) Total roll angle
VM = [u2 + v2 + w2]1/2 Velocity magnitude
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Figure 4. Planar depiction of the relative 
homing geometry. In many guidance sys-
tems, the target–missile relative positions, 
velocities, and accelerations are used to 
make guidance decisions. Here, the target–
missile relative positions with respect to an 
inertial frame are shown for each axis. Dif-
ferentiation of these terms produces relative 
velocity in each axis; double-differentiation 
yields relative acceleration. 

Figure 5. The origin of the body-fi xed coor-
dinate system is at the missile center of 
gravity. The forces and moments acting on 
the missile, as well as other relevant aerody-
namic quantities, are shown with respect to 
this coordinate system.
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error ( ),err�  pitch-yaw-roll tail-fi n angular positions (�i, i = p, y, r), and tail-fi n angular rates ( , , , ).&�i i p y r=  (With 
regard to tail-fi n notation, (p, y, r) refers to pitch-yaw-roll fi n defl ection and is not to be confused with missile body 
rate defi nitions.) Given these defi nitions, the state dynamics can be written as
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In Eq. 15, &�cmd  is the commanded Euler roll angle rate and �� is an adjustable parameter. In Eq. 16, �ic represents 
the commanded pitch-yaw-roll angular tail-fi n position, while �n and � represent the natural frequency and damping 
ratio of the tail-fi n servo-actuator, respectively. 

Measurements
With reference to the measurement vector y(t) in Eq. 10, the guidance measurements are the fi rst two entries. 

Missile lateral accelerometer and rate gyro measurements follow. The derivative of roll error &�err  (see Eq. 15) is also 
defi ned as a measurement. This approach facilitates injection of a desired missile roll orientation into the system. 
Tail-fi n angle measurements are also assumed to be available. Finally, note that the measurement vector entries Fx0

(t) 
and g(t) are defi ned as pseudo-measurements to account for axial thrust-minus-drag and gravity, respectively. Refer-
ring to Eq. 3, these pseudo-measurements infl uence the plant state dynamics through the process and measurement 
disturbance matrices D(t)(Dk) and E(t)(Ek), respectively.

Controls and Performance Outputs
With reference to Eqs. 10 and 16, the IGC control vector u(t) comprises the three tail-fi n angular position com-

mands. This is typical for tail-controlled missiles.
Given the state and control defi nitions, the performance output vector z(t) contains the elements necessary to 

specify IGC performance, i.e., relative kinematic states in addition to missile dynamic states and control signals. 
Notice that we have included the relative velocity states in the performance output. Although these components are 
not critical to our problem, they allow additional fl exibility to defi ne IGC guidance performance.

Coupling of the Guidance States with Missile State Dynamics
Referring again to the planar depiction of the homing geometry of Fig. 4, consider the expression for target–missile 

relative acceleration (normal to the reference) given as

 (13)
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We integrate this equation twice to obtain relative position. Minimization of the target–missile relative position (in 
the guidance frame) is a principal goal of the guidance system. The guidance system attempts to do this by command-
ing interceptor maneuvers.

As we indicated above, the traditional (decoupled) architecture separates guidance and fl ight control functions 
(Fig. 1). Because this connection has been “broken,” the decoupled guidance system designer must make assumptions 
regarding how the missile will respond to acceleration commands. Figure 6 illustrates a typical guidance model used 
for (decoupled) guidance law design. The model assumes that the interceptor response from commanded to achieved 
acceleration can be represented as a fi rst-order lag. Recall that Fig. 3 compared this lag-response model to a “true” tail-
controlled missile response and showed that the accuracy of this assumption degrades as the homing time approaches 
zero. Consequently, during the fi nal critical (tens to hundreds of) milliseconds of the engagement, the interceptor 
will, momentarily, respond in the wrong direction, and guidance accuracy can suffer as a result.

In contrast to the decoupled approach, the IGC relative acceleration model is much more accurate. To show this 
quantitatively would require combining the results of Eq. 8 with the dynamic equations of motion implied by the 
structure shown in Eq. 10 and subsequently replacing the missile response model in Fig. 6 with something far more 
complex. The result is that an IGC system generates guidance decisions that are substantially more precise as the 
homing time approaches zero (Fig. 3). Thus, it is more likely to command acceleration appropriately, thereby minimiz-
ing the fi nal miss distance. The performance results we present later bear this out.

State Factorization
To accommodate the SDRDE solution methodology, a viable factorization of the system states is necessary. Toward 

this end, one can express the missile forces and moments—Fi, Mi, i = {x, y, z}—as functions of the states 
, �, and 
�i, i = {p, y, r}, which results in the following expressions. 
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As an example, the roll rate expression in Eq. 14 is parameterized below:

 &p
m m m m m
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x x x p x y x r

xx
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. (19)
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Figure 6. The homing-loop kinematics model, typically used for decoupled guidance system 
design, is described by this fi gure. The model assumes that the interceptor response from 
commanded to achieved acceleration can be represented as a fi rst-order lag.
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The expressions shown in Eq. 18 are used in the plant model wherever force and/or moment entries appear (e.g., Eqs. 
13 and 14).

IGC Performance Specifi cation 
The objective is to obtain a design that minimizes a given performance index under the worst possible distur-

bances or parameter variations that maximize the same performance index. Below we repeat the soft-constrained 
dynamic game problem given earlier for the sake of discussion. 
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Regarding this specifi cation, we adjust entries of the Dk, Ek, Gk, Hk, Q0, and Qf matrices to elicit a desired overall 
performance. Process and measurement disturbance matrices, Dk and Ek, respectively, are initially set according to 
expected (or assumed) levels of (process and measurement) disturbances entering the system. The entries can be 
adjusted as needed to fi ne-tune overall controller performance.

For our problem, the terminal penalty weighting matrix Qf is adjusted to adequately penalize the fi nal miss dis-
tance. Hence, the only non-zero elements are those diagonal entries related to the relative position states. Clearly, 
relative position at the closest point of approach (CPA) is the fi nal miss distance. Note that we can generally specify 
Qf  to satisfy a much broader goal than simply minimizing fi nal miss distance. For example, we can specify a desire to 
keep missile body (rotation) rates “small” at intercept in addition to minimizing fi nal miss. This additional specifi ca-
tion could contribute to improving the Pk for interceptors that rely on a fuzing system and a directional fragmentation 
warhead. In any event, some “trade-off” in performance must be expected when multiple endgame conditions are 
specifi ed.

Matrix Q0 is analogous to the initial covariance matrix in a Kalman fi lter setting3 and should be set to represent 
the assumed initial condition/estimation uncertainties. 

For the performance index, the contributors under the summation (in Eq. 20) are the performance output matri-
ces Hk and Gk. Specifi cation of these entries will affect interceptor behavior throughout the engagement. Non-zero 
entries of the control performance matrix Gk are adjusted to penalize control effort (i.e., commanded tail-fi n angular 
positions) under the summation. Non-zero entries of the state performance matrix Hk are specifi ed to penalize the 
contribution of individual states under the summation. For example, the roll error state �err is penalized throughout 
the fl ight to achieve/maintain a desired roll confi guration.

In a tactical design, the G&C system must operate over a wide range of fl ight conditions, threat behaviors, and 
engagement geometries. In general, this implies that many of the G&C design parameters evolve nonlinearly as func-
tions of certain system states and/or other exogenous variables like dynamic pressure and altitude. However, since 
a quasi-linear design problem is more desirable, the performance envelope must be partitioned into subregions, and 
many of the adjustable parameters for each subregion designed (tuned). The individual designs are then scheduled as 
the engagement evolves. This procedure is discussed further under “Simulation-Based Performance Optimization.”

Limiting the Commanded Acceleration
The maximum allowable interceptor lateral acceleration must be limited to avoid structural damage or for stability 

reasons. In a decoupled system, the commanded missile acceleration coming from the guidance law is limited prior 
to autopilot input. Thus, if the autopilot has been properly designed, when acceleration limiting takes place the mis-
sile will exhibit little overshoot beyond allowable levels. In a fully integrated system, however, there is no guidance 
and fl ight control component separation. Thus, an alternative acceleration limiting function was developed.18 As 
illustrated in Fig. 7, IGC fi n commands �cmd are fi rst mapped into equivalent acceleration commands acmd. This is 
done using relevant sensor measurements and IGC state estimates and by interrogating the aerodynamic database to 
estimate the appropriate coeffi cients. The mapped acceleration commands are then limited (if necessary), yielding 
%acmd.  The limited acceleration commands are subsequently mapped back to equivalent IGC fi n commands %�cmd  and 

passed to the steering control section. 
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SIMULATION-BASED PERFORMANCE 
OPTIMIZATION 

Despite the diversity and complexity of modern G&C 
synthesis techniques and algorithms, some common fea-
tures emerge. Many are multivariable techniques that 
consider high-order plant models for design purposes. 
Furthermore, additional sensors are often required to 
support algorithm operation. These factors contribute 
to the complexity of the algorithms, thereby impos-
ing particular challenges during the algorithm perfor-
mance optimization, or tuning, stage. This problem 
of scale makes conventional “analyze and iterate” or 
“hand-tuning” methods diffi cult (at best) and motivates 
the use of the computer to iteratively seek the “best” 
solution. That is certainly the case here. Plant order 
and overall IGC algorithm complexity lead to a large 
number of tuning parameters. Previously, we identifi ed 
the relevant (high-order) matrices that must be designed 
(tuned) appropriately. In addition, the inherent cou-
pling between G&C components complicates things 
further. For these reasons, we will avoid using conven-
tional methods for optimizing guidance, navigation, and 
control performance (tuning) in favor of an automated, 
simulation-based performance optimization technique.

Reference 26 describes the simulation-based opti-
mization technique that we use. A comprehensive six-
degree-of-freedom (6-DOF) terminal homing simulation 
is employed to adjust (tune) a number of IGC matrices 
over the engagement space. The core of our approach is 
the simultaneous perturbation stochastic approximation 
(SPSA) algorithm.27–29 First, a desired cost function is 
specifi ed (not to be confused with the dynamic game 
performance index shown in Eq. 4). The SPSA algo-
rithm uses noisy cost function “measurements,” gener-
ated by the 6-DOF simulation, to approximate the cost 
function gradient with respect to the design parameters. 
This gradient approximation drives the design param-
eters toward their optimum values. 

As mentioned, SPSA use necessitates the specifi ca-
tion of a scalar-valued cost function that will drive the 

tuning process. We defi ne the cost 
to be a weighted sum of the fi nal 
miss distance (CPA) in feet and a 
measure of fi n activity (FA) over 
the fl ight time. To obtain FA, the 
pitch, yaw, and roll tail-fi n angu-
lar accelerations are squared, inte-
grated, and summed. CPA and FA 
are weighted to contribute approxi-
mately 95% and 5%, respectively, to 
the overall cost. Because the G&C 
algorithms must operate against a 
wide array of threats over a variety 
of fl ight conditions, use of the cost 
function should be carefully consid-
ered so as to capture the diversity of 
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Figure 7. Inverse map acceleration limiting used in the IGC prototype design. An external 
acceleration limit function was developed for the design. This function dynamically maps 
tail-fi n angular position commands coming from the IGC into equivalent lateral accelera-
tion commands in the missile body frame. The acceleration commands can thus be limited 
(if necessary) and dynamically mapped back to equivalent tail-fi n position commands. 
Here, g(t ) represents functional mapping.

the operating requirements. To this end, the weighted 
sum of CPA and FA is averaged over a number of differ-
ing engagements. These engagements represent a vari-
ety of conditions such as missile and target initial geom-
etries and target behavior (e.g., acceleration level and 
maneuver period), angles of attack and sideslip, dynamic 
pressure, etc.

The key performance optimization parameter classes 
present in the IGC system are process and measurement 
disturbance weights, Dk and Ek, respectively; perfor-
mance output weights Gk and Hk; a small number of 
plant modeling parameters found in Ak, Bk, and Ck; and 
initial condition and terminal state weighting matrices, 
Q0 and Qf, respectively. The signifi cant tuning parame-
ters are notionally shown in Fig. 8 and are those adjusted 
by the SPSA (optimization) algorithm for this study. 

SIMULATION RESULTS 

Six-Degree-of-Freedom Simulation Tool
We have employed a 6-DOF terminal homing Monte 

Carlo simulation for system performance optimization 
and analysis. This comprehensive tool incorporates a 
generic (realistic), fully coupled, nonlinear aerodynam-
ics model (via table lookup); structural fi ltering; and fi n 
command processing delays. The simulated endo-atmo-
spheric interceptor is a body-dorsal-tail, skid-to-turn 
confi guration (see Fig. 5, a notional missile drawing) 
that uses an active RF sensor for terminal homing. It has 
tail-only control (no sidethrusters or canards). A lethal-
ity enhancement device (warhead with a specifi ed lethal 
radius) is necessary to effectuate a high Pk. (We assume 
here that any terminal miss within a specifi ed lethal 
radius is an effective kill, but minimum miss is desired.) 
The inertial measurement unit gyro and accelerometer 
models include second-order dynamics, additive Gauss-
ian noise, scale factor, and misalignment errors, and the 
gyro model includes a drift component. Tail-fi n actua-
tors are modeled as having second-order dynamics with 
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fi n rate and position limits. The RF sensor (seeker) angle 
measurements are corrupted by glint noise, radome-
induced boresight errors (via table lookup), and angle 
noise consistent with an active RF seeker. Gaussian 
noise is added to true range and range rate to form range 
and range-rate measurements. The simulation includes 
a tactical ballistic missile (TBM) target generator that 
models ballistic slowdown and coning with variable 
acceleration capabilities and maneuver periods.

Benchmark G&C System
For comparison purposes, a benchmark G&C system 

was also designed. The benchmark concept is a decou-
pled architecture: guidance fi lter, guidance law, and 
autopilot components were developed. The guidance 
law is an optimal guidance formulation of the non-
ideal pursuer-evader variety.4 Dual three-state Kalman 
fi lters were designed for guidance fi ltering in the guid-
ance frame y/z axis. Guidance states are relative posi-
tion/velocity and target acceleration in each plane.3 A 
two-timescale dynamic inversion autopilot was used.7 
As compared with a traditional three-loop design, this 
autopilot is, in general, easy to modify and provides 
very good (fast) performance. Note that, to ensure an 
equitable comparison, the benchmark system was tuned 
using the same automated technique used to tune the 
IGC system. 

Monte Carlo Performance Comparison
To illustrate terminal homing IGC performance 

versus the benchmark system, we consider fi ve TBM 

intercept scenarios with intercept altitudes in the 
70- to 80-kft range. Some of the relevant engagement 
characteristics are given in Table 1. First, note that the 
threat lateral-maneuver acceleration levels increase with 
engagement number. Engagement 1 has no threat coning 
motion and therefore maneuver period is not applicable. 
Terminal homing times vary from about 5.4 to 6.6 s. We 
defi ne heading error as the angle between the actual 
initial interceptor velocity vector and an initial velocity 
vector that would be necessary for a perfect intercept. 
This is a “rollup” measure of midcourse (fl yout) guidance 
errors prior to terminal homing. All performance results 
are based on 200-run Monte Carlo sets.

Figure 9 shows cumulative miss distance statistics for 
all fi ve engagements. Better performance is indicated 
by plot lines farther to the left and more vertical. As 

Figure 8. IGC tuning structure. All of the principal (fi rst-order) tuning parameter classes (e.g., body rates) necessary to optimize 
IGC performance are indicated in the fi gure. Numbers in parentheses indicate the number of parameters within the specifi ed class. 
These tuning parameters are adjusted using a stochastic gradient approximation algorithm in conjunction with a six-degree-of-
freedom simulation.

Table 1. Threat-relevant engagement specifi cations.

  Homing  Maneuver  Maneuver  Heading 
  time period level error
  (s) (s) (g’s) (deg)

Engagement 1 6.6 n/a 0.0 1.4
Engagement 2 6.4 2.5 1.5 1.8
Engagement 3 6.5 2.0 3.5 1.7
Engagement 4 6.1 2.5 4.2 1.3
Engagement 5 5.4 2.0 4.2 1.5
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expected, Engagement 1 presents the least challenge to 
both systems because there is no threat coning motion 
(i.e., no lateral maneuver). Both systems perform well 
in this case, with the IGC system roughly 40% better 
in both mean miss and standard deviation of miss. 
(The miss standard deviation measure illustrates that 
IGC performs more consistently than the benchmark 
system.) For the other four engagements, which include 
various levels of threat coning motion, the performance 
separation becomes even more evident.

Table 2 summarizes the performance results. The IGC 
system achieves a 40 to 50% improvement in mean miss 
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Figure 9. Cumulative probability miss distance comparisons. A 
cumulative probability miss distance chart is an effective way to 
visualize guided missile system performance in a Monte Carlo 
sense. A number of Monte Carlo simulation runs are made and 
the miss distances are logged for each run. Miss distance is read 
on the abscissa versus the probability of achieving a specifi ed 
miss on the ordinate. Better performance is indicated by plot 
lines that are farther to the left and more vertical. Engagement 
1 presents the least challenge to both systems because there is 
no threat coning motion, and the IGC system performs roughly 
40% better in both mean miss and standard deviation of miss. 
For the other four engagements, which include increasing levels 
of threat coning motion (more stressing), the performance advan-
tage offered by the IGC system becomes more dramatic.

and a 40 to 70% improvement in miss standard devia-
tion versus the benchmark system. It is also interesting 
to note that the IGC performance advantage does not 
come at the expense of increased control energy, rep-
resented by the FA measure. Regarding FA, the IGC 
system exhibits a lower mean for all fi ve engagements. 
However, the IGC tends to produce a wider spread of 
control energy values over a Monte Carlo set (i.e., a 
higher standard deviation). The IGC control energy 
measure tends to stay relatively low versus the bench-
mark system until the last few missile time constants 
prior to intercept. Within this endgame region, IGC 
behavior tends to cause a “leap” in commanded fi n posi-
tion to null out the remaining miss distance. On the 
other hand, the control energy measure for the bench-
mark system tends to increase linearly throughout the 
fl ight, with less rapid increase at the end. This is one 
indirect indicator of why the benchmark miss statistics 
are not as good as the IGC system.

Similarly, the IGC performance advantage does not 
come at the expense of a marked increase in commanded 
interceptor acceleration (at this altitude regime, the air-
frame was specifi ed to have a maximum lateral accel-
eration capability of 20 g). In Table 2, the peak accel-
eration fi gure of merit represents the peak acceleration 
experienced by the airframe during terminal homing 
(this peak usually occurs very close to intercept). The 
peak acceleration statistics indicate that the IGC system 
required about 25% less acceleration, on average, versus 
the benchmark system. As with the FA fi gure of merit, 
the IGC system tends to have a larger standard devia-
tion but a lower mean. 

Parametric Sensitivity Comparisons
Table 1 listed the specifi c ranges of key engagement 

and threat characteristics that the IGC and benchmark 
systems were designed to accommodate: e.g., homing 
time, threat lateral maneuver level and period, and head-
ing error at handover to terminal homing. To investigate 
system performance outside these “design-to” regions, we 
parametrically varied each threat-relevant engagement 
characteristic through extended but reasonable ranges. 
Engagement 1 served as the starting point for each para-
metric sweep. Mean miss statistics were computed using 
100-run Monte Carlo sets. Figure 10a illustrates mean 
miss distance as a function of threat lateral maneuver 
level. Here, as threat lateral acceleration increases, IGC 
mean miss degrades more gracefully compared to the 
benchmark system. Note that this trend is evident in 
Table 2 for the baseline engagements but is more pro-
nounced outside the baseline design region, i.e., as the 
threat becomes more stressing in terms of acceleration 
capability, the performance advantage afforded by the 
IGC system becomes more obvious.

Figure 10b illustrates percent improvement in IGC 
system mean miss distance versus the benchmark system 
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Table 2. Performance comparison statistics.

 Miss Fin activity Peak acceleration
 Mean SD Mean SD Mean SD

 Bechmark 2.2 1.3 1.1 0.2 5.5 2.2
Engagement 1 IGC 1.3 0.8 1.0 0.4 4.0 1.4
 % improvement 38.6 38.0 5.6 �52.9 27.1 33.8

 Benchmark 7.1 3.3 1.4 0.2 12.9 3.5
Engagement 2 IGC 3.9 1.8 1.0 0.3 8.1 3.2
 % improvement 45.0 46.4 30.1 �36.7 37.1 8.6

 Benchmark 19.3 5.4 1.6 0.2 17.1 2.1
Engagement 3 IGC 9.4 2.1 1.1 0.3 13.2 3.4
 % improvement 51.1 60.4 33.1 �45.6 22.6 �62.1

 Benchmark 18.4 5.3 1.3 0.1 18.4 2.0
Engagement 4 IGC 9.8 1.5 1.0 0.3 14.3 2.9
 % improvement 46.6 70.9 20.5 �162.5 22.0 �50.1

 Benchmark 17.8 7.7 1.2 0.1 18.8 1.9
Engagement 5 IGC 11.1 3.5 1.1 0.3 14.2 3.0
 % improvement 37.9 54.2 6.5 �187.5 24.5 �58.5

Figure 10. Parametric sensitivity comparisons. A number of Monte Carlo parametric sensitivity studies were conducted, including sen-
sitivity to (a) threat lateral acceleration level, (b) threat maneuver period, (c) terminal homing time, and (d) heading error at the start of 
terminal homing. The shaded areas indicate the “design-to” regions for the benchmark and IGC systems. The results indicate that the IGC 
system performance advantage becomes even more evident as the engagement becomes more stressing. The IGC system performance 
also degrades more gracefully than does the benchmark system.
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as the threat maneuver period varies: threat maneuver 
levels of 1 to 4 g are shown. For the range of maneuver 
periods considered here, shorter periods tend to offer 
more challenge. Again, we observe that the IGC perfor-
mance advantage is substantial. 

A mean miss distance versus homing time com-
parison is shown in Fig. 10c. Here, IGC performance is 
rather insensitive to homing time, whereas the bench-
mark system performance degrades rapidly for homing 
times shorter than those considered in the baseline 
design region. Likewise, in Fig. 10d, mean miss distance 
performance for the benchmark system degrades more 
rapidly for handover heading errors outside the design-
to region, whereas IGC performance stays relatively 
consistent. 

Clearly, these results could vary if the design regions 
were expanded and the systems were retuned to account 
for more diverse operating conditions. Nevertheless, 
given the equitable tuning approach and engagement 
characteristics considered here, the parametric sensi-
tivity sweeps paint a consistent picture: the IGC per-
formance advantage grows as the engagements become 
more stressing, and IGC performance degrades more 
gracefully outside the design-to region boundaries.

CLOSING REMARKS 
Threat missile systems continue a steady evolution in 

technical sophistication, leading to increased capability 
and, consequently, the ability to perform a wider, dead-
lier, range of missions. The diversity of these threat mis-
sile systems and missions poses a signifi cant challenge 
to missile interceptor design. This underscores the need 
for an integrated approach to missile interceptor design. 
Undoubtedly, technical advances in the various inter-
ceptor elements (e.g., airframe, actuation, sensor and 
propulsion systems) are, and will continue to be, neces-
sary. It is the aggregate capability of these subsystems 
that defi nes the maximum performance potential of the 
interceptor. Nevertheless, optimal integration of the 
interceptor subsystems must still be accomplished, and 
this is the central role of the G&C system. In this arti-
cle, we have discussed one such advanced G&C concept 
and IGC system. The IGC paradigm facilitates a level of 
synergism between interceptor fl ight control and guid-
ance systems that is diffi cult to emulate within the tradi-
tional (decoupled) framework. Just as noteworthy, IGC 
presents a unifi ed approach to interceptor performance 
optimization versus the traditional decoupled approach. 
Consequently, we believe the IGC paradigm is a critical 
step toward optimal interceptor design.

Modern missile interceptor G&C systems must, 
and will, continue to evolve to meet the challenges of 
next-generation threats. Hence, the complexity of these 
algorithms will grow as well. This fact presents a sig-
nifi cant challenge to the designer during the algorithm 

performance optimization (tuning) stage. This problem 
of scale renders the traditional tuning methods diffi cult 
and motivates the use of the computer to iteratively 
seek the “best” solution. Here, we have discussed the 
application of the SPSA technique to simulation-based 
performance optimization of complex G&C algorithms. 
The effi cacy of a simulation-based approach to G&C 
algorithm performance optimization was demonstrated 
by applying the SPSA technique to two algorithms: the 
IGC system and a dynamic inversion autopilot coupled 
with a Kalman fi lter and optimal guidance law. This 
approach has proven to be an effective tool for the task, 
as indicated by the results presented here.

For the prototype IGC system, the design objectives 
were to fi nd a controller that minimizes the fi nal miss 
distance and to control energy under worst-case target 
maneuver process and measurement disturbances. Per-
formance of the prototype IGC system was compared 
to another high-performance, albeit decoupled, G&C 
system in a comprehensive 6-DOF terminal homing 
simulation tool. It was shown that the IGC system sig-
nifi cantly improved the mean and standard deviation 
of the fi nal miss distance, particularly against stressing 
threats. What is more, through parametric studies, it was 
shown that the IGC performance advantage continues 
to be evident as the engagements become more stress-
ing and that IGC performance degrades more gracefully 
outside the design-to region boundaries.

Many interceptors use a lethality enhancement 
device to improve Pk. For example, endo-atmospheric 
guided missiles typically employ a fuzing system and 
fragmentation warhead to accomplish this. The perfor-
mance of these lethality enhancement systems can be 
sensitive to endgame conditions. Suitably controlling 
the terminal interceptor body rates, interceptor-threat 
approach angles, etc., can help maximize the perfor-
mance and effectiveness of the lethality enhancement 
device. Decoupled guidance systems do not have explicit 
“tuning knobs” to accomplish this. Instead, they are 
adjusted in an ad hoc (indirect) fashion in an attempt 
to improve endgame conditions. In contrast, an IGC 
paradigm can accommodate these types of performance 
criteria explicitly. In the future, we will extend the IGC 
control objectives to account for (and control) addi-
tional engagement parameters such as terminal threat-
interceptor approach angle and interceptor body rates at 
intercept. The goal is explicit specifi cation of endgame 
objectives leading to direct control of endgame behavior 
in a way that optimizes usage of the lethality enhance-
ment device.
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