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Abstract— We propose certain discrete parameter variants of
well known simulation optimization algorithms. Two of these
algorithms are based on the smoothed functional (SF) technique
while two others are based on the simultaneous perturbation
stochastic approximation (SPSA) method. They differ from
each other in the way perturbations are obtained and also
the manner in which projections and parameter updates are
performed. All our algorithms use two simulations and two-
timescale stochastic approximation. As an application setting,
we consider the important problem of admission control of
packets in communication networks under dependent service
times. We consider a discrete time slotted queueing model of
the system and consider two different scenarios – one where
the service times have a dependence on the system state and
the other where they depend on the number of arrivals in a
time slot. Under our settings, the simulated objective function
appears ill-behaved with multiple local minima and a unique
global minimum characterized by a sharp dip in the objective
function in a small region of the parameter space. We compare
the performance of our algorithms on these settings and observe
that the two SF algorithms show the best results overall. In fact,
in many cases studied, SF algorithms converge to the global
minimum.

I. INTRODUCTION

Simulation based optimization approaches find wide ap-

plicability in a variety of diverse disciplines such as neural

networks, supply chain management, computer networks etc.

Many of these methods use some form of gradient search. In

many scenarios studied in the literature, noisy observations of

the objective function are assumed available based on which

gradient estimates are obtained. In some instances such as

the one considered in this paper, the objective function in

fact corresponds to a long-run average performance metric.

Examples include the problems of admission control or

resource allocation in communication networks where the

objective (that one wants to minimize) is (say) the mean

waiting time in steady state of a customer. It is here that

simulation based optimization approaches play a significant

role. In [1], [2], for objective functions such as above, two-

timescale stochastic approximation algorithms are proposed

for simulation optimization. The overall idea here is that

estimates of the objective function are obtained and ag-

gregated along the faster timescale or step-size schedule
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while parameter updates along negative gradient directions

are performed along the slower one.

Simulation optimization algorithms based on Kiefer-

Wolfowitz (K-W) finite difference gradient estimates typi-

cally require 2N parallel simulations when the parameter

dimension is N . In [14], a random directions version of

K-W gradient estimates was proposed where all parame-

ters are simultaneously perturbed most commonly by using

i.i.d. symmetric Bernoulli random variables. This algorithm,

also known as the simultaneous perturbation stochastic ap-

proximation (SPSA), requires only two function evaluations

per iteration irrespective of the parameter dimension N .

SPSA has been widely studied in many applications and is

seen to perform well in general. Another algorithm based on

random perturbations is the smoothed functional algorithm

(SFA). Here, one approximates the gradient of the objective

function by a convolution of the same with a multivariate

normal distribution. By an integration by parts argument,

one sees the same as a scaled convolution of the objective

function itself with the (above) multivariate normal distri-

bution. This requires only one simulation irrespective of

the parameter dimension N . A two-sided estimate of the

smoothed functional gradient as in [16] is seen to improve

performance. In [2] and [3], certain two-timescale versions

of SPSA and one-simulation SFA, respectively, have been

proposed for simulation optimization. More recently, in [6],

more SFA based algorithms have been developed, one of

which estimates only the gradient using a two-sided gradient

estimate and two others estimate both the gradient and

Hessian in a Newton based scheme.

Both SPSA and SFA have been studied most often in the

continuous parameter optimization framework. In [10], [11],

discrete parameter variants of the SPSA algorithm have been

proposed. In [4], an adaptation of two-timescale SPSA for

discrete parameter optimization has been considered. The

idea here is to form a closed convex hull of the underlying

parameter set, perform parameter updates using the two-

timescale algorithm in the continuous space formed by the

above closed convex hull and obtain the corresponding

policy updates by projecting the parameter update to the

underlying discrete set. In [5], another discrete parameter

SPSA algorithm is presented. Here, instead of forming a

convex hull as above, the parameter itself is projected after

each update epoch to the underlying discrete set. Thus the

parameter updates are performed here in the discrete space.

In this paper, we develop certain discrete parameter vari-

ants of the two-simulation SFA and SPSA algorithms of

[6] and [2] respectively. The variants that we propose for
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SPSA are similar in nature to the algorithms in [4] and

[5] respectively. However, they differ in the manner in

which projections are done. We use simple randomizations in

policies here in place of direct projections to the discrete set

(as in [4] and [5]) that result in improved performance. As an

application setting, we consider the important problem of ad-

mission control in communication networks under dependent

service times. We consider two different settings here. In the

first, the service times depend on the system state while in

the second, they depend on the arrival process. We consider

a discrete time queueing framework for this purpose. This

is quite different from the models considered in [4] and [5]

where continuous time queueing framework is used. More-

over, the service times in the above references have been

taken to be i.i.d. It is extremely difficult to obtain precise

analytical solutions in the case of models that incorporate

dependence. Our simulation based optimization methodology

helps in obtaining the (locally) optimal parameter values and

hence (locally) optimal policies within each specified class.

We study experiments using these algorithms and observe

that both the SFA based algorithms in fact converge to

the globally optimal policy (within the considered class of

policies) in many cases while those based on SPSA seem

to converge to one of the locally optimal policies (in the

above class) in most cases. This could possibly be the result

of ‘objective function smoothing’ when SFA is used and is

in agreement with the observations in [16]. We however did

not study the performance of SPSA when perturbations other

than Bernoulli are used and also when the gain parameter δ
(below) is suitably adapted. As explained in [15], the latter

may result in convergence to a global optimum in SPSA

algorithms.

The rest of the paper is organized as follows: Section II

describes the framework and algorithms. In Section III, we

present the problem of admission control under dependent

service times that we consider for the purpose of applica-

tions. In Section IV, we present our numerical experiments.

Finally, concluding remarks are made in Section V.

II. FRAMEWORK AND ALGORITHMS

Consider a Markov process {Xθ
n} parameterized by θ ∈

D, D ⊂ IN for some fixed N ∈ I+. Here I and I+ denote

the sets of integers and positive integers respectively. We

assume D to be a finite set (which, however, could be large).

In particular, for simplicity, we assume that D has the form

D =
∏N

i=1 Di, where Di = {d0
i , . . . , d

ni

i }, i = 1, . . . , N .

Here, for any i, d0
i ≤ d1

i ≤ · · · ≤ dni

i . Let Di,min
△
= d0

i and

Di,max
△
= dni

i respectively. We also assume that Xθ
n, n ≥ 0

take values in Rd for some d ∈ I+. For any fixed θ ∈ D,

we assume {Xθ
n} is ergodic with transition kernel pθ(x, y),

x, y ∈ Rd. Let h : Rd → R be a given single-stage cost

function that we assume is Lipschitz continuous. Our aim is

to find a θ∗ ∈ D such that

J(θ∗) = lim
n→∞

1

n

n
∑

i=1

h(Xθ∗

i ) = min
θ∈D

J(θ). (1)

Here J(·) denotes the long run average cost. Let D̄ de-

note the closed convex hull of D. We describe below our

algorithms. We denote the parameter updates as θ(n)
△
=

(θ1(n), . . . , θN (n))T , n ≥ 1. Algorithms SPSA-C and SFA-

C (below) perform these updates within the convex set D̄.

For a given θ ∈ D̄, in order to obtain a sample Xθ
m of the

state of the Markov process at an instant m, it was proposed

in [4] to first project θ to D. Let θ̄ denote the projected

parameter. The above sample would then correspond to X θ̄
m.

(Note that Xθ
m is not even defined for θ ∈ D̄\D.)

We however propose and use an improved procedure based

on simple randomizations for the above projections. For any

θ = (θ1, . . . , θN )T ∈ RN , we define Γ(θ) = (Γ1(θ1), . . .,
ΓN (θN ))T ∈ D as the projection of θ on to the set D
as follows: Let θi be such that dj

i < θi < dj+1
i for some

dj
i , d

j+1
i ∈ Di, dj

i < dj+1
i . Then,

Γi(θi) = dj
i w.p. (dj+1

i − θi)/(dj+1
i − dj

i )

= dj+1
i w.p. (θi − dj

i )/(dj+1
i − dj

i ).

Also,

Γi(θi) = Di,min if θi < Di,min

= Di,max if θi ≥ Di,max.

It is intuitively clear (as also experimentally observed by

us) that a simple randomization as above would result in an

improvement in performance over the projection methods in

[4] and [5]. This is because a ‘small’ increment in the ‘right’

direction is not ignored when using randomized projections.

On the other hand, one may obtain a big leap in the correct

direction with a probability proportional to the size of the

increment. Note from the way it is defined that Γ(θ) ∈ D.

For Algorithms SPSA-C and SFA-C, for any θ ∈ RN , we

also require the projection Γ̄(θ)
△
= (Γ̄1(θ1), . . ., Γ̄N (θN ))T

to the compact set D̄ (the closed convex hull of D) and

is defined in the usual manner. In SPSA-C and SFA-C, the

projection Γ̄(·) will be used to guide the parameter updates

within the set D̄ while Γ(·) will be used to identify the actual

parameter value used in a simulation. Algorithms SPSA-D

and SFA-D, on the other hand, do not use the projection

operator Γ̄(·) to the convex hull D̄ but instead use Γ(·)
(defined above) and thus directly update the parameter in

the discrete space D itself.

For all our algorithms, we use two step-size sequences

{a(n)} and {b(n)} that satisfy the conditions
∑

n

a(n) =
∑

n

b(n) = ∞,
∑

n

(a(n)2 + b(n)2) < ∞,

a(n) = o(b(n)).

A. The SPSA-C Algorithm

Let θ(m) := (θ1(m), . . . , θN (m))T denote the parameter

vector after the mth iteration. Let ∆1(m), . . . ,∆N (m) de-

note i.i.d. Bernoulli distributed symmetric ±1-valued random

variables. Set θ1
i (m) = Γi(θi(m) + δ∆i(m)) and θ2

i (m) =
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Γi(θi(m) − δ∆i(m)) for i = 1, . . . , N , where δ > 0 is a

given (small) constant. Let θj(m)
△
= (θj

1(m), . . ., θj
N (m)),

j = 1, 2. Set Z(0) = 0.

Generate two parallel simulations {X
θ1(m)
m } and

{X
θ2(m)
m } governed by parameter sequences {θ1(m)} and

{θ2(m)}, respectively. For i = 1, . . . , N , m ≥ 0, we have

θi(m + 1) = Γ̄i(θi(m) + a(m)(
Z(m + 1)

2δ∆i(m)
)),

Z(m + 1) = Z(m) + b(m)(h(Xθ2(m)
m )

−h(Xθ1(m)
m ) − Z(m)).

B. The SFA-C Algorithm

Let θ(m) := (θ1(m), . . . , θN (m))T denote the parame-

ter vector after the mth iteration. Let η1(m), . . . , ηN (m)
be independent N(0, 1)-distributed random variables. Let

β > 0 be a given (small) constant. Let θj(m) =
(θj

1(m), . . . , θj
N (m))T , j = 1, 2, where θ1

i (m) = Γi(θi(m)+
βηi(m)) and θ2

i (m) = Γi(θi(m) − βηi(m)), i = 1, . . . , N ,

respectively.

Generate two parallel simulations {X
θ1(m)
m } and

{X
θ2(m)
m } governed by parameter sequences {θ1(m)} and

{θ2(m)}, respectively. For i = 1, . . . , N , m ≥ 0, we have

θi(m + 1) = Γ̄i(θi(m) + a(m)Zi(m + 1)),

Zi(m + 1) = Zi(m) + b(m)(
ηi(m)

2β
(h(Xθ2(m)

m )

−h(Xθ1(m)
m ) − Z(m)).

C. The SPSA-D and SFA-D Algorithms

These are the same as SPSA-C and SFA-C algorithms

above except that in Steps 2 of the above algorithms, one

replaces the projection map Γ̄ with Γ. Thus these algorithms

directly update the parameter vector in the discrete space

(randomly) D instead of doing so in the convex hull D̄.

Remark: In both the above algorithms, we observe as with

[2], [4] that an extra averaging of the faster recursion (viz.,

the one governed by step-size b(m)) over a certain number

M̄ of instants, improves performance. We let M̄ = 500
in our experiments. We generate N(0, 1)-distributed random

variables in SFA using the standard Box-Muller algorithm.

We do not give the convergence analysis here for lack

of space, see [6] for analysis of SFA for the continuous

parameter case and [4]-[5] for analysis of discrete parameter

SPSA using other (not randomized) projection maps. For

continuous parameter optimization, in [8], performance com-

parisons between one-timescale SPSA and SFA algorithms

are shown. It is observed in [8] that SPSA shows better

performance than SFA over an objective function that is rea-

sonably well behaved. For an ill-behaved objective function

in a discrete parameter simulation optimization setting as

with our experiments, we observe that SFA based algorithms

converge more often to the global minimum as compared to

SPSA based ones. It is argued in [16] that the SFA algorithm

(viz., the continuous parameter version) converges to the

globally optimal solution much like simulated annealing

because it performs optimization over a smoothed functional

and not the original function. The original function may have

several local minima and may not be well behaved in general.

Our results are in agreement with the observations in [16].

In the next section, we study applications of the proposed

methodology to the important problem of admission control

under dependent service times. We consider two different

scenarios for service time dependence – in the first, the

service times are a given function of the queue length while

in the second, they depend on the number of packets that

arrive in a given time slot.

III. APPLICATIONS TO ADMISSION CONTROL WITH

DEPENDENT SERVICE TIMES

Input Packet

Source

Accept

Reject

Fig. 1. The admission control model

We consider the problem of admission control in com-

munication networks. Admission control has been widely

studied over the past several years, see [7], [13], for some

representative work. In [5], a continuous time queueing

model in a stochastic setting is considered. Many references

in the literature consider service times to be independent.

We however consider the case where these depend on the

system state or arrival process. Such dependence may arise

naturally in many scenarios. For instance, in [9], a finite

buffer queue where service times can take one of two

random values depending on whether the queue length is

below or above a given threshold is used to model the

cell discarding scheme arising for voice traffic in ATM

networks. In [12], the stationary distribution associated with

a continuous time multi-class queueing network of single

server nodes is obtained where the service of a customer

belonging to a class depends not only on queue contents but

also on the residual work loads of customers at the node.

We however use simulation based optimization techniques

for admission control in a dependent queue.

We consider two different settings here. In the first, the

service times are a deterministic function of the current queue

length, while in the second, they depend in a probabilistic

manner on the number of arrivals in a given time slot. We

consider threshold type feedback policies in both settings.

In particular, we consider a one-level policy structure for

the former setting and a four-level structure for the latter.

The form of the policy is guided by the underlying Markov

process in either case. We compare the performance of

SPSA and SFA algorithms in computing an optimal policy

within the prescribed class of policies. Our basic model is

shown in Fig. 1. We consider a slotted system here. There

is a single node that is fed with packets whose arrivals at

each instant are geometrically distributed with some fixed
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parameter p ∈ [0, 1). Both arrival and service times take

values from a discrete set. We accept or reject a packet

depending on the admission policy under consideration. We

now explain the two settings considered here.

A. The One-Level Admission Policy

Here the service time Sn at instant n, when the number

of packets in queue as seen by an arriving packet is qn, is

given by

Sn = (qn −
B

2
)2 + 1

where B is the buffer size (at the node) that we assume is

an even positive integer so that Sn is also a positive integer.

We consider the following form for the admission policy: At

instant n, given L ∈ I+, we have

• if qn ≤ L
accept incoming packet,

• else

reject incoming packet.

Thus, the parameter to be optimized corresponds to θ = L.

One can see here that {qn} is ergodic Markov for any given

θ and thus SFA and SPSA algorithms can be applied.

B. The Four-Level Admission Policy

Let An denote the number of packets that arrive at the nth

instant. The generic service time of a packet served at time

n from this batch (of An packets) is given by

Sn = ⌊(An − L)2 + AnU + 1⌋

where, L =

⌊

p

1 − p

⌋

and U is a random variable that has the

distribution U(0, 1). Here L̄ denotes the integer part of the

mean number of arrivals in a time slot. The admission policy

in this case is as follows: Let Xn be a ‘scaling’ function

defined according to

Xn =















0 An ≤ 1
1 2 ≤ An ≤ 3
2 An = 4
3 An ≥ 5

Then, for i = 0, 1, 2, 3,

• if (Xn = i)

– if qn ≤ Li

accept incoming packet,

– else

reject incoming packet.

Note that Xn plays the role of clustering into four levels,

the various values of An. The admission control policy

assigns threshold Li for the ith such level, i = 0, 1, 2, 3. The

parameter θ then corresponds to θ = (L0, L1, L2, L3)
T . Note

that because of the dependence of service times on the arrival

process, for any given θ, {(qn, An)} is now Markov and the

above class of policies is meaningful. One may consider any

number of levels for the above policies (not necessarily four).

Our objective function appears ill-behaved and seems to have

unique global minimum but multiple local minima. Recall

that the objective function here corresponds to the long-run

average over single-stage costs and thus is not analytically

known a priori in many cases even if the single-stage cost

has an analytical expression. In the next section, we show

a few plots of the objective function estimate obtained via

simulation over a large number of runs.

IV. NUMERICAL RESULTS

We show numerical results using our algorithms for the

two admission policy settings described in the previous

section. We assume a buffer size of B = 100. The cost

of acceptance of an arriving packet is the queue length as

seen by it. Further, the cost of rejecting a packet is fixed at

75 or three-fourths of the buffer size. The step-sizes {a(n)}
and {b(n)} for both algorithms for each of the two settings

below are chosen as

b(n) =
1

⌈

n
20

⌉2/3
, a(n) =

1
⌈

n
20

⌉3/4

respectively, for n ≥ 1 and a(0) = b(0) = 1.

A. The One-Level Policy Setting
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p=0.3

Fig. 2. The Objective Function for the One-Parameter Case with p = 0.3

The simulated long-run average cost objective of the

system when p = 0.3 is plotted in Fig. 2. Similar plots were

obtained for other values of p. Here, for each integer value

of L in the range from 1 to 100, the corresponding objective

function value was simulated using 5× 105 simulation runs.

The above plots exhibit the existence of a global minimum

around L = 51. The function falls sharply within a narrow

band around the point L = 51 at which global minimum

is attained. Also, there seem to be multiple local minima

with the function being almost flat in a large portion of the

parameter space. We run all four algorithms for a total of

5× 107 simulation runs. We obtain a total of 105 parameter

updates using both algorithms.

The initial value of acceptance policy (L) is set at 75.

For the SPSA (resp. SFA) algorithms we set δ = 1.0
(resp. β = 1.0) as the setting parameters. These choices

seem to give the best results overall. Using the converged

parameter values, we obtain sample trajectories with fifty
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different initial seeds for 105 simulation runs. The mean

and standard error of the average cost for the above runs

for different values of p for the ‘C’ and ‘D’ algorithms are

shown in Tables I and II. We observe in our experiments

that SFA settles to the global minimum in most cases. Note

here that in all the entries in Tables I-II, the mean values

of SFA algorithms shown are lower (in some cases by a

high margin) as compared to the corresponding values for

SPSA algorithms. However, in many cases, the standard

error in SFA algorithms is much higher as compared to

SPSA. This is again because of the nature of the objective

function (explained above) with the result that when SFA is

used, convergence to the global minimum is achieved with

many different starting seeds, while with some other seeds,

convergence only to a local minimum is attained. On the

other hand, SPSA algorithms do not have a high value of

standard deviation as they seem to converge in most cases

only to local minima. This also explains the high mean values

in the SPSA algorithms as compared to SFA in the entries

above. Note that in cases when p ≥ 0.4, the standard error

is quite high in SFA algorithms as compared to the same

with lower p-values where this difference is less. This is

because the difference in costs between the unique global

minimum and the other local minima (in the flat region)

when p ≥ 0.4 is also much higher than when p < 0.4. The

plots of convergence of L with the number of simulation

runs, when p = 0.3, for the ‘C’ and ‘D’ algorithms are

shown in Fig. 3. A key observation is that in both figures,

the SFA algorithms converge to the unique global minimum

(L = 51). As expected, SPSA-D and SFA-D show more

fluctuations in their trajectories as compared to their ‘C’-

counterparts. Amongst ‘C’ and ‘D’ algorithms, the former

algorithms show better results.

Fig. 3. Convergence of Algorithms for One-Parameter Case

B. The Four-Level Policy Setting

Note that since the parameter θ here corresponds to θ =
(L0, L1, L2, L3)

T , it is not possible to plot the long-run

average cost as a function of θ. In order to get an idea,

however, we plot here the long-run average cost for only

those θ for which L0 = L1 = L2 = L3 = L′. We vary

TABLE I

OPTIMAL AVERAGE COSTS OBTAINED USING SPSA-C AND SFA-C:

ONE-PARAMETER CASE

p SPSA-C SFA-C

0.1 8.13± 0.69 6.73± 1.45

0.2 18.05± 1.82 16.20± 2.96

0.3 31.77± 1.17 26.97± 4.35

0.4 49.63± 1.04 45.01± 5.57

0.5 74.62± 0.98 67.38± 6.68

0.6 112.26± 0.70 103.04± 7.73

0.7 174.62± 0.79 165.67± 8.68

0.8 298.74± 3.97 289.76± 9.14

0.9 674.69± 0.88 664.13± 9.58

TABLE II

OPTIMAL AVERAGE COSTS OBTAINED USING SPSA-D AND SFA-D:

THE ONE-PARAMETER CASE

p SPSA-D SFA-D

0.1 8.20± 0.46 7.08± 1.38

0.2 18.25± 1.35 15.54± 2.95

0.3 31.78± 1.25 25.08± 3.52

0.4 49.66± 1.61 42.27± 5.06

0.5 74.82± 0.72 67.39± 6.10

0.6 111.91± 1.88 102.99± 6.92

0.7 174.48± 1.70 164.79± 7.04

0.8 299.85± 0.47 292.54± 8.23

0.9 674.79± 0.91 673.01± 4.92

L′ from 1 to 100 and plot the simulated average cost for

p = 0.4 in Fig. 4.

We run all algorithms for 108 simulation runs for this

setting. We set the initial value of the parameter vector as

(50, 50, 50, 50)T for all algorithms. As before for the SPSA

(resp. SFA) algorithms, we set δ = 1.0 (resp. β = 1.0).

With the converged values of the parameter updates, for

105 iterations, we run simulations with fifty different initial

seeds and obtain the mean and standard error of the long-

run average cost over these (cf. Tables III-IV). As with the

previous setting, we observe from our experiments that both

SFA algorithms show better performance as compared to

corresponding SPSA ones as with many initial seeds, SFA

algorithms seem to converge to global minimum while SPSA
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Fig. 4. The Objective Function for the Four-Parameter Case for p=0.4
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TABLE III

OPTIMAL AVERAGE COSTS OBTAINED USING SPSA-C AND SFA-C:

THE FOUR-PARAMETER CASE

p SPSA-C SFA-C

0.1 0.13± 0.00 0.13± 0.00

0.2 0.71± 0.03 0.74± 0.06

0.3 13.43± 5.06 9.51± 3.83

0.4 42.14± 7.86 28.20± 10.64

0.5 72.60± 5.14 58.60± 13.09

0.6 109.78± 2.42 81.21± 18.22

0.7 170.15± 6.47 153.14± 15.76

0.8 297.10± 3.69 280.85± 12.61

0.9 676.11± 2.39 675.87± 0.56

TABLE IV

OPTIMAL AVERAGE COSTS OBTAINED USING SPSA-D AND SFA-D:

THE FOUR-PARAMETER CASE

p SPSA-D SFA-D

0.1 0.13± 0.00 0.13± 0.00

0.2 0.75± 0.03 0.75± 0.05

0.3 13.82± 3.57 9.85± 3.07

0.4 44.52± 6.48 31.39± 12.53

0.5 74.50± 2.97 52.86± 13.31

0.6 112.64± 7.26 73.14± 8.73

0.7 174.76± 2.99 150.27± 17.37

0.8 299.92± 2.54 286.28± 11.09

0.9 675.91± 2.36 674.60± 1.11

ones seem to converge to local minima. As with the previous

setting, this is also the reason for the high standard error in

SFA algorithms that results due to convergence to a global

minimum with some seeds and to one of the local minima

with some other seeds. As before, the ‘C’-algorithms are seen

to show better results as compared to their ‘D’-counterparts.

In order to validate our observation on high standard error

in the above experiments for SFA algorithms, we conducted

experiments for the one-parameter setting where the service

times are simply selected to be i.i.d. and have the distribution

U(0, 1). We observe here that SFA algorithms show better

performance in both mean and standard error over SPSA

algorithms. We do not show the results of these experiments

for lack of space.

V. CONCLUSIONS

We developed four discrete parameter variants of simula-

tion optimization algorithms. Two of these are based on the

simultaneous perturbation stochastic approximation (SPSA)

method and two others are based on the smoothed functional

(SF) technique. These differ in the parameter space in which

updates are performed as also the perturbations used viz.,

Gaussian vrs. Bernoulli. We proposed a different method for

projection to the discrete space that is based on a simple

randomization and that results in an improved performance.

We considered the problem of admission control under

dependent service times for two different settings – one

where the service times are a function of the system state

and the other where they depend on the number of arrivals

in a time slot. The objective function was observed to be

ill-behaved with multiple local minima and a unique global

minimum characterized by a sharp drop in a small region of

the parameter space. Our numerical results show that SFA

algorithms (based on Gaussian perturbations) converge to

the global minimum in many cases. This is in agreement

with the observations in [16] for the case of one-timescale

continuous parameter optimization using SFA. SFA-C shows

the best results overall. Also, as expected, in general the ‘C’-

algorithms perform better than their ‘D’-counterparts. In [6],

certain smoothed functional estimates of the Hessian have

recently been developed and used in a Newton based scheme.

The discrete parameter variants of these algorithms could

also be developed and their performance tested on similar

settings.
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