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ABSTRACT 

 The engineering of complex systems of systems has been receiving greatly 
increased amounts of attention in recent years.  Within the Department of Defense, 
“system of systems” terminology is now widely used to describe how the successful, 
combined operation of many platforms, weapon systems, and communication systems is 
necessary to achieve an overall warfare objective, especially in joint operations.  
Although the characteristics and system engineering challenges associated with systems 
of systems are becoming well understood, effective architecting approaches that enable 
cost/performance trades are still immature. 
 
 A systematic approach to considering how best to upgrade specific, complex 
systems of systems is postulated and demonstrated. The process treats cost as the 
independent variable (CAIV) and seeks to find the “best” point design that may involve 
upgrading all component systems simultaneously, not just one at a time.  The process has 
been demonstrated on a naval mine countermeasures (MCM) system of systems 
representation of sufficient complexity and detail to demonstrate the feasibility of the 
approach. The process formulates a constrained, nonlinear optimization problem whose 
objective function is a representation of the top-level measure of effectiveness (MOE), 
with constraints represented by functionalized Performance Based Cost Models, 
secondary MOEs, and technology-driven bounds on system measures of performance 
(MOPs).  Both closed-form and simulation-based optimization approaches have been 
demonstrated and differences quantified, including the suboptimality of considering just 
one system at a time. 
 
 Due to the nature of complex system of systems interactions, implementation of 
this optimization technique on problems of national interest will require a simulation to 
represent the mapping of system MOPs to single system MOEs and on to the overarching 
system of systems MOE.  A stochastic simulation of the MCM system of systems was 
therefore also implemented and optimized utilizing a constrained variant of the 
Simultaneous Perturbation Stochastic Approximation method. 
 

This process therefore demonstrates a disciplined, quantitative approach to 
developing system of systems upgrade options for very complex situations, which can 
result in more effective and comprehensive systems acquisition and technology 
investment strategies.  A secondary benefit is that the process can be used as a framework 
for the utilization of campaign-level simulations to support acquisition decisions.
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CHAPTER 1 

INTRODUCTION 

Background 

 The engineering of complex systems of systems has been receiving greatly 

increased amounts of attention recently.  Within the Department of Defense, system of 

systems terminology is now widely used to describe how the successful, combined 

operation of many platforms, weapon systems, and communication systems is necessary 

to achieve an overall warfare objective, especially in joint operations.  This increased 

level of complexity has become a concern at the highest levels of command, as General 

John Sheehan, Commander in Chief of U.S. Atlantic Forces, recently wrote: 

“Victory will depend on the ability to master the ‘system of systems’ composed of 
multiservice hard- and soft-kill capabilities linked by advanced information 
technologies.”  1 

 

And Admiral Owens, Vice Chairman of the Joint Chiefs of Staff notes that systems of 

systems have arisen not by design, but in response to the vision of users who recognize 

the tremendous potential of systems working together towards broad, common objectives:  

“We have cultivated a planning programming and budgeting system that tends to 
handle programs as discrete entities…Yet, the interactions and synergisms of 
these systems constitute something new and very important.  What is happening is 
driven in part by broad conceptual architectures---and in part by serendipity:  It 
is the creation of a new system of systems.”  2  
 

                                                           
1 Sheehan, Gen. J.J., “Next Steps in Joint Force Integration”, Joint Force Quarterly (Supplement, 1/6/97), 

Autumn 1996. 
2  Owens, Adm. W.A., “The Emerging System of Systems”, U.S. Naval Institute Press, May 1995. 
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Although the characteristics and system engineering challenges associated with 

systems of systems are becoming well understood, effective architecting approaches are 

still immature for systems of systems 3,4. 

 This dissertation specifically addresses the issue of how best to upgrade a 

complex system of systems, once the need to do so has been realized.  The system of 

systems is considered as a whole entity and a quantitative methodology for determination 

of an optimal upgrade suite under cost and technology constraints is demonstrated.  The 

methodology utilizes a multi-disciplinary approach including operations analysis, cost 

modeling, nonlinear optimization, and stochastic modeling and simulation.

                                                           
3  Manthorpe, W.H.J., Jr., “The Emerging Joint System of Systems:  A Systems Engineering Challenge and 

Opportunity for APL”, Johns Hopkins APL Technical Digest, Vol. 17, No. 3, 1996. 
4  Luman, R.R., and Scotti, R.S., (1996).  “The System Architect Role in Acquisition Program Integrated 

Product Teams”, Acquisition Review Quarterly, DSMC Press, Fort Belvoir, VA;  Vol.3 No.2. 
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Systems of Systems Definitions and Concepts 

 A complex system of systems is generally viewed as having the following 

characteristics:5 

•  comprised of several independently acquired systems, each under a nominal 

systems engineering process 

•  time phasing between each system’s development is arbitrary and not 

contractually related 

•  system couplings are neither totally dependent or independent, but rather 

interdependent 

•  individual systems are generally uni-functional when viewed from the system 

of systems perspective 

•  optimization of each system does not guarantee overall system of systems 

optimization 

•  combined operation of the systems constitutes and represents satisfaction of an 

overall mission or objective 

 

 Some examples of existing, complex systems of systems that exhibit all of these 

characteristics are: 

•  National Aviation System:  planes, airports, airways, air traffic control 

•  Naval Mine Countermeasures Force:  search, sweep, neutralization systems 

•  Naval Surface Fire Support:  reconnaissance, targeting, weapon systems 

•  Theater Ballistic Missile Defense:  surveillance, tracking, interceptor systems 

                                                           
5  Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”, 

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October 
1991, University of Virginia, Charlottesville, VA. 
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Although it is difficult to know where to draw the line to form a boundary to 

describe a particular system of systems, it is generally viewed as a coherent entity when 

there is a recognition that overall management control over the autonomously managed 

systems has become mandatory.   Unfortunately, it is rare that a large, complex system of 

systems is developed under a single, architecture resulting from a strategic development 

decision.   Component systems are developed one by one, and the full system of systems 

evolves over a period of time that may be measured in decades as various leadership 

entities develop enhanced visions of how systems can be used together to achieve larger 

objectives.  And although each system may have been justified and designed based upon 

sound system engineering principles to fulfill a perceived functional or performance need, 

its requirements and design most likely did not develop in response to concerns over the 

complete system of systems objectives. 

A framework for conducting system engineering at the system of systems (S2) 

level has been developed6, but has not achieved widespread acceptance.  Figure 1 lists the 

elements of S2 Engineering and highlights those aspects that require a quantitative 

analysis of alternatives to upgrading an extant system of systems—the subject of this 

dissertation. 

 

                                                           
6  Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”, 

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October 
1991, University of Virginia, Charlottesville, VA. 
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1. Integration Engineering
1.1 Requirements
1.2 Interfaces
1.3 Interoperability
1.4 Impacts
1.5 Testing
1.6 Software V&V
1.7 Architecture Development

2. Integration Management
2.1 Scheduling
2.2 Budgeting/Costing
2.3 Configuration Mgmt.
2.4 Documentation

3. Transition Engineering
3.1 Transition Planning
3.2 Operations Assurance
3.3 Logistics Planning
3.4 P3I

• Impacts
– Compare system performance vs. requirements
– Assess effects of proposed upgrades
– Utilize M&S to predict performance

• Architecture Development
– Define top-level functional capability
– Assure inter-system performance
– Verify S2 is truly an integrated architecture vs.

random collection of systems
– Attempt to “optimize” overall system performance

• Transition Planning
– Develop transition alternatives/strategy
– Assess and select
– Document

• Pre-Planned Product Improvement (P3I)
– Review all component system P3I plans
– Identify key areas from S2 perspective
– Feed results/priorities back to system activities

System of Systems (S2) Engineering

Requires Quantitative Analysis Of Alternatives
 

Figure 1.  System of Systems (S2) Engineering Elements
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CHAPTER 2 

MANAGEMENT ISSUES 

Usual Approach 

 Often, as in the case of the DoD, a program executive officer will be responsible 

for a collection of system acquisition programs, each of which can be viewed as part of a 

larger system of systems—though this collection may not necessarily fully comprise that 

system of systems.  Were (s)he to have the luxury to architect a complete system of 

systems from scratch, it could be done by applying an extension of the usual system 

engineering approach, treating each acquisition system as a sub-system of the larger 

entity7.   

 Rather than architecting a system of systems in its entirety, the programs 

executive is often faced with deciding how best to upgrade an existing system of systems.  

This generally means either beginning a new acquisition program to add a new system to 

the overall system of systems (additional functionality) or inserting advanced technology 

into an existing system via the upgrade or modification process8.  Significant constraints 

and boundary conditions are placed upon these executives, including budgets, politics, ill-

defined and competing mission objectives, and of course, technology itself.  Many new 

initiatives are underway under the umbrella of  “Acquisition Reform” to encourage 

                                                           
7  Eisner, H., McMillan, R., Marciniak, J., Pragluski, W., “RCASSE:  Rapid Computer-Aided System of 

Systems (S2) Engineering,” Proceedings of the National Council on Systems Engineering, 26-28 July 1993, 
Washington, D.C.  

8  Evans, LtCol. T.R., Lyman, Cdr. K.M, and Ennis, LtCol. M.S., “Modernization in Lean Times:  
Modifications and Upgrades”.  Report of the 1994-1995 DSMC Military Research Fellows, Defense 
Systems Management College Press, Fort Belvoir, VA, July 1995. 



 7

acceleration of systems development time, delivery of affordable systems, and risk 

mitigation through adoption of commercial off the shelf (COTS) components or 

technologies. These attempts at accelerating the usual acquisition cycle include such 

innovative and complementary measures as  Advanced Technology Demonstrations 

(ATDs) and Advanced Capability Technology Demonstrations (ACTDs); often described, 

respectively, as "technology pushes" and "military need pulls"9.   

 Although these initiatives promote the quick fielding of new, militarily useful 

technologies, they do not represent a disciplined approach to considering how best to  

upgrade specific, complex systems of systems under the constraints mentioned above.  

Development of such an approach is the objective of this dissertation effort. 

 The usual approach in DoD to assessing whether to go forward with a new system 

development has been to conduct a Cost and Operational Effectiveness Analysis (COEA).  

The objective of the COEA (or the replacement “analysis of alternatives” procedure) is to 

determine whether the proposed system is the most cost effective alternative to meeting a 

certified military need10.  A typical analysis approach is to utilize modeling and 

simulation (M&S) to estimate the marginal utility of proposed system point designs 

(across a range of system measures of performance (MOPs)) to a larger warfare or 

campaign objective.  The simulation is run on a carefully selected set of applicable 

scenarios with and without the system alternatives to determine the best alternative 

among those hypothesized.  A multi-objective metric that reflects costs and other relevant 

                                                           
9  Lynn, L., “The Role of Demonstration Approaches in Acquisition Reform”,  Acquisition Review Quarterly, 

(1994, Vol. 1, No. 2). 
10 Department of Defense. (1996).  DoD 5000.2-R, "Mandatory Procedures for Major Defense Acquisition 

Programs and Major Automated Information Systems,.  Washington, DC. 
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factors may be used to compare alternatives.  This metric may attempt to reflect expert 

opinion as to military value of the alternatives that are not captured by the quantitative 

analysis due to limitations of fidelity or scope.  However, the primary shortcoming of the 

general approach to making upgrade decisions to a system of systems is that just one 

component system is considered at a time, in a “stovepipe” fashion.  It cannot generate 

the “best” alternative from the system of systems perspective, since it considers 

replacement or addition of just one component system rather than enhancements across 

the full system of systems. 

 A significant observation is that the DoD acquisition community strongly prefers 

quantitative “engineering analysis” over qualitative “decision support” methods such as 

the Analytic Hierarchy Process.  This is perhaps because the community is dominated by 

engineers and scientists who eschew attempts to convert opinion and judgments into 

metrics—hence the heavy emphasis on modeling and simulation as the basis for 

decisionmaking.  A recent article in IEEE Engineering Management shows this to be 

widespread throughout the technical and scientific community.11 

 In summary, we are focused on “upgrading” vs. “design” of systems of systems 

because (1) all proposed systems/upgrades must fit into an extant system of systems, (2) 

there is rarely an opportunity to architect a major system of systems from scratch, (3) 

requirements usually evolve in consideration of legacy systems’ capabilities and 

management, and (4) we can often take advantage of available M&S that can be adapted 

for decision support use if we take the view of upgrading an extant system of systems. 

                                                           
11 Cabral-Cardoso, C. and Payne, R. L., “Instrumental and Supportive Use of Formal Selection Methods in 

R&D Project Selection”, IEEE Transactions on Engineering Management, Vol. 43, No. 4, November 
1996, pp. 402-410. 



 9

 

System of Systems Upgrade Decision Objectives 

 The decision maker is generally trying to solve one of two problems, though not 

always in an explicit manner:  (1) maximize the system of systems’ performance subject 

to a cost constraint or (2) minimize additional cost under performance constraints.  Cost 

constraints usually appear very rigid at the outset.  Recent DoD acquisition reform 

initiatives have softened hard budget allocations in favor of an approach known as  Cost 

as Independent Variable (CAIV).  Application of the CAIV approach requires a 

representation of a system’s performance as a function of cost, referred to as a 

Performance-Based Cost Model (PBCM).  This is almost never applied at the system of 

systems level, however.  Explicit performance constraints are expressed as minimum 

performance requirements and may be self-imposed for political or strategic reasons, or 

perhaps externally mandated due to advanced competition/military threats.  Implicit 

performance constraints are generally due to technological limitations.   Again, the effects 

of component systems’ performance constraints on overall system of systems’ 

effectiveness is almost never well-understood.   

 These upgrade decisions are generally made and reviewed annually for all warfare 

or program areas as part of strategic planning and budgeting processes in DoD.   Upgrade 

options generally take four forms, depending upon which forcing conditions are most 

pressing: 

1. a new type of system (i.e., additional functionality) must be added to the 

system of systems 
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2. additional numbers of existing component systems must be procured 

(enlarging the scope and capability of the system of systems and offering an 

opportunity to insert advanced technology) 

3. existing component systems must be replaced due to aging or obsolescence 

(also offering an opportunity to enhance the system of systems’ performance 

and/or functionality through advanced technology insertion) 

4. existing component systems must be upgraded due to requirements pressure or 

availability of advanced technology 

 

 Of course, final acquisition upgrade decisions are based upon a variety of factors, 

many of which are not amenable to quantification and objective analyses.  However, 

decision makers generally agree that their decisions are easier when a thoughtful analysis 

that provides a measure of the marginal utility of each upgrade option to their system of 

systems’ effectiveness is available.  This is easy to say, but hard to do.  The most 

common approach in DoD to getting a grip on system of systems’ effectiveness is through 

the use of wargames and campaign-level simulations.  Unfortunately, these approaches 

are often insensitive to all but the most dramatic changes in capability.  That is, it is often 

impossible to isolate the contribution to an overall campaign due to small changes in 

component systems’ functionality and/or performance.  Therefore, acquisition trade 

analyses similar to the COEA M&S analysis described above are often done on a scale 

more amenable to quantitative analysis.  Some of the challenges inherent in objectively 

trading off system upgrade options: 

•  the system of systems itself is not well defined (i.e., what is the boundary of 

the system of systems with regard to environment and other systems?) 
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•  the measures of effectiveness (MOEs) for the system of systems are not well-

defined 

•  field data on (MOPs) for existing component systems is limited or altogether 

non-existent (a challenging M&S VV&A issue) 

•  MOPs and CONOPS for upgrade options are not well-defined 

•  budget constraints are not fixed and usually shrinking (both current and out-

year) 

•  marginal utility of proposed additional functionality and/or enhanced 

performance is not well understood 

 

 Regarding models and simulation, a well-accepted and validated representation of 

the system of systems is not usually available that would be suitable for MOE/MOP 

analysis purposes.  This is a reflection of the usual single-system focus as well as the 

tendency to create sophisticated M&S first and seek ways to use it afterwards.
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CHAPTER 3 

APPROACH 

Dissertation Objective 

The dissertation objective is to develop a quantitative process/methodology to 

support system of systems upgrade decisions so we can answer the question:  “From the 

system of systems perspective, where are the limited upgrade resources best applied?” 

The overall approach is to develop and demonstrate a process that will enable a 

domain expert systems architect or engineering team to generate an optimal suite of 

upgrade design requirements subject to stated constraints in accordance with a specified 

MOE for a particular complex system of systems.  This process will be demonstrated on a 

real world, contemporary system of systems in sufficient detail to demonstrate the 

feasibility of the approach—a practical, proof-of-principle demonstration.  The mature 

process will feature a constrained, nonlinear optimization algorithm whose objective 

function is a simulation that represents the defined system of systems’ effectiveness.  This 

is necessary to take advantage of substantial investments in system of systems M&S and 

to avoid unnecessary simplification of the system abstraction required to obtain closed 

form expressions of typical, complex systems of systems behavior.  As is usually the case, 

a balance must be struck between model fidelity and execution time due to intense 

computational burden of advanced M&S.  These considerations will drive selection of the 

system of systems’ MOE/MOP and PBCM structure. 
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Proposed System of Systems Quantitative Decision Support Process 

 Key steps of the process are as follows: 

1. Define the overall system of systems, its components, and its missions or 

scenarios of interest.  

2. Define critical MOPs and MOEs: 

a) overarching MOE for the full system of systems that expresses the 

decision makers’ objective 

b) one characteristic MOE for each system and how it contributes to the 

overarching MOE 

c) component systems’ MOPs 

3. Specify initial boundary conditions for the upgrade process 

a) cost constraints on component systems and the overall system of systems 

b) technological and requirements constraints on MOPs 

c) force structure constraints, such as minimum and maximum numbers of 

each type of system 

d) potential secondary MOE threshold function constraint 

4. Formulate Performance Based Cost Models (PBCM)  for each component system 

by parameterizing system cost as a function of its MOPs. 

5. Formulate an appropriate first order model that will capture the mapping from 

component system MOPs to system MOEs and eventually the overarching MOE.  

Alternatively, select an appropriate M&S implementation that evaluates the 

desired objective function and MOE constraints as a function of component 
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systems’ MOPs.  (Constructing expressions that model the system of systems’ 

top-level performance is important for initial problem understanding, but will 

probably not be sufficient to adequately capture system interactions and 

performance drivers.  It is envisioned that this step will expose the requirement to 

utilize advanced M&S to represent sufficient complexity necessary to provide 

credible analyses to support decisions regarding complex, high value systems.) 

6. Solve the resulting constrained, nonlinear (stochastic) system of systems 

performance optimization problem under sets of constraints and scenarios as 

defined by the expert system architect that are sufficiently broad to provide a 

complete range of applicable upgrade options to the decision maker.  [A solution 

to a specific constrained problem formulation yields parameters that represent one 

system of systems requirements suite, or upgrade option.  The solution will still 

require further evaluation to determine design implications for each system.  In 

this way, the process provides support to the decision process rather than make 

the decision per se.] 

7. Effectively communicate results of the process to the decision maker or decision 

making body. 
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Development Approach 

The process will be developed utilizing an evolutionary prototyping approach in a 

cycle of problem formulation, solution, evaluation, refinement, expansion and 

generalization.  Critical stages in the development are as follows: 

 

•  Formulate the general nonlinear optimization problem for this process.  The particular 

form has two nonlinear constraints, upper and lower MOP bounds, and a nonlinear 

objective function, as shown in Chapter 4.  

•  Apply the optimization process to an existing, complex system of systems for which 

the author has current domain expertise:  naval mine countermeasures (MCM).  

Model formulation has two parts: 

1. System Performance Model.  A simplified, but realistic performance model of 

a dual system of systems is described in Chapter 5, in which closed form 

expressions for MOPs, MOEs, and constraints are developed.  Through this 

example, it became clear that the objective function is generally a non-linear 

function of all component systems’ MOPs.  This non-linear objective function 

therefore represents complex interactions between component systems.  As 

simplifying assumptions (engagement rules, environmental dependencies, etc.) 

are relaxed, it becomes impractical to obtain closed-form expressions that map 

MOPs up to system of system level MOEs.  However, it is assumed that the 

rules governing the interaction between the component systems and the 

environment are known and can be simulated. 
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2. System Cost Model.  A variant of a “Cost-Based Performance Model” is also 

formulated in Chapter 5, in which cost is parameterized by the MOPs.  

Essentially, each MOP is considered to be a cost driver to an identifiable 

subsystem, who’s cost can be estimated based on the cost-driver MOP values. 

•  Investigate various applicable optimization techniques and select the most promising 

for this particular application.  Although constrained, nonlinear optimization does not 

appear to have yet been applied to the system of systems upgrade problem, 

optimization and simulation have been combined before, and the literature has been 

further examined for practical insights.12,13,14  Algorithm efficiency has been a 

primary consideration, with the long term perspective that the objective function will 

eventually be evaluated via simulation (see Chapter 6). 

•  Solve the MCM closed form problem to gain insight into process viability and 

experience with the candidate search techniques.  Then, revise the process and general 

problem formulation as necessary. 

•  Generalize and demonstrate the process for the case where it is impractical to obtain 

closed form expressions for the objective function to sufficiently represent the 

complex interactions of systems, environment, and scenario.  For a complex system of 

systems, the use of advanced modeling and simulation will be necessary to overcome 

the difficulties in obtaining closed form expressions for the objective function.  

                                                           
12 Lee, K-H, Eom, I-S, Park, G-J, Lee, W-I, (1996).  “Robust Design for Unconstrained Optimization 

Problems Using the Taguchi Method”, AIAA Journal, Vol.34, No.5, 1059-1063. 
13 Fu, M.C., (1994).  “Optimization via Simulation:  A Review”, Annals of Operations Research, 53, 199-

248. 
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Embedding a simulation inside a  non-linear, constrained search algorithm has been 

done before to determine control settings on a variety of single system simulation 

types15,16.  Extension of that application to efficiently determine system design 

parameters in the system of systems context described here can revolutionize the way 

campaign-level M&S is utilized to support acquisition decisions.  A variety of  

simulation products and system domains were considered for this proof-of-concept 

analysis.  Candidate system of system domains that were investigated to varying 

degrees include: 

•  Naval Air Defense.  Systems:  aircraft, missiles, radars, acquisition and 

tracking software, etc. Available simulation:  TACAIR (Tactical Air). 

•  Anti-Submarine Warfare. Systems:  submarines, torpedoes, sonars.  Available 

simulation:  ORBIS (Object Oriented Rule Based Interactive Simulation).   

•  Ballistic Missile Defense. Systems:  sensors, platforms, battle management 

system (identification, tracking, targeting, battle damage assessment, etc.) and 

interceptor missiles/devices.  Available simulation:  EADSIM (Extended Air 

Defense Simulation).   

•  Naval MCM.  Systems:  ships, aircraft, detection, classification, identification, 

neutralization sensors and devices. 

                                                                                                                                                                             
14 Glynn, P.W., (1989).   “Optimization of Stochastic Systems via Simulation”, Proceedings of the 1989 

Winter Simulation Conference, ed. E.A. MacNair, K.J. Musselman, P. Heidelberger, IEEE, Piscataway, 
NJ, 90-105. 

15 Hill, S.D. and Fu, M.C., (1997).  “Optimization of Discrete Event Systems via Simultaneous Perturbation 
Stochastic Approximation”, Transactions of the Institute of Industrial Engineers, Special Issue on 
Operations, Engineering, and Simulation, Vol. 29, Issue #3, pp.233-243. 

16 Kleinman, N.L., Hill, S.D., and Ilenda, V.A., (1997).  “SPSA/SIMMOD Optimization of Air Traffic 
Delay Cost”, Transportation Science, to appear. 
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•  Air Traffic Control.  Systems:  aircraft,  radars, positioning systems, tracking 

systems, air traffic delays.  Available simulation:  SIMMOD (Simulation 

Model).   

 

Balancing simulation (1) availability, (2) validity, (3) applicability (including 

PBCM aspects), (4) efficiency, and (5) author’s domain expertise, it was decided to 

generate an analytic naval MCM system of systems model (Chapter 5) and implement it 

both analytically (expected value sense) and as a Monte Carlo Simulation using 

MATLAB  (Chapters 7 and 8).  This facilitates a self-consistent comparison of the closed 

form analytic model results and those obtained via simulation. 

Finally, the fully developed process should be compared against existing 

processes and evaluated for its utility to the decision maker when attempting to upgrade a 

complex system of systems.  We are investigating a new process for supporting 

acquisition decisions, which is not unlike an expert system, except that we have no 

accepted knowledge base to capture.  For expert systems, validation efforts generally 

concentrate on comparisons against documented test cases.  O’Keefe et al17, recommend 

testing against a small number of complex cases and asking a panel of experts to assess 

how well the process handles them. 

The appropriate process to compare against is that of the COEA.  Unfortunately, 

utilization of quantitative methods in COEAs are somewhat unique to each study, and 

concentrate on a single system.  Furthermore, optimization methods have not been 

                                                           
17 O’Keefe, R.M, Balci, O., and Smith, E.P., “Validating Expert System Performance”, IEEE Expert, 

Winter 1987, pp. 81-87. 
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applied in COEA analyses in the sense of a rigorous “search” for the best set of system 

requirements.  Rather, a “best” option is selected from a finite set of point 

designs/requirements.  

The comparison approach selected here (Chapter 7) is to compare system of 

systems optimization results to results obtained by optimizing one system at a time.  This 

verifies implementation, self-consistency, and quantifies the improvement to be realized 

in taking the system of systems viewpoint for the MCM situation.  It also highlights 

assumptions (implicit and explicit) that a single system analyst must make concerning the 

other systems in the system of systems, and assesses the impact of self-consistent but 

erroneous assumptions.
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CHAPTER 4 

 

GENERAL SYTEM OF SYSTEMS PERFORMANCE MODEL  

 Consider n types of systems, Si, that comprise a system of systems, S, with the 

following characteristics and constraints: 

 

•  { }S S Sn= 1 , ,l  [note:  could index as Sij to indicate the jth system of type i) 

•  There are mi systems of type i, and the total number of systems is 

m mi
i

n

=
=
∑

1
, { }m = m mn1, ,l .  The minimum number of each system type 

required for the system of systems is designated as mL . 

•  Each system type has a set of ri measures of performance (MOP): 

{ }p i i i rp p i= , ,, ,1 l .  Thus each pi has dimension ri and r ri
i

n

=
=
∑

1
. 

•  Each system type has one overall measure of effectiveness (MOE), 

( )Ei i n= f , , ,m p p1 l , developed specifically to reflect how it contributes to 

the overarching MOE for S.  Each component system’s effectiveness may 

depend upon the MOPs of other systems in the system of systems as well as 

how many of each type.  Implications of this point are further discussed below 

and are illustrated by the example in Chapter 5.  
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•  Each system’s MOPs are constrained by low performance threshold 

specification values, p i
* , and realistic technology limitations at the high 

performance end, resulting in the following upper and lower bound 

constraints: p p pi
L

i i
U≤ ≤ , or p p p jij

L
ij ij

U≤ ≤ ∀, .  Note that for some 

parameters, such as navigation accuracy, small values are better than large 

values, hence p i
*  is not simply the lower bound, p i

L .  In the most general case, 

these MOP constraints could be functions of time as well, in anticipation of 

requirements creep and advancing technology. 

•  Each system’s unit cost is a (possibly nonlinear) function of performance, 

expressed in terms of its critical MOPs:  ( )ci i i= h p , { }c = c cn1 , ,� .  We 

denote ( )ci i i
* *h= p  as the cost associated with the threshold system.  This 

performance based cost model (PBCM) is generated by considering each 

critical MOP as a cost driver of a particular subsystem, whose cost can be 

parameterized on that MOP.  (Clearly, more complex cost models representing 

various aspects of life cycle costs could be formulated, but this form is 

sufficiently complex to demonstrate feasibility.)  Total system of systems’ cost 

is then:  C T= mc . 

  The system of systems has one overarching performance metric, E, a function of 

each system’s overall MOE and the number of systems: ( )E E En= g , , ,m 1 � .  If any Ei  

depends upon not just pi  but some elements of p j  where i j≠  then the system of 

systems is interdependent.  So in general, E will turn out to be complicated function of 
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the full set of component systems’ MOPs:  ( )E n= G , , ,m p p1 � .  That is, some systems’ 

performance impacts other systems’ performance. 

 When describing a system of systems comprised of relatively simple component 

systems, or utilizing simplified models of complex systems, each ( )f , , ,i nm p p1 � can be 

expressed in closed form.  The simplified (but realistic) mine countermeasures example 

in Chapter 5 develops a closed form, nonlinear expression for E, which is intuitive and 

quite useful.  However, MOPs are themselves typically sensitive to scenarios, concepts of 

operation (CONOPs),  and environments.  So in order to obtain representative, robust, 

full fidelity, results it will generally be necessary to utilize a simulation to evaluate each fi, 

and of course, G. 

 The usual approach when considering upgrades and/or new systems is to treat 

them individually, perhaps never even defining the full system of systems to which it 

belongs.  That is, define one overarching MOE (or attribute) for the component system 

and evaluate alternatives in accordance with a cost/MOE ratio.  In some cases, multi-

attribute evaluations are conducted, (with a weighted factor representing impacts on the 

larger system) but this is not widely done in DoD systems Cost Effectiveness and 

Analysis (COEA) studies.  This individualized approach is equivalent to assuming that all 

component systems’ MOEs are independent of each other.  Under that assumption, 

maximizing overall effectiveness, E, is a matter of maximizing each individual system’s 

effectiveness, perhaps subject to an overall constraint on cost.  However, even this 

approach of constraining overall system of systems’ cost is not widely done, as the 

tendency is to handle each system and its constraints individually, which can lead to poor 
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overall decisions from the system of systems perspective—especially with limited 

resources. 

 It should also be noted that the set of MOEs appropriate for this system of systems 

analysis, { }Ei , are not necessarily the same MOEs that are appropriate for evaluating 

each system apart from the full system of systems.  A single system evaluation attempts 

to reflect requirements on the system’s performance levels by attempting to combine all 

critical design MOPs and measures of value to the larger system of systems into one 

decision metric.  When considering the full system of systems as proposed here, the 

individual systems MOE set, { }Ei , should be formulated specifically to represent each 

system’s contribution to the overarching quantitative effectiveness measure, E.  Looking 

ahead to the optimization algorithm, it will not be necessary to express each  Ei 

separately, but it is good to do so for later insight as to what the particular (or marginal) 

contribution of each system is to the overarching MOE. 

 In addition to the constraints on measures of performance shown above, several 

other constraint types can occur and should be considered:  

•  “Force structure” constraints.  There is generally a practical operational or 

programmatic limitation as to how many systems of each type can comprise 

the system of systems, known as “force structure” constraints:   

m m mUL ≤ ≤ , or m m m ii
L

i i
L≤ ≤ ∀, . 

•  System effectiveness constraints.  In a similar fashion to the MOP constraints, 

there is generally a minimum threshold for each system’s measure of 

effectiveness (MOE).  This can be generated through a technical performance 
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analysis or (more likely) because the existing component system performs at 

the threshold level and it is desired to meet or exceed that level.  Therefore, 

the threshold MOE for each system, Si , is:  ( )E E ii i
L

n i
* * *f , , , , .= ≤ ∀m p p1 l    

When trying to minimize cost subject to performance constraints, there should 

be a minimum overall system of systems MOE constraint as well: E EL ≤ . 

•  Cost constraints.  When applicable, there can be cost constraints on individual 

systems as well as the full system of systems:  C CU≤  and c c≤ U .  Implicitly, 

c  is also bounded below due to the presence of minimum performance 

thresholds as discussed above.  Hence, we have: c c c* ≤ ≤ U .  For the 

purposes of this study, we will take the system of systems viewpoint, and 

consider only the cost constraint at the macro level, C CU≤ . 

•  Secondary MOE as quality constraint.  As will be illustrated by the MCM 

example in Chapter 5, it may be necessary to specify a secondary overall MOE 

for the system of systems which will act as a quality constraint.  This can be 

necessary in the case where the overall MOE is time to complete the system of 

systems functionality.  To ensure that the function is completed to a minimum 

performance threshold it is necessary to add the secondary MOE as a quality 

constraint: q , q T( )m p , , p1 nl ≥ . 

 Definition of system of systems upgrade options is accomplished through control 

of the constraint set.  For example, if only certain component systems are candidates for 

upgrades (sometimes referred to as “advanced technology insertion”), then their 

parameters can be constrained to current values—in this manner, the analysis retains full 
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consideration of their influence on the overall system of systems while still investigating 

upgrade options and their effects on the stable system components as well.  The option of 

replacing some number of existing component systems with advanced systems of the 

same type while retaining some of the existing systems can be expressed by fixing mi and 

defining a new system, Si+1, of essentially the same type but with its MOPs and cost 

allowed to be variable. 

 There are two general cases of interest in when considering upgrading (or 

designing) an existing system of systems, summarized below: 

Case 1:  Maximize { }S S Sn= 1 , ,� system of systems performance subject to force level, 

technology, cost, and performance threshold constraints: 

 

Max ( ) ( )E E En n= =g , , , G , , ,m m p p1 1l l  where ( )Ei i n= f , , ,m p p1 l , subject to: 

 

m m mUL ≤ ≤  

p p pi
L

i i
U≤ ≤  and E E ii i

* ,≤ ∀  where ( )Ei i
L

n
* * *f , , , .= m p p1 �  

C CU≤  and c c≤ U  

[ ( )q qTm p p, , ,1 � n ≥ , potential secondary MOE performance threshold function 

constraint] 
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Case 2:  Minimize { }S S Sn= 1 , ,� system of systems cost subject to performance, force 

level, technology, and individual systems cost constraints: 

 

Min C T= mc  , subject to: 

 

E EL ≤  where ( ) ( )E E En n= =g , , , G , , ,m m p p1 1l l  and ( )Ei i n= f , , ,m p p1 l , 

m m mUL ≤ ≤  

p p pi
L

i i
U≤ ≤  and E E ii i

* ,≤ ∀  where ( )Ei i
L

n
* * *f , , , .= m p p1 l  

[ ( )q qTm p p, , ,1 l n ≥ , potential secondary MOE performance threshold function 

constraint] 

 

When addressing the system of systems upgrade from the CAIV perspective, we 

would optimize a sequence of Case 1 problems formed by discretely parameterizing the 

system of systems cost constraint.  This is accomplised by defining a sequence of upper 

cost bounds, C Ck
U = ⋅costfactork

* , where C*  is the cost to produce the threshold system 

of systems defined by the parameter set, { }m p pL
n, , ,* *

1 l . 
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CHAPTER 5 

 

MINE COUNTERMEASURES  SYTEM OF SYSTEMS PERFORMANCE MODEL  

 This appendix describes a simplified, but realistic model of naval mine 

countermeasures (MCM) operations and systems.  This limited system of systems 

consists of two systems:  a minefield reconnaissance system and a separate, mine 

neutralization system.  The reconnaissance system first conducts a reconnaissance survey 

of the entire suspected minefield area, attempting to detect, classify, and localize mine-

like objects.  These contacts are then passed to the neutralization system, which must re-

acquire the contacts and neutralize each mine-like object, if necessary (that is, if the mine-

like object is indeed identified as an actual mine).  System descriptions, functionality, 

measures of effectiveness, measures of performance, and PBCM are provided in 

sufficient detail to support system of system upgrade decisions and trade-off analyses.  

Before formulating the system of system’s model as defined in Chapter 4, we first define 

the following mine countermeasures analysis terminology: 

α  Desired MCM area clearance rate:  at least 100α percent of the mines  
  have been cleared. 
A  Reconnaissance system area coverage rate during detection pass (nm2/day) 
dmines  Average distance between mines (yards) 
F0  Number of false targets contained in the MCM area, Sminefield 
λ  Minefield density (mines/nm2) 
λft  False target (non-mine minelike object) density (objects/nm2);   
M0  Number of mines originally laid in the MCM area, Sminefield 

P α Probability that the MCM area will be cleared to the desired minefield 
clearance rate, α. 

p Mine clearance probability:  probability that a mine randomly placed in the 
MCM area will be cleared. 

Pc Probability of correctly classifying a detection as mine-like or nonmine-
like, at range Rc 
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Pd  Detection probability at range Rd 
Pfa  Detection false alarm rate, (false alarms/nm2) 
PID  Probability of correct ID; PID =1 assumed for military minefields 
PL  Localization (or re-acquisition) probability 
Pn  Neutralization probability; Pn =1 assumed for these operations 
Rc  Minelike object classification range (yards) 
Rd  Target detection range (yards) 
Rr  Range at which S2 has an 80% chance of re-acquiring S1’s detections 
σ  Standard deviation of minelike object localization error (yards) 
Sminefield  Area to be searched (nm2), referred to as the MCM area 
Tc  Time required to classify a mine (min) 
Tclass  Time required to classify all detections within Sminefield (hours) 
Tcf  Time required to classify a non-mine (min) 
Tdetect  Time required to complete detection pass through Sminefield (hours) 
Tn  Time spent neutralizing (prosecuting) a classified mine (min) 
Tpf Time spent prosecuting a non-mine classified as a mine (min) or time 

spent unsuccessfully attempting to re-acquire a correctly classified mine. 
Vtransit  Reconnaissance system speed during detection and transit (knots) 
Vclass  Reconnaissance system speed during classification operations (knots) 
 

 The overarching MOE, E, for this MCM system of systems, S, is the time required 

to achieve a specified MCM area clearance rate, α, with specified confidence level, β.  

Knowing the form of E guides our performance model formulation for the component 

systems, S1 and S2.  For the purposes of this analysis, we assume there is only one system 

of each type, therefore n=2 and { }m = 11, . 

For the purposes of analysis, we will need to specify the mission scenario and 

minefield that is to be cleared.  The examples used in the analyses to follow will assume 

an MCM area of 20 nm2, seeded with 100 mines, corresponding to Sminefield=20 and 

M0=100.  The mines are laid out in four rows of 25 each, with a 400 yard separation 

between mines within each row, and 800 yards between the rows.  Hence dmines=600 

yards.  Figure 2 illustrates a minefield layout with these characteristics.  
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Figure 2:  Minefield Layout and Area to be Searched/Cleared 

 

 

S1:  MCM Reconnaissance System 

 

This system is used to survey a suspected minefield area, performing the typical 

MCM minehunting functions of detection, classification, and localization.  It is assumed 

here that the area is completely covered first with a detection pass.  Then, classification 

(done at much reduced standoff range necessitated by the much higher frequency sensor) 

of each detected object is attempted.  Localization is done concurrently with detection and 

classification, and therefore takes no additional time.  In consideration of the overarching 

system of systems measure of effectiveness, the MOE for S1 is then: 

E

ft ft

1 =
= ⋅ =

Time (hours) to complete reconnaissance of area S
         given ,  and M  where M S  and F S .

minefield 

0 0 minefield 0 minefieldλ λ λ λ, ,
 

The time to complete the detection pass over the area is simply: 

 T 24 S 24 M
detect

minefield 0= ⋅ = ⋅
⋅A Aλ

.  

Following the detection pass over the MCM area, the reconnaissance system will 

its localized contacts and attempt to classify each contact as either mine-like or nonmine-
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like.  (Later, the neutralization system will attempt to re-acquire and neutralize all 

declared mine-like objects.)  In order to calculate time to complete classification, we must 

know how many detections are expected to be made, and of what type: 

Dm = ⋅P Md 0    = Number of detected mines 

Dfa = ⋅P Sfa minefield  = Number of mine false alarms 

Dft = ⋅P Fd 0   = Number of false targets detected 

 To generate expressions for Tc  and Tcf, we must assume a specific classification 

concept of operations (CONOP).  If we assume that S1 takes the shortest route between 

contact locations and then executes a semi-circle of radius Rc about the contact location, 

then an approximate expression for the time to classify is: 

class

c

transit

mine
c V2000

R60
V2000

d60
T

⋅
⋅

+
⋅

⋅
=

π
  

 What about time spent attempting to classify a target which is in reality a false 

alarm?  Lets assume that the CONOP would be to execute a full circle about the contact 

location in the event that the first classification pass was unsuccessful during the first 

half-circle maneuver.  The time required to travel to the contact and execute the full circle 

is then: 

transit

mine
c

class

c

transit

mine
fc

V2000
d60

T2

V2000
R260

V2000
d60

T

⋅
⋅

−=

⋅
⋅

+
⋅

⋅
=

π

 

As will be seen in the Performance Based Cost Model (PBCM) formulation later in this 

chapter, this formulation for Tcf  keeps it independent of cost drivers for the classification 

sonar performance, which reduces the number of MOPs necessary in the optimization 
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problem, as the terms d mine  and Vtransit will be considered as fixed for the scenario.  The 

time (hours) required to classify all detections is then: 

( )[ ]

( )
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⋅
−









⋅
−−+=

++−+

0dminefieldfa
transit

mine
c0d

transit

mine
cc0dcc
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V2000
d
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and we can now formulate the system measure of effectiveness: 

( )[ ]E1
1

60
1=

⋅
⋅

+ + − +
24 M P T P M P T P M + T P S P F0

c c d 0 c cf d 0 cf fa minefield d 0λ A
( )    










⋅
⋅

−=
transit

mine
ccf V2000

d60
T2T where . 

Under the assumptions stated above, we can now list the minimum set of 

measures of performance that are necessary to formulate an expression for E1 as well as 

describe performance parameters necessary to formulate E2. 

{ }p1 1 1 1 5= p p, ,, ,� , hence r1 =5. 

p1 1, = A =   
2 R  V

2000
d⋅ ⋅

   [This expression represents a two-sided detection sonar.  A 

typical approximation is that for a particular 
sonar/target/environment set, Rd is determined by fixing Pd and 
Vtransit.  For the PBCM and analysis, we assume Pd=0.90 and 
Vtransit=7 knots.] 

 
p1 2, P= c  [For this analysis, the sidescan sonar’s Pc is determined at fixed 

classification range, in this case, we set Rc=70 yards.]  
 
p1 3, P= fa  

p1 4, = Tc  
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p1 5, =σ  [The localization accuracy is a critical parameter for re-
acquisition, a major function of S2.  As a simplification, we have 
chosen to neglect its effect on S1’s re-acquisition during the 
classification pass, because the re-acquisition would be done 
with the identical sensor suite that performed the initial 
detections.] 

 

 Therefore, the final form of the MOE for S1 as a function of the MOP vector is: 

( ) ( )[ ]

( )[ ]

( ) ( )( )[ ]
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=
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d3,1d2,1transit4,1d4,12,1
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where T
d

Vtransit
mine

transit
=

⋅










2000
. 

Note that this MOE does not reflect the quality to which the reconnaissance is 

accomplished, only how long it takes.  If we were considering the effectiveness of the 

stand-alone reconnaissance system, then we would want to have E1  reflect the other 

MOPs as well, in order to effect a measure of “minefield characterization”.  

Reconnaissance survey quality will be reflected in E2, via expressions that utilize all the 

elements of p1 that affect initialization of the neutralization function provided by S2.  

Additionally, a minimum threshold quality constraint at the system of systems level will 

also be imposed. 
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S2:  MCM Neutralization System 

 

 The MCM neutralization system attempts to re-locate, identify, and neutralize all 

minelike objects detected and classified as such by the reconnaissance system.  For the 

purposes of this analysis, the effects of identification and subsequent neutralization are 

ignored, and we will focus on re-acquisition of all minelike objects passed to S2  from S1 

as contacts.  In consideration of the overarching system of systems measure of 

effectiveness, the MOE for S2 is: 

 

E2 = Time  (hours) to complete neutralization and neutralization attempts on all 

contacts/objects classified as mine-like by the reconnaissance system, S1. 

 

 Clearly, E2 will depend upon how many objects of what type are detected and 

subsequently classified as minelike objects by S1.  Since the neutralization system will 

attempt to neutralize all declared mine-like objects, it is important to know how many 

such objects are expected.  The following describes the expected results of the combined 

detection and classification activities of S1: 

 

C Dm m= ⋅ = ⋅ ⋅P P P Mc d c 0   Number of mines correctly classified as mine-like 

( ) ( )
( ) ( )

C D Df fa ft= + ⋅ −

= ⋅ + ⋅ ⋅ −

1

1

P

P S P F P

c

fa minefield d 0 c

 Number of non-mines incorrectly classified as 

mine-like 
 

E2 can now be formulated using the following measures of performance:    
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{ }p2 2 1 2 3= p p, ,, ,� , hence r2 =3. 

 

p2 1, = R r , the contact localization error standoff which yields an 80% probability of re-
acquisition. 

 
p2 2, = Tpf  

p2 3, = Tn . 

We model the probability of re-acquisition (a.k.a. localization) as:  P e eL
. .

,

,= =
− −σ

4 481 4 481
1 5

2 1Rr

p
p , 

which yields PL=0.80 when R r = σ .  This model assumes an exponential decay 

depending upon localization accuracy, an S1 MOP, and re-acquisition capability of the 

neutralization system,  an MOP for S2.  Dependence of PL  on Rr is illustrated in Figure 3.  

Also indicated is the feasibility region generated by the upper and lower bounds for Rr, 

which correspond to technology and threshold system limitations presented in this 

chapter’s PBCM section. 
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Figure 3  Probability of Localization as a Function of Re-Acquisition Range 
 

Therefore,  

E2    =     {time to successfully re-acquire and neutralize minelike objects} 

 +  {time spent in unsuccessful attempts to re-acquire MLOs} 

 +  {time spent prosecuting non-minelike objects classified incorrectly) 

Curves correspond to: 
σ=42, 48, 60, and 90 
yards, top to bottom. 

Lower bound 
Upper bound 
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S:  MCM Clearance System of Systems 

 

 For the full system of systems, the overarching MOE is then simply the total time 

to complete clearance operations: 

E E E= = +G( , , )m p p1 2 1 2  

However, an overall performance or quality constraint must be imposed on the clearance 

operations, otherwise the optimization will find a very fast yet ineffective system of 

systems.  Specifically, this constraint specifies an MCM area clearance rate, α, with an 

associated confidence level, β.  This should actually be considered as a secondary quality 

MOE that has a threshold requirement.  Recall that p is to be the probability that a 

particular mine will be cleared.  It is clear that: 

 p p
p

p= =
−

P P P Pd c L d 1 2
4 481

1 5

2 1
,

.e
,

,     

and the expected number of mines successfully cleared is pM0. 

Then the probability that the number of cleared mines, Mc, is at least αM0, is 

called the clearance confidence level, Pα, and binomially distributed as follows: 
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( ) ( )( )P M Mc 0α
α

α= ≥ = − −

=
∑P C p pi

M i M i

i M
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For large M0 this can be approximated with the normal distribution in accordance with 

DeMoivre’s theorem as follows: 
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where Φ is the cumulative probability function for X N~ ( , )0 1 .  This is intuitively clear, 

for in the case where  p=α=0.95, Pα=0.5, indicating that we would then have a 50-50 

chance of clearing 95% of the mines. Pα rapidly rises as a decreases.  For example, with 

α=0.90, p=0.95, and M0=100, then P.90=0.971.  Figure 4 illustrates the behavior of Pα for 

a selection of values for p. 

 The threshold performance constraint at the system of systems level is then: 

Pα β≥ , or 1
1

−
−

−









 ≥Φ

α βM M
M

0 0

0

p
p p( )

.   

Unfortunately, this added constraint at the system of systems level is nonlinear, affecting 

our choice of optimization algorithms (see Chapter 6).  As an illustration with realistic 

values, choose α=0.90, M0=100, and β=0.95.  In other words, with 100 mines present, we 

want to be at least 95% confident that at least 90 mines will be cleared: 

0 95 1
90 100
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.
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−
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. .  This implies that 
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p ≥ 0 9394. , or p p
p

p= = ≥
−

P P P Pd c L d 1 3
4 481

1 5

2 1 0 9394,
.e .

,

, .  Unfortunately, looking ahead to 

the PBCM, the system MOPs under consideration will not support this level of 

performance (recall that Pd will be fixed at 0.90).  Relaxation of this constraint consistent 

with α=0.80, M0=100, and β=0.90 will yield a constraint that p ≥ 0 846. .  Therefore, with 

with 100 mines present, we will be satisfied to be at least 90% confident that at least 80 

mines will be cleared.  The practical constraint we will use is therefore: 

q( P P P Pd c L dp ,p1 2 ) e .,
.

,

,= = = ≥
−

p p
p

p
1 2

4 481
1 5

2 1 0846  

 Figure 5 is a parameter dependency diagram (PDD) of the full system of systems.  

The PDD illustrates the interdependence of the two systems’ parameters and how they 

map to the overall system of systems.  Also illustrated is the dependence of the secondary 

quality  MOE that constitutes a constraint on overall system of systems performance. 
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Figure 4:  Clearance Confidence Level as a Function of Required Clearance Rate  
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Figure 5:  Mine Clearance System of Systems Parameter Dependency Diagram 
α Desired MCM area clearance rate:  at least 100α percent of the mines have been cleared. 
A Reconnaissance system area coverage rate during detection pass (nm2/day) 
dmines Average distance between mines (yards) 
F0 Number of false targets contained in the MCM area, Sminefield 
λ Minefield density (mines/nm2) 
λft False target (non-mine minelike object) density (objects/nm2);   
M0 Number of mines originally laid in the MCM area, Sminefield 
P α Probability that the MCM area will be cleared to the desired minefield clearance rate, α. 
p Mine clearance probability;  i.e., probability that a mine in the MCM area will be cleared. 
Pc Probability of correctly classifying a detection as mine-like or nonmine-like, at range Rc 
Pd Detection probability at range Rd 
Pfa Detection false alarm rate, (false alarms/nm2) 
PID Probability of correct ID; PID =1 assumed for military minefields 
PL Localization (or re-acquisition) probability 
Pn Neutralization probability; Pn =1 assumed for these operations 
Rc Minelike object classification range (yards) 
Rd Target detection range (yards) 
Rr Range at which S2 has an 80% chance of re-acquiring S1’s detections 
σ Standard deviation of minelike object localization error (yards) 
Sminefield Area to be searched (nm2), referred to as the MCM area 
Tc Time required to classify a mine (min) 
Tclass Time required to classify all detections within the search area, Sminefield (hours) 
Tcf Time required to classify a non-mine (min) 
Tdetect Time required to complete detection pass through search area, Sminefield (hours) 
Tn Time spent neutralizing (prosecuting) a classified mine (min) 
Tpf Time spent unsuccessfully attempting to re-acquire a detection (min) 
Vtransit Reconnaissance system speed during detection and transit (knots) 
Vclass Reconnaissance system speed during classification operations (knots) 
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Performance Based Cost Model (PBCM) and Parameter Bounds  
 

The reconnaissance system performance ranges and cost modeling are derived 

from design considerations for the U.S. Navy’s Long-Term Mine Reconnaissance System 

(LMRS), a submarine-based autonomous undersea vehicle (UUV)18.  The neutralization 

system performance ranges and cost models are based upon a combination of LMRS 

factors, certain U.S. Navy operational MCM systems, and commercial off-the-shelf 

(COTS) information regarding marine navigation systems.  Due to classification and data 

availability issues, considerable license has been taken in developing the PBCM, with the 

primary intent to provide sufficient complexity and realism to show feasibility of the 

methodology. 

 MOPs developed earlier in this chapter are now grouped by the major sub-system 

to which they act as major cost drivers.  The PBCM provides an approximation of 

subsystem cost as a function of those primary subsystem MOPs.  Moreover, since this 

type of MCM system would be produced in very small numbers, only developmental 

costs are considered, neglecting the full system life cycle costs.  Commercial off-the-shelf 

(COTS) or non-developmental item (NDI) technologies are also assumed so that 

developmental costs approximate R&D and production costs combined.   The subsystem 

and associated MOPs are as illustrated in Figure 6.  Costs are then added together to get 

total cost.  The cost constraint indicated in Figure 15 is parameterized by “costfactor” 

which is a factor on the threshold system costs indicating the maximum amount the 

                                                           
18 Benedict. J. R., (1996).  Final Report:  Long-Term Mine Reconnaissance System (LMRS) Cost and 

Operational Effectiveness Analysis (COEA), Johns Hopkins University Applied Physics Laboratory 
Report NWA-96-009, September 1996. 
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decisionmaker is willing to consider spending.  In this way, we will consider a series of 

optimization problems that will provide insight from the CAIV perspective. 

 

Mine Clearance System MOE/MOP Structure

A1.  Detection Sonar
A=area coverage rate

A2.  Classification Sonar
Pc=Prob(classification)

A.  Sensors

D.  Navigation
σ=Localization accuracy

C.  Vehicle
Tc=Time to classify

B.  Software
Pfa=False alarm rate

S1:  Reconnaissance System
E1=Time to complete reconnaissance

G.  Neutralize
Tn=Time to neutralize

F.  Vehicle
Tpf=Time to prosecute

false target

E.  Sensors
Rr=Target re-acq range

S2:  Clearance System
E2=Time to complete neutralization

S:  Mine Clearance System of Systems
E=E1+E2=Time to clear minefield

 

Figure 6  Mine Clearance System of Systems MOE/MOP Structure 
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A.  System S1:  Sensors 

 There are two sonars in the sensor subsystem:  detection and classification sonars.   

A1. Detection Sonar 

 Critical parameters for search sonars are probability of detection, range, maximum 

vehicle speed at which the sonars can remain effective due to flow noise.  They are of 

course sensitive to several environmental parameters as well as assumed target 

characteristics.  The approach here is to assume one environment, fix Pd at 0.90, speed at 

7 knots, and utilize the modeled results in Benedict18 to derive the following PBCM for 

the overall MOP, area coverage rate, A (nm2/day).  The following table represents the 

PBCM: 

A (nm2/day) 10 57 82 94 

Cost ($M) 3 4.483 7.655 11.445 

 

The following routine fits a third order polynomial to the data, and will form the cost 

model:

% PBCM for A1, Search Sonars
x=[10,57,82,94]
y=[3,4.483,7.655,11.445]
p=polyfit(x,y,3)
x2=10:.1:100;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Area Coverage Rate (nm^2/day)')
ylabel('Cost ($M)')

» a1cost
x = 10 57 82 94
y = 3 4.483 7.655 11.445
p = 4.5034e-005 -0.0053861 0.21593 1.3342
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Therefore, p p pL U
1 1 1 1 1 1100, 10, , ,

*= 10,   =  = , and 

( )h (, , , , ,1 1 1 1 1 1 1 1 1 1p p p p= 4.5034e - 005)  -  0.0053861 +  0.21593 + 1.33423 2 . 
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Figure 7:  PBCM for Area Coverage Rate 

 

A2. Classification Sonar 

 The cost driving critical parameter for sidescan classification search sonars is its 

probability of classification at a given range, in this case chosen to be 70 yards.  Again, 

vehicle speed (flow noise), environmental parameters, and assumed target characteristics 

are essential to making effective Pc predictions.  The approach here is to assume one 

environment, the required classification range (important because of vehicle vulnerability 

to the mines), adequate vehicle control or motion compensation, and utilize the modeled 

results from Benedict18.  While some detection sonars may be considered as non-

developmental items (NDI), many sidescan classification sonars are now truly COTS, 
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which have substantially lower cost.  Vehicle integration costs are considered in that 

“subsystem”.  The following table represents the PBCM: 

Pc at 70 yards 0.9 0.93 0.96 0.98 

Cost ($M) 0.2 0.5 1.4 2.2 

 
The following routine fits a second order polynomial to the data, and will form the cost 
model: 

% PBCM for A2, Classify Sonars
figure
x=[0.9,0.93,0.96,0.98]
y=[.2,.5,1.4,2.2]
p=polyfit(x,y,2)
x2=0.9:.01:1.0;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Classification Probability')
ylabel('Cost ($M)')

» a2cost
x = 0.9000 0.9300 0.9600 0.9800
y = 0.2000 0.5000 1.4000 2.2000
p = 283.4646 -507.6378 227.4598

Therefore, p p pL U
1 2 1 2 1 2 0 9, , ,

* .= 0.9,   = 0.98,  = , and 

( )h , , , ,1 2 1 2 1 2 1 2p p p=  283.4646 -  507.63784 + 227.45982 . 
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Figure 8:  PBCM for Classification Probability 

 

B.  System S1:  Software 
 
 Modern MCM sonar systems are incorporating Computer-Aided Detection and 

Computer-Aided Classification (CAD/CAC) processors in order to keep false alarm rates 

low while maintaining high probability of detection/classification.  Consequently, 

requirements on false alarm rates are the cost driver on the software subsystem. The 

following table represents the PBCM: 

Pfa (#false alarms/nm2) 2.0 1.0 0.5 0.25 

Cost ($M) 8.0 10.319 13.592 16.429 

 
The following routine fits a third order polynomial to the data, and will form the cost 
model: 
 
% PBCM for B, Software in support of FAR, or CAD/CAC.
x=[2,1,0.5,0.25]
y=[8,10.319,13.592,16.429]
p=polyfit(x,y,3)
x2=0.0:0.01:2;
y2=polyval(p,x2);
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plot(x,y,'o',x2,y2)
xlabel('False Alarm Rate (#/nm^2)')
ylabel('Cost ($M)')

» bcost
x = 2 1 0.5 0.25
y = 8 10.319 13.592 16.429
p = -2.0484 9.9873 -17.942 20.322

Therefore, p p pL U
1 3 1 3 1 32 2 0, , ,

* .= 0.25,   = .0,  = , and 

( )h ., , , , ,1 3 1 3 1 3 1 3 1 32 0484p p p p= −   +  9.9873 -  17.942 + 20.3223 2 . 
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Figure 9:  PBCM for False Alarm Rate 
 

C.  System S1:  Vehicle (Propulsion, Energy, Quieting, Margin, Integration) 

 As mentioned earlier in this Chapter, to generate expressions for Tc  and Tcf, we 

must assume a specific classification CONOP.  If we assume that S1 takes the shortest 

route between contact locations and then executes a semi-circle of radius Rc about the 

contact location in an attempt to image the target, then an approximate expression for the 

time to classify is: 
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The time to classify is therefore a direct function of the maximum speed at which the 

vehicle can conduct the classification maneuver while holding the platform steady and 

quiet.  We are assuming that this is a cost driver for a combination of subsystems, to 

include propulsion, quieting, margin, and integration;  all of which we have cost 

estimates.  With the nominal parameters as mentioned above, the following table 

represents the discrete data points from which the PBCM is derived, as a function of 

classification speed: 

Vclass  (knots) 1 3 5 7 

Tc (minutes) 9.17 4.77 389 3.513 

Cost ($M) 5.0 7.574 8.190 9.191 

The following MATLAB  code fits a second order polynomial to the data points for use 
in the cost constraints.

% PBCM for C, Vehicle in support of time to classify.
x=[3.513,3.89,4.77,9.17]
y=[9.191,8.190,7.574,5.0]
p=polyfit(x,y,2)
x2=3.0:0.1:9.5;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Classify (min)')
ylabel('Cost ($M)')

» ccost 
x =        3.513         3.89         4.77         9.17 
y =        9.191         8.19        7.574            5 
p =      0.11597      -2.1757       15.20. 
 
Therefore, p p pL U

1 4 1 4 1 4
9 17

, , ,

* .= 3.0,   = 9.17,  = , and 

( )h , , , ,1 4 1 4 1 4 1 4p p p=  0.11597 -  2.1757 + 15.2042 . 
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Figure 10:  PBCM for Time to Classify 

 

D.  System S1:  Navigation 

 Maritime navigation systems are now truly COTS, and therefore low cost relative 

to other subsystems (note that costs are in $K, not $M).  It is also difficult to sort out 

competing claims of accuracy, as performance is closely related to the CONOPS.  

Typical non-GPS, underwater maritime systems utilize an inertial navigation system 

augmented with a Doppler sonar velocity log (DSVL).  The DSVL performance 

dominates over the long term, and needs to be updated periodically with a higher 

quality source, such as GPS.  To obtain sufficiently high accuracy to enable re-

acquisition of targets, we select a 30 nm run between GPS updates.  The following 

table lists DSVL performance in terms of percent of distance traveled, derived one-

sigma geodetic accuracy, and system costs19:

 

                                                           
19 Brokloff, N.A., maritime navigation systems specialist.  Personal communication, June 1997. 
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Percent of Distance 
Traveled 

0.15 0.1 0.08 0.07 

σ (yards) 90 60 48 42 

Cost ($K) 50 250 450 500 

 

 The following routine fits a second-order polynomial to the PBCM data above:

% PBCM for D, Navigation subsystem in support of localization accuracy.
x=[90,60,48,42]
y=[0.050,0.250,0.450,0.550]
p=polyfit(x,y,2)
x2=40:1:90;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('One sigma accuracy (yards)')
ylabel('Cost ($M)')

» dcost
x = 90 60 48 42
y = 0.05 0.25 0.45 0.55
p = 0.00020618 -0.03776 1.7778

Therefore, p p pL U
1 5 1 5 1 590, 90, , ,

*= 42,   =   = , and 

( )h ( ., , , ,1 5 1 5 1 5 1 52 0618p p p= e - 004) -  0.03776 + 1.77782 .
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Figure 11:  PBCM for Navigation Accuracy 
 

 

E. System S2:  Sensors/Sonars 

 The neutralization system returns to the site localized by the reconnaissance 

system and attempts to re-acquire the target for neutralization activities.  Depending on 

the quality of the localization activity, we should be able to get away with a much less 

expensive sonar than the long-range detection sonar used for reconnaissance to enhance 

the coverage rate.  As in the case of navigation systems, these medium-performance 

sonars are available as NDI or COTS.  One way to express the cost driving parameter is 

the range at which a reasonably high probability of re-acquiring the target can be assured, 

say 80%.  Earlier in this chapter, a model for the interrelationship of localization 

accuracy, re-acquisition range, and probability of re-acquiring (localization) was 

developed under the assumption that the closer S2 can be directed to the target location, 
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the higher the resultant probability of reacquisition.  Utilizing data from Benedict, the 

following PBCM data points are derived:  

Rr (yards) 75 129 457 622 

Cost ($M) 1.5 3.0 4.8 7.655 

 
The following routine fits a third order polynomial to the data, and will form the cost 
model: 

% PBCM for E, Ahead looking sonar for re-acquisition
x=[129,457,622,75]
y=[3,4.8,7.655,1.5]
p=polyfit(x,y,3)
x2=75:5:675;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Re-Acquisition Range (yards)')
ylabel('Cost ($M)')

» ecost
x = 129 457 622 75
y = 3 4.8 7.655 1.5
p = 1.5049e-007 -0.00015782 0.055167 -1.8133

Therefore, p p pL U
2 1 2 1 2 1700, 75, , ,

*= 75,   =  = , and 

( )h ( ., , , , ,2 1 2 1 2 1 2 1 2 115049p p p p= e - 007)  -  (1.5782e - 004) +  0.055167 -1.81333 2 .
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Figure 12:  PBCM for Re-Acquisition Range 

 

F.  System S2:  Vehicle (Propulsion, Energy, Quieting, Margin, Integration) 

As in the PBCM for classification time for system S1, Tpf (time to prosecute a false 

target) is the cost driver for vehicle maneuverability required to cover the area around the 

localized false target holding the vehicle steady while providing the re-acquisition sonar 

multiple aspect angles on the target in order to confidently make a false target call.  The 

CONOP we choose for this is to make a full circle of radius 70 yards about the indicated 

(from S1) location, if the usual direct approach re-acquisition attempt is unsuccessful.  

This CONOP and associate PBCM has two important implications for how we view Tpf 

and subsequently, Tn. 

•  It ignores S2 transit time to the target’s designated location.  This will be the 

same for all contacts provided by S1 and shorter transit times would be a 

byproduct of improvements made to vehicle maneuverability driven by Tpf.   



 54

•  It also ignores the true dependence of Tpf and Tn on the S1 localization 

accuracy, σ.  We have chosen to look at σ’s direct effect on probability of 

localization, PL only.  Although this could be modeled in a more sophisticated 

simulation, it would be an equivalent bias on all three major additive terms of 

E2, and therefore can be neglected for this analysis.  Hence our formulation of 

Tpf and Tn are just the additional time it would take to make a non-contact call 

or neutralize the target, over and above the time required for nominal re-

acquisition. 

The following table lists vehicle costs as driven by false target prosecution 

performance: 

Speed during 
maneuver  

2 3 4 5 10 

Τpf (min) 6.6 4.4 3.3 2.64 1.32 

Cost ($M) 5.0 7.5 8.19 9.191 16.621 

 The following routine fits a third-order polynomial to the PBCM data above:

% PBCM for F, Vehicle in support of time required to verify a false
target
x=[6.6,4.4,3.3,2.64,1.32]
y=[5.0,7.5,8.190,9.191,16.621]
p=polyfit(x,y,3)
x2=1.0:0.1:7;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Prosecute False Target(min)')
ylabel('Cost ($M)')

» fcost
x = 6.6 4.4 3.3 2.64 1.32
y = 5 7.5 8.19 9.191 16.621
p = -0.28504 3.8462 -17.264 33.344
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Therefore, p p pL U
2 2 2 2 2 2, , ,

*= 1.0,   = 7.0,   = 6.6 , and 

( )h , , , , ,2 2 2 2 2 2 2 2 2 2p p p p=  - 0.28504  +  3.8462 -  17.264 + 33.3443 2 . 
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Figure 13:  PBCM for Time to Prosecute False Target 

 

G. System S2:  Neutralization 

The neutralization threshold system performance and costs are patterned after the 

U.S. Navy’s Mine Neutralization System (AN/SLQ-48) in which integrates a sonar, 

optical, and bomblet subsystems to re-acquire, identify, and neutralize targets passed to it 

from other systems.  Although it takes time to launch, acquire, ID/neutralize, and recover 

this remotely operated vehicle, the ID/neutralize phase takes approximately 10 minutes.  

Unit cost for the AN/SLQ-48, which has been in production for some time, is down to 

approximately $500K.  Assuming that the cost driver for the AN/SLQ-48 (which used 

NDI sonars/optics) was the neutralization component, and using a 10:1 rule of thumb for 
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developmental vs. production costs, the threshold system development cost for a system 

was estimated as shown in the following table:

Tn (min) 10 8 7 5 3 

Cost ($M) 5.3 6.0 7.0 10.0 15.0 

 The following routine fits a second-order polynomial to the PBCM data above: 

% PBCM for G, Neutralization subsystem
x=[10,8,7,5,3]
y=[5.3,6,7,10,15]
p=polyfit(x,y,2)
x2=3.0:0.1:10;
y2=polyval(p,x2);
plot(x,y,'o',x2,y2)
xlabel('Time to Neutralize (min)')
ylabel('Cost ($M)') 

» gcost 
x =    10     8     7     5     3 
y =    5.3            6            7           10           15 
p =    0.21024      -4.1096       25.397 
 
Therefore, p p pL U

2 3 2 3 2 310.0, 10.0, , ,
*= 3.0,   =   = , and 

( )h , , , ,2 3 2 3 2 3 2 3p p p=   0.21024 -  4.1096 + 25.3972 . 
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Figure 14:  PBCM for Time to Neutralize
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MCM System of Systems Model Summary 

Maximize { }S S Sn= 1 , ,� system of systems performance (minimize time) subject to 
technology, cost, and performance threshold constraints: 
 

Minimize:
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 subject to: 

( ) ( )3 0 9 0 25 30 42 100 0 98 2 0 917 901, . , . , . , , . , . , . ,T T≤ ≤p , ( ) ( )75 10 30 700 7 0 10 02, . , . , . , .T T≤ ≤p  
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Figure 15  Summary of MCM System of Systems Optimization Problem
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CHAPTER 6 

OPTIMIZATION APPROACH 

 

In this chapter, we investigate some alternative optimization methods that will be 

applicable to the MCM system of systems upgrade problem formulated in Chapter 5, and 

reformulate the general system of systems performance model (Chapter 4) to take 

advantage of the most promising approach.   

Applicable Methods 

Referring to the discussion in Chapter 4, the general system of systems upgrade 

optimization problem takes the following form: 

 

Max ( )E E E Gn= =g , , , ( )m m p , ,p1 n1 � �,  where ( )Ei i n= f , , ,m p p1 l ,  

and subject to the following constraints: 

         number of  

inequalities: 

0 m m mU≤ ≤ ≤L             n  

0 p p p≤ ≤ ≤i
L

i i
U             r 

C CU≤  where             1 

 ( )ci i i= h p ,  { }c = c cn1 , ,l ,  and C T= mc . 

[ q( , , , , ) q Tm p p p1 2 nl ≥ , a potential secondary MOE threshold function constraint]  1 

All quantities are real-valued, with the additional constraint that elements of n-vector m 

are integers.  Each pi has dimension ri and r ri
i

n

=
=
∑

1
. 
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 For the purpose of this study, we will consider the case where there is only one of 

each type of system in the system of systems.  In this case, ( )m = 1 1, ,l , and that m is to 

remain fixed.  We can then ignore the difficulty of having to solve for the integer-valued 

vector, m, which would result in an integer programming problem.  Then what we have is 

a nonlinear, multi-dimensional optimization problem with a generally nonlinear 

constraint set. 

We first consider the case in which the objective function, G, can be evaluated 

without error.  Then, we can look to the deterministic domain of nonlinear programming 

and utilize conventional search techniques to solve the particular problem.  

 For the special case where all the constraints are linear, one of the most common 

and effective nonlinear programming algorithms is known as the Davidon-Davies 

method20 or the Davidon-Fletcher-Powell method with linear constraints21.  The Davidon-

Davies method is a gradient search method that can handle linear equality and inequality 

constraints.  The method projects the current solution estimate along the path of steepest 

descent until it intersects one (or more) hyperplanes formed by the inequality constraints.  

Then that constraint is said to be active, it is added to the equality constraint set, and the 

next iterate is restricted to move along the corresponding new intersecting hyperplane 

surface until a convergence criterion for a minimum is achieved.  Checks are also done at 

each iteration to consider relaxing an equality constraint that has been established 

prematurely. 

                                                           
20 Himmelblau, D.M., (1972).  Applied Nonlinear Programming, McGraw-Hill, New York, pp. 261-266. 
21 Walsh, G.R., (1975).  Methods of Optimization, John Wiley & Sons, London, pp.155-161. 
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Some fully general nonlinear programming algorithms restructure the problem or 

locally linearize the nonlinear constraint set so that this method can be used as the core 

search algorithm.  For example, if there are a small number of nonlinear constraints, it is 

feasible to augment the objective function with penalty functions (described in more 

detail later in this chapter) to incorporate the active nonlinear constraints into the 

objective function so that unconstrained or simple projection methods will then be 

applicable.  This is not generally done because it comes at a cost of ill-conditioning the 

problem, which must be traded against the gain in algorithm simplicity.  

 MATLAB  is a widely used, sophisticated mathematical problem-solving 

commercial software product that utilizes the method of sequential quadratic 

programming (SQP)22 to solve the fully general nonlinear programming problem in which 

both objective and constraint functions can be nonlinear.  The particular routine is called 

“CONSTR” and is contained in the “Optimization Toolbox”.  Basically, the method 

formulates a sequence of quadratic programming (QP) subproblems based on a quadratic 

approximation of the Lagrangian function and by linearizing the nonlinear constraints 

about the current iterate.  The simpler QP subproblem (quadratic function with linear 

constraints) is solved by using an active set projection method23  very similar to the 

Davidon-Davies Method in order to provide a search direction for a line search procedure 

that provides the next iterate.  The original nonlinear function and constraint sets are then 

approximated about the new iterate and the sequence is repeated until convergence 

criteria are satisfied. 

                                                           
22 Gill, P.E., Murray, W., Wright, M.H., (1981).  Practical Optimization, Academic Press, London, Chap. 6. 
23 Ibid, Chapter 5. 
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Appendix A contains specific MATLAB  code necessary to solve the MCM 

system of systems problem formulation and a simple illustrative problem, while results 

are shown in Chapter 7.  The user can call CONSTR with or without supplying an 

explicit gradient function.  Since our ultimate objective is to utilize a simulation for 

function evaluations, we are interested in solving the problem without an explicit gradient 

function.  CONSTR will then approximate the gradient at each iteration at the expense of 

more function evaluations.  The most efficient classical gradient approximation is that of  

forward differencing, an approximation that requires as many function evaluations as the 

dimensionality, r, of the independent variable vector.  To enhance search algorithm 

convergence properties, it is generally advisable to switch over to a central difference 

formula as the step size reduces near the solution24, but at the expense of requiring 2r 

function evaluations per step. 

 As mentioned above, obtaining a closed form, deterministic expression for the 

system of systems’ MOE objective function is not always feasible.  A growing number of 

application areas rely on stochastic modeling and simulation to predict system of systems 

performance under certain conditions of interest.  Therefore, future practical 

implementations of this approach for the system of systems upgrade problem will include 

utilization of simulation to evaluate the objective function—an extension that will put a 

premium on minimizing the search algorithm’s function evaluations.  Simulation will 

generally be of the Monte Carlo type, hence there will be random error associated with 

                                                           
24 Fletcher, R., (1981).  Practical Methods of Optimization, John Wiley & Sons, Chichester, Scotland, 

p.108. 
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the function evaluation.  The simulation then produces a corrupted realization of the 

objective function of the form: 

y G( ) ( )p , , p p , , p1 n 1 n� �= +ω ,  

where ω  represents simulation noise.  This stochastic nature of the function evaluations 

puts us into the realm of stochastic optimization—to which classical optimization 

methods are not directly applicable.  Moreover, not only will the gradient of  y  be 

unavailable explicitly, classical approximations of gradients become extremely costly to 

compute since each function evaluation represents a simulation run.  Until recently, 

finite-difference-based gradient search stochastic approximation procedures that are 

adaptations of deterministic algorithms have been most widely used for this type of 

optimization.  A major drawback of these methods is that the number of function 

evaluations required at each step is linear in the dimension of the search parameter 

vector.25  Since we envision eventually using large scale system of systems simulations 

with tens of  parameters, a much more efficient method is desirable.   The recently 

developed Simultaneous Perturbation Stochastic Approximation (SPSA) Method26 is the 

most efficient estimator in this domain with respect to function evaluations per iteration, 

and its first and second order versions have been adapted here for use in solving the 

MCM system of systems problem described in Chapter 5.  Since it will be the central 

algorithm we use for stochastic optimization here, it is necessary to examine it in some 

detail. 

                                                           
25 Glynn, P.W., (1989).   “Optimization of Stochastic Systems via Simulation”, Proceedings of the 1989 

Winter Simulation Conference, ed. E.A. MacNair, K.J. Musselman, P. Heidelberger, IEEE, Piscataway, 
NJ, 90-105. 
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Constrained Simultaneous Perturbation Stochastic Approximation (SPSA) Method 

 

As described in Fu and Hill27, the first order SPSA method is a type of gradient 

search method that requires only two function evaluations per iteration.  The current 

solution estimate is perturbed in all elements simultaneously in a sort of central difference 

fashion rather than one component at a time which is generally done in order to estimate 

the partial derivatives that comprise the gradient vector.  Now, SPSA per se is an 

unconstrained optimization algorithm, and very little work has yet to be done to extend it 

to more commonly occurring constrained problems such as the system of systems 

upgrade problem structure formulated here.   But it has been shown28 that substituting the 

SPSA-generated gradient estimate for the gradient estimate in a projection-based 

constrained steepest descent algorithm results in convergence to a Kuhn-Tucker point—

meaning that SPSA can be used to enhance efficiency of such methods as the basic 

Davidon-Davies method described above.  Most of these methods “project” from the 

current iterate along an estimate of the gradient until they intersect one or more constraint 

surfaces, which are then  “followed” (always reducing the objective function and updating 

the active constraint set) until convergence criteria are satisfied.  

                                                                                                                                                                             
26 Spall, J.C. (1992), "Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient 

Approximation," IEEE Transactions on Automatic Control, vol. 37, pp. 332-341. 
 
27 Hill, S.D. and Fu, M.C., (1997).  “Optimization of Discrete Event Systems via Simultaneous Perturbation 

Stochastic Approximation”, Transactions of the Institute of Industrial Engineers, Special Issue on 
Operations, Engineering, and Simulation, Vol. 29, Issue #3, pp.233-243. 

28 Sadegh, P. (1997).  “Constrained Optimization via Stochastic Approximation with a Simultaneous 
Perturbation Gradient Approximation”,  Automatica, vol. 33, 1997, pp. 889-892. 
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Although Sadegh28 established the theoretical foundation for constrained SPSA, 

he did not present a workable algorithm nor does he address convergence properties 

relative to other first order approaches.  One option for implementing a general 

constrained SPSA algorithm is to modify a tried and true optimization code such as 

MATLAB ’s implementation of the SQP method to embed the SPSA gradient and iterate 

update equations.  This was judged to be impractical for the scope of this dissertation due 

to code complexity.  There are a myriad of complex sub-algorithms necessary to ensure 

robustness and wide applicability of commercial code.  There are also significant issues 

regarding determination of the active constraint set in the context of a stochastic 

optimization domain.  Indeed, practical implementations of constrained SPSA have been 

limited to constraint sets of the simple bound type.   SPSA has been used to optimize 

some rather simple constrained problems utilizing discrete event simulations very 

successfully27 and more significantly, a 168-dimensional air-traffic control flight delay 

problem29.  In order to discuss practical considerations any further, it is necessary to 

explicitly consider the SPSA algorithm.    

The following unconstrained SPSA algorithm description is adapted from its 

author’s implementation guide.30  The adaptation utilizes the notation developed here for 

the system of systems upgrade problem and facilitates sharing of code that invokes the 

MATLAB   CONSTR function mentioned above for efficiency comparison purposes on 

the deterministic formulation developed in Chapter 5.  Note that the method is also 

                                                           
29 Kleinman, N.L., Hill, S.D., and Ilenda, V.A., (1997).  “SPSA/SIMMOD Optimization of Air Traffic 

Delay Cost”, Transportation Science, to appear. 
30 Spall, J.C., (1996).  “Implementation of the Simultaneous Perturbation Algorithm for Stochastic 

Optimization”, unpublished. 
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applicable to the deterministic case in which ω=0.  As with MATLAB , the SPSA 

convention is to minimize the objective function, so that we seek to minimize 

− G( )p , , p1 n� .   Hence we would define ω+−= )()( n1n1 p,,pp,,p �� Gy . 

Let { }x p , , p1 n= � , the r-dimensional MOP vector for the full system of systems.  

SPSA iteratively produces a sequence of estimates, > , > , > , ,x x x0 1 2 l  where >x k  will converge 

to the optimum value  as k gets large.  Implementation steps for the algorithm are as 

follows: 

 

1.   Initialization 

a) Set counter index k=0. 

b) Set initial estimate { }� , ,x p p0 = 1
L

n
L

� , the threshold system of system’s MOPs. 

c) Choose the SPSA algorithm gain coefficients, a c A, , , ,α γ , in accordance with 

guidance and experience25-28. 

2. Generate k-th iteration’s simultaneous perturbation vector. 

a) Generate the r-dimensional random vector, ∆ k , where each of the r components of 

∆ k  is generated from a Bernoulli ±1 distribution with probability 0.5 for each ±1 

outcome. 

3. Objective function evaluations during k-th iteration. 

Obtain two measurements of the objective function, ( )y x , as follows: 

a) Let:   ( )c c kk = + −1 γ ,  ( )a a A kk = + + −1 α  

          x xk k k kc+ = +� ∆ ,  x xk k k kc− = −� ∆  
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b) Evaluate the objective function twice, based upon the above simultaneous 

perturbation about the current MOP iterate, <x k : 

           ( )y yk k
+ += x   and ( )y yk k

− −= x  

4. Gradient approximation during the k-th iteration 

Compute the simultaneous perturbation approximation to the r-dimensional gradient: 

k k

k k

k k

k k

k kr

g ( ) =

y  -  y
2 c

y  -  y
2 c

 ,� �x

+ −

+ −



























1∆

∆

�   where ∆ ki  is the i-th component of the ∆ k  vector.  This 

gradient approximation contrasts with the component-by-component perturbation in 

standard forward difference gradient approximations which result in r function 

evaluations at each iteration. 

5. Update the MOP iterate, �x k . 

Utilizing the gain sequence and the gradient approximation, compute: 

( )� � � �x x xk k k ka g+
+ = −1  and ( )y yk k+ +=1 1�x . 

6. Continue or terminate the search. 

Return to Step 2, replacing k with k+1 or terminate if one of the following termination 

criteria are satisfied: 

a) � �x xk k tolx+
+ − ≤1 , where xtol  is the MOP convergence criterion 

b) y y yk k tol+ − ≤1 , where ytol  is the MOE convergence criterion 

c) k+1=kmax,  the maximum allowable number of iterations. 
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 The above algorithm summary only describes unconstrained SPSA.  As 

mentioned above, Sadegh28 has extended the original SPSA theoretical convergence 

results to constrained optimization problems.  It was proven that a projection-type 

adaptation of SPSA will converge to a Kuhn-Tucker point asymptotically when 

optimizing over nonlinear inequality constraints that form a non-empty, bounded set and 

the constraint functions are continuously differentiable.  A further condition he adds is 

that function evaluations at points where the constraints are violated are not feasible.  By 

projection algorithm, he means the following.  Let P( )x   be the projection function to the 

nearest point to x on the constraint set, utilizing the usual Euclidean norm.  Then the 

projection algorithm has the general form 

( )( )> > > >x x xk k k kP a g+
+ = −1 . 

 Intuitively, we “project” from the current iterate �x k  to the nearest border of the 

constraint set.  Practically speaking, this means that >x k +
+

1   must satisfy exactly one or 

more of the constraint equations, which are then said to be “active”.  Once the active set 

of constraints is determined, the projection algorithm then must consider those constraints 

as equalities for the purpose of computing >x k +
+

1  .  The active set is modified as iterations 

proceed, and the effect is that the iterates “follow the border” as the objective function 

continues to improve.  Unfortunately, this projection along the SPSA gradient 

approximation to the nearest point on the constraint set is not easy to compute for the 

general case where the constraint set is formed by nonlinear inequalities.  Mature, 

classical optimization codes such as MATLAB ’s  CONSTR function contain extensive, 
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robust code to achieve the projection.  Published implementations of constrained SPSA to 

date have avoided such complexities and have been applied only to problems with simple 

bound constraints of the form x x xL U≤ ≤ . 

 Note that our system of systems problem formulation is dominated by these 

simple bound constraints on MOPs, with the exceptions being the cost constraint and the 

secondary MOE constraint.  In the next section, we will show how the model can be 

reformulated using penalty functions to eliminate these complex constraints.  To finish 

off our discussion of constrained SPSA, the following three adaptations to the algorithm 

described above are made: 

1. As done in Fu and Hill25, when computing x xk k k kc+ = +� ∆ ,  x xk k k kc− = −� ∆ , and 

( )� � � �x x xk k k ka g+
+ = −1  in Steps 3 and 5 above, project them to the nearest feasible point 

on the constraint set prior to evaluating the objective function.  This is particularly 

critical for the system of systems upgrade application because many of the MOPs are 

probabilities or other physical quantities that have no practical meaning outside of the 

constraint set.  In the case of simple bound constraints, this is trivial to implement. 

2. As suggested by Spall31, incorporate a “blocking function” to accelerate and ensure 

monotonic convergence of the SPSA algorithm.  Inspection of the gradient 

approximation (Step 4) reveals that it should not be expected to be a particularly good 

approximation to the true objective function gradient in the sense that the more 

expensive forward or central difference formulae are constructed.  Although 

convergence is guaranteed, the poor quality of the SPSA gradient means that the 

                                                           
31 Spall, J.C., (1997).  Personal communication. 
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sequence of iterates, { }�x k , does not necessarily produce a monotonically increasing 

objective function sequence.  The blocking function consists of rejecting an iterate that 

degrades  the objective function by more than a specified small amount and the next 

iteration is begun with the current iterate as its starting point;  i.e., � �x xk k+ =1 . 

3. When the SPSA iterates get near the solution, they will tend to “jitter” about the 

optimum.  When using a large, fixed number of iterations to obtain a solution, the 

average of the last several iterates will provide a better estimate of the optimum than 

simply the last iterate.32 

 A MATLAB  implementation of this constrained SPSA algorithm is included as 

Appendix B, with results from a simple, illustrative problem—provided only to establish 

confidence in the author’s implementation. 

 As will be shown in Chapter 7, this first order SPSA algorithm exhibited poor 

convergence on the MCM system of systems problem.  This is attributed to inherent 

difficulties that a first order process encounters when the problem has large scaling 

differences in the components being estimated—and we have about two orders of 

magnitude variation in this problem.  Recently, a second order version of SPSA has been 

developed, which emulates the convergence acceleration and scaling invariant properties 

of deterministic Newton-Raphson algorithms33.  This algorithm (called “2SPSA”) 

requires five function evaluations per iteration, but produced much better results than the 

                                                           
32 Heydon, B., (1997).  Personal communication. 
33 Spall, J.C., (1997).  “Accelerated Second-Order Stochastic Optimization Using Only Function 

Measurements”, Proceedings of the 31st Conference on Information Sciences and Systems, 19-21 March 
1997, Baltimore, MD.  
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first order version (hereafter referred to as “1SPSA”).   Results will be discussed in 

Chapter 7 and 8, with code and detailed results presented in Appendices D-F. 

 

Model Reformulation via Penalty Function Method 

As mentioned above, we are motivated to simplify the constraint set of our system 

of systems upgrade optimization problem to the point where the only constraints 

remaining are those of the simple bound type.  Two classes of methods were considered:   

Lagrangian multiplier and penalty function methods, which turn out to be very similar in 

practice.  The penalty function approach was selected as most appropriate for this 

application due to its conceptual simplicity and ease of implementation.  Although 

attractive at first glance, Lagrangian multiplier methods34 have drawbacks that inhibit a 

robust, practical implementation.  For example, the resulting objective function can be 

unpredictably unbounded below and the more robust augmented Lagrangian35 function 

methods require an outside iterative loop to solve for the Lagrangian multipliers, thereby 

greatly increasing the complexity and number of function evaluations.  A straightforward 

Lagrangian multiplier method was successfully implemented on the same 3 dimensional 

constrained test problem described in Appendix D (formulated for SPSA checkout), but 

would not converge when applied to the full MCM system of systems problem, indicating 

a modified objective function that is unbounded below—a condition that will arise 

unpredictably in large dimensional problems.   

                                                           
34 Cooper, L. and Steinberg, D., (1970), Introduction to Methods of Optimization, W.B. Saunders 

Company, Philadelphia, PA, pp. 290-295. 
35 Gill, P.E., Murray, W., Wright, M.H., (1981).  Practical Optimization, Academic Press, London, Chap. 6 
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To reformulate the MCM problem using a penalty function, note that both the cost 

and quality constraints should be active.  That is, the optimal solution will turn out to cost 

the maximum allowable amount, and the performance/quality MOE will be minimally 

satisfied.  (This was borne out in the results using CONSTR, and is a good “sanity check” 

on the model formulation.)  Continuing with the notation established in this section, our 

optimization problem has the following streamlined form, now assuming equality 

constraints: 

 

( )

UL

U

q
cC

G

xxx
x
x

x

≤≤

=
=

Tq)(
)(

:subject to ,Max 

 

 

 Following the MATLAB /SPSA minimization convention and re-ordering: 

( )

UL

U

q
cC

G

xxx
x
x

x

≤≤

=−
=−

0q)(
0)(

:subject to ,-Min 

T

 

 

There is a wide variety of practical penalty function methods available36, most of 

which utilize variants of the quadratic and absolute value penalty functions: 

( ) ( )2
T2

2
1 q)()()G()(F −+−+−= xxxx qAcCA U

Q  and 

T21 q)()()G()(F −+−+−= xxxx qAcCA U
A . 

                                                           
36 Himmelblau, Chapter 7. 
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Note that the effect of the penalty function augmentation is to create a function 

which will have a local minimum that is  “near” the constrained optimum of G(x) for 

sufficiently large gains, A1 and A2.  The penalty terms provide a positive penalty for 

increased constraint violation, which of course will never be numerically satisfied 

exactly.  In practice, the gains, A1 and A2, on the penalty terms must be large enough so 

that the effective penalty due to the equality constraints is significant relative to the value 

of the original objective function, G(x), at its optimum point.  If the gains are too small, 

then objective function convergence will occur at a point that does not satisfy the 

constraints very closely.  Conversely, if the gains are too large, the algorithm-derived 

gradient estimates will be extremely large and variable for small changes in the constraint 

violation penalties, making for an inevitably ill-conditioned problem.  This is mitigated 

by the absolute value penalty function relative to the quadratic penalty function, making it 

workable for the SPSA algorithm variants which have an inherently poor gradient 

estimate anyway. 

Since the optimum values of the original problem are not generally known, the 

usual approach is to solve a sequence of problems, with gradually increasing gains until 

the desired degree of constraint satisfaction is achieved.  Another approach is to construct 

a gain function that increases as a function of the number of iterations, approaching an 

asymptotic limit.  Figure 16 plots an asymptotic penalty function gain function that (starts 

at 1 and grows to 11 after 500 iterations) that showed some degree of utility for solving 

the MCM problem with SPSA: 

T21 q)()()()()G()(F −+−+−= xxxx qkcCk U
A αα  
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where: 
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Figure 16   Asymptotic Penalty Gain Function 

 

For the MCM problem we do know the optimum before we start, and can 

therefore estimate appropriate gains a priori, avoiding the need to solve for the gains in an 

expensive outer optimization loop.  The overall MOE minimum is on the order of 20 

hours.  Therefore, A1 and A2 should be chosen so that their term’s contribution to the 

penalty is on the order of about 10% of the optimal MOE value when their constraints are 

“close enough”.  E.g., if we want the cost constraint to be satisfied to approximately 0.1 

and the quality constraint to 0.001, then A1=20 and A2=2,000 produce approximately 2 
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hours of penalty each, a sufficient amount to drive an optimization algorithm to satisfy 

the original constraints when utilizing the absolute value penalty function.  Several 

additional orders of magnitude are necessary to produce a similar effect from the 

quadratic penalty function. 

There are distinct advantages and disadvantages to the two penalty terms above, 

as indicated in the following table: 

 

 

 Advantages Disadvantages 

Quadratic 
Penalty 
Function 

Differentiable 

Initial estimate need not be 
close to optimum for 
convergence 

Arbitrarily large gains required for  
equivalence to original problem 
 
Adversely affects algorithms with 
poor gradient estimators. 

Absolute Value 
Penalty 
Function 

Gains need not be arbitrarily 
large to ensure equivalence to 
original problem—avoids 
inevitable ill-conditioning 

Not differentiable 
 
Weaker penalty leaves local minima 
so that initial estimate must be close 
to optimum for convergence 

 

 

Many strategies of gains, penalty functions, and algorithm parameters were 

attempted and results catalogued in the course of this study.  Results reported in Chapter 

7 will reflect the finding that quadratic penalty function worked best with CONSTR and 

the absolute value penalty function worked best with SPSA, in spite of the theoretical 

SPSA assumption that the loss function is differentiable.  The extremely large gains 

necessary to ensure the transformed quadratic penalty function formulation is equivalent 
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to the original problem poses severe stability problems for SPSA, which generates a poor 

gradient estimator in order to conserve function evaluations. 

 

Limitations and Scope of Research 

 Unfortunately, there are several areas which can prevent efficient solution of 

specific problems, and therefore limit generalization of results.  Some of those potential 

issues and mitigation approaches are as follows: 

•  Recall that we had side-stepped the force structure issue, represented by the integer-

valued vector m.  In a domain where the nominal numbers for each system exceeds 

some moderate number, say 10, then it is probably reasonable to solve the continuous 

case and take the nearest integer values—keeping in mind that the goal is really to 

achieve some substantive improvement over the existing system of systems, and the 

decision-maker will realize that there are sources of error in the process that would 

dominate this level of approximation.  On the other hand, if it is expected that there 

would be only a small number of each system, say 1-5, then we could put an 

exhaustive search loop around the constrained optimization algorithm.  It is expected 

that this latter situation is more widely applicable. 

•  Non-differentiability of the objective function when using simulation can violate 

convergence proof assumptions of certain algorithms, such as SPSA.  Since the 

simulations are representations of physical systems, they are generally well-behaved 

as long as functionality is preserved and the optimization is over technical 

performance measures vice scenario or CONOPS parameters.  Use of the absolute 
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value penalty function creates a non-differentiable objective function, though this did 

not prevent SPSA convergence in practice.  Force level optimization when 

considering small numbers of systems may also generate discontinuities.  However, 

an exhaustive search method would not require the objective function to be well-

behaved.  The Taguchi method for obtaining robust designs is a sort of exhaustive 

search over discrete parameters and seems applicable to the integer-valued force level 

problem, especially in the face of an ill-behaved objective function.37,38 

•  Local vs. Global optimum.  If ( )E E E Gn= =g , , , ( )m m p , ,p1 n1 � �,  is a concave 

function over a convex constraint set and the “optimum” point satisfies the Kuhn-

Tucker conditions, then it is a global minimum solution.  Unfortunately, these are 

difficult conditions to verify, especially if we are ultimately dealing with function 

evaluations provided by simulation or a complicated multivariate expression.  Initial 

formulation of a closed-form analytic model should aid in generating initial 

conditions that are sufficiently “close” to the optimum.  Moreover, if we keep in mind 

what we are trying to accomplish—the upgrading of a system of systems—then we 

should not be terribly concerned that our solution might not be at a global maximum, 

but rather be “satisficed” to find an upgrade suite that represents some significant 

improvement over the present situation as indicated by the objective function 

improvement over the threshold or nominal system of systems MOE.  Convergence to 

a local vice global maximum did indeed occur for the MCM system of systems, and is 

                                                           
37 Lee, K-H, Eom, I-S, Park, G-J, Lee, W-I, (1996).  “Robust Design for Unconstrained Optimization 

Problems Using the Taguchi Method”, AIAA Journal, Vol.34, No.5, 1059-1063. 
38 Phadke, M.S., (1989).  Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ 
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discussed in Chapter 7.  In Chapter 8, a strategy for generating good initial MOP 

estimates is postulated and demonstrated for the simulation case. 

•  Choosing test problems with interesting initial conditions and constraint sets.   It is 

possible that an ill-conceived problem formulation could yield search results that 

consistently gravitate towards just one or two parameters.  To demonstrate the 

method, an attempt has been made to create the MCM system of systems model that 

basically already “in balance”.   As will be seen in some of the results in Chapters 7 

and 8, this has the drawback of creating a rather “shallow” objective function, making 

it a difficult problem for optimization algorithms. 

 

The severity of the issues mentioned above will vary from problem to problem, 

and of course become more challenging as we migrate towards larger, more realistic 

problems.  Therefore, the plan of research was to work from the well-understood 

deterministic domain towards the stochastic optimization domain motivated by the desire 

to utilize M&S for system of systems MOE evaluations.  The sequence of optimizations 

that will be discussed in Chapters 7 and 8 for the MCM problem are: 

 

1. Constrained SQP Optimization 

2. Single system vs. system of systems optimization 

3. Constrained SQP optimization via penalty function methods 

4. First order constrained SPSA optimization via penalty function method 

5. Second order constrained SPSA optimization via penalty function method 

6. Second order constrained SPSA optimization via penalty function and simulation  
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CHAPTER 7 

 

PHASE I RESULTS:  CLOSED FORM OBJECTIVE FUNCTION 

This Chapter presents the results of optimizing the closed form representation of 

the MCM system of systems model developed in Chapter 5 with the sequence of methods 

as described in Chapter 6.  For ease of reference, the MCM system of system MOP 

definitions are repeated here: 

x p A
x p

x p
x p
x p
x p

( )
( ) P

( ) P
( ) T
( )
( ) R

,

, c

, fa
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,
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2 2

2 3

= = =
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 The system of systems constrained MOE optimization has been solved for an 

increasing sequence of multipliers (“costfactor”) on the cost of the threshold system, 

denoted by *C , which happens to be $28.066M.  This provides the decisionmaker with 

information to apply the CAIV approach to system upgrade or initial design.  Plots are 
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provided so that one can visualize the top level MOE improvement and corresponding 

MOP requirements as the system of systems cost upper bound is allowed to increase. 

 
Constrained SQP Optimization 

 The baseline results are obtained through utilization of MATLAB ’s constrained 

sequential quadratic programming (SQP) algorithm, described in Chapter 6.  Complete 

MATLAB  code and results for the MCM system of systems optimization is provided in 

Appendix A.  Figure 17 below summarizes those results.  The first two plots present the 

top-level MOE (E=time to complete minefield clearance) as a function of increasing cost 

factor and dollar cost upper bounds.  The next two plots present the corresponding 

optimal MOPs as a function of increasing cost factor.  The MOPs are normalized to their 

upper and lower bounds, with zero corresponding to their threshold system values and 

one corresponding to their technology limitations.  Several significant insights can be 

obtained from examination of these plots: 

•  The system of systems MOE improves steadily to an asymptotic lower bound as the 

cost limit increases.  Due to the imposed technology constraints, after a certain point 

no amount of money will enhance system performance. 

•  At the other extreme, if at least *25.1 C⋅  isn’t spent, the quality constraint cannot be 

met and even a very slow system cannot be achieved. 

•  A subjective “knee of the curve” can be observed to occur somewhere around 1.8 

times the threshold system cost (about $50M), after which he rate of MOE 

improvement significantly decreases. 
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•  The component systems’ MOP requirements can be determined from these plots 

(numerical results are in Appendix A), also as a function of cost factor.  One can see 

which MOPs become stressed (i.e., move away from their threshold system values) 

and approach their technology constraint limits as the cost constraint is relaxed.  Of 

course, this behavior is dependent upon the PBCM function developed for each MOP 

in Chapter 5, as well as their significance relative to the objective function and quality 

constraint.
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Figure 17:  Constrained SQP Optimization Results for S 

 

 Note the hump in the MOE plot at costfactor=2.15, which also corresponds to a 

step change in the optimal value for x(7).  This step change is due the existence of an 

objective function local minimum created by the unusually flat character of the PBCM 
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for pf2,2 T)7( == px  as illustrated in Figure 12.  When the cost constraint is relaxed 

sufficiently to generate movement in x(7), the search algorithm moves from x(7)=7.0 to 

about 4, thereby using up all the additional allowable cost and then some.  This additional 

cost allocated to x(7) forces cutbacks in other parameters, which turn out to be x(1) and 

x(3) as can also be seen in Figure 17.  This translates into reduced overall performance 

that must correspond to a local, rather than global minimum—since the solution found at 

costfactor=2.1 is clearly superior and still meets the constraints.  

 The results can be used to design a specific cost-constrained upgrade to the 

threshold system of systems.  For example, if the allowable cost constraint is twice that of 

the threshold system, then selecting [ ]0.42,0.3,55.0,961.0,3.851 =p  and 

[ ]p2 4232 7 0 3 0= . , . , .  yields E = 17 768. , with clearance rate q=0.846 at a cost of 

$56.132M.  This is a substantial enhancement to the threshold system represented by 

[ ]p1 10 0 0 9 2 0 9 17 90 0= . , . , . , . , .  and  [ ]p2 750 6 6 10 0= . , . , .  that results in an overarching MOE 

of  hours 33.93=E with clearance rate of only q=0.620 at a cost of $28.066M.  Since 

CONSTR would not converge for costfactors less than 1.25, the analysis indicates that a 

system that satisfies the stringent requirement for 84.6% clearance will cost at least 25% 

more than a system of systems composed of the threshold component systems, but would 

take 38.38 hours to complete the clearance mission with a single pass from each system.
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Single System Vs. System Of Systems Optimization 

 The claim is often made that optimization of each component system does not 

guarantee overall system of systems optimization39.  However, an analysis is rarely 

available or offered to quantify the suboptimality of single system optimization.  Here, we 

have optimized S1 and S2 separately, and compare the results with those just presented.  It 

is not a straightforward process, due to the wide range of assumptions that can be made 

regarding the complementary system.  To organize the analysis, two distinct single system 

approaches and sets of assumptions are hypothesized, analyzed, and tabular results 

offered in Figures 18 and 19.  The two classes of single system developer assumptions 

regarding the other components to the system of systems are as follows: 

1. Each system developer assumes the other is conducting a rigorous 

requirements optimization analysis and each has insight into the other’s 

process and results. 

2. Each system developer has little or no insight into the other’s requirements 

analysis and will therefore assume that they will be interfacing with a system 

that is either very good or is marginally effective with regards to those MOPs 

that are known to interact between systems.  This is referred to as “better” or 

“worse” than the baseline optimization results. 

                                                           
39 Eisner, H., Marciniak, J., and McMillan, R., “Computer-Aided System of Systems (S2) Engineering”, 

Proceedings of the 1991 IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October 
1991, University of Virginia, Charlottesville, VA. 
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 It should be noted that both approaches should still offer more insight than would 

come from simple, single system (a.k.a. “stovepipe”) analyses, which do not explicitly 

recognize that each system is part of a system of systems with quantifiable MOEs, quality 

constraints, technology constraints, and PBCMs for critical MOPs. 

 Referring to Figure 18, the first set of results is the baseline SQP optimization that 

is simply repeated from the previous section.  The second set of results is obtained from 

optimizing S1 and S2 separately, but utilizing “perfect knowledge” about the baseline 

system of system optimization results.  This is accomplished by holding the other 

system’s baseline optimization results fixed when optimizing each system one at a time, 

subject to the stated cost and quality constraints.  S1 depends on the S2 MOP 

r1,2 R=)6( px = and S2 depends on the S1 MOPs c2,1 P)2( == px , fa3,1 P)3( == px ,  and 

σ== 5,1)5( px .   (MATLAB  code and complete results are listed and plotted in 

Appendix B.)  The resulting system MOEs are then combined to form the system of 

systems MOE, 21 EEE += .  The difference with the system of systems baseline 

optimization is shown as a percentage of the baseline. This provides insight as to the 

inherent suboptimality of performing a sequential optimization, even when the “right 

answer” to the full system of systems problem is known.  The suboptimality of single 

system optimization is quite significant for cost factors below 1.5, but not otherwise.   It 

is interesting to note that the local minima “hump” that is so noticeable in the baseline 

results is not apparent in the separately optimized results.  The quality constraint that 

846.0)( ≥xq  was active for each costfactor value, and is therefore omitted from the table. 
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Next, the results of optimizing each system with good, but imperfect knowledge 

concerning the other’s capability are shown in Figure 18 as a more realistic 

implementation of having knowledge of the other system’s optimization process and 

results.  S1 is optimized assuming x( )6 500= , which is at the “knee-of-the-curve” for S2’s 

re-acquisition range PBCM (Figure 12).  A similar inspection and assessment of the S1 

MOP PBCMs for x x x( ), ( ), ( )2 3 5  (see Figures 8,9,11) was done and 

x x x( ) . , ( ) . , ( )2 0 955 3 10 5 42= = =   were selected.  The resulting recombined MOEs 

exhibit similar behavior in that the suboptimality is marked for small values of the cost 

constraint factor, which diminishes as the cost constraint is relaxed.  Note that the 

recombined system of systems clearance rate is slightly better than the constrained value 

of 0.846, indicating a tradeoff of timeliness for a very modest gain in quality. 

 System of Systems Perfect Knowledge Single System Imperfect Knowledge Single System 

 Optimization Optimization Optimization 

costfactor E Cost q E1 E2 E % Delta E1 E2 E % Delta q 

1.3 34.32 36.49 0.846 27.88 9.71 37.59 9.5% 27.29 13.16 40.44 17.8% 0.849

1.4 28.38 39.29 0.846 22.50 8.61 31.11 9.6% 22.06 10.65 32.71 15.3% 0.849

1.5 25.35 42.10 0.846 18.32 7.64 25.96 2.4% 18.03 9.31 27.34 7.8% 0.849

1.6 23.07 44.91 0.846 16.42 6.82 23.24 0.7% 16.27 8.26 24.53 6.3% 0.849

1.7 21.27 47.71 0.846 15.17 6.10 21.26 0.0% 15.08 7.38 22.46 5.6% 0.849

1.8 19.74 50.52 0.846 14.38 5.43 19.81 0.3% 14.33 6.60 20.92 6.0% 0.849

1.9 18.55 53.33 0.846 13.81 4.79 18.60 0.3% 13.77 5.89 19.66 6.0% 0.849

2.0 17.77 56.13 0.846 13.36 4.56 17.91 0.8% 13.33 5.24 18.56 4.5% 0.850

2.1 17.18 58.94 0.846 12.98 4.53 17.51 1.9% 12.95 4.63 17.58 2.3% 0.850

2.2 17.35 61.75 0.846 12.65 4.54 17.19 -0.9% 12.63 4.58 17.21 -0.8% 0.851

2.3 16.88 64.55 0.846 12.37 4.44 16.80 -0.5% 12.35 4.56 16.91 0.2% 0.851

2.4 16.40 67.36 0.846 12.11 4.37 16.48 0.5% 12.09 4.91 17.00 3.7% 0.851

2.5 16.12 70.17 0.846 11.89 4.38 16.26 0.9% 11.88 4.41 16.28 1.0% 0.851

Figure 18:  Single System Optimization Results 
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 Results from implementing the second approach are shown in Figure 19, again 

alongside the baseline results.  We first optimize both systems separately, with the 

assumption that the other system’s MOPs will be quite good, or “better” than the optimal 

constrained system of systems baseline results.  Specifically, for the MOPs that are 

effective at the system interfaces, x x x x( ) , ( ) . , ( ) . , ( )6 550 2 0 975 3 050 5 42= = = =  were 

selected.  The resulting set of MOEs are a little bit better than the “perfect knowledge 

set”, but the combined clearance rate, q, was up to 5% worse—a very significant  number 

in the mine countermeasures domain. 

 What has happened is that by assuming the other system is being developed for 

high performance, one “under-engineers” his own system at the interface, and will 

naturally spend the remaining allowable funds to enhance his own single system MOE, Ei.   

Note that in this model, the interfacing MOPs have a first-order effect on the quality 

constraint, q.  Hence the MOE times are very good, but the clearance rate is degraded as 

each system developer assumes that another system will take up the slack to produce an 

acceptable clearance rate.  This is probably the most typical situation, because each 

system by itself will look good (in this case, fast) but the more complex combined system 

of systems quality MOE is either not addressed or is viewed as the responsibility of some 

other, overarching authority to assess the system of systems effectiveness. 

Conversely, if one assumes that the other system’s development is not 

performance-driven, the result is to “over-engineer” the system at the interface and since 

resources are constrained, this forces degradation in the single system MOE.  This effect 

can be seen in the second set of single system optimization results in Figure 19 which 



 89

were obtained with x x x x( ) , ( ) . , ( ) . , ( )6 300 2 0 975 3 050 5 52= = = = .  The clearance rate is 

significantly improved at the expense of a significant degradation in the system of 

systems performance MOE.  Here, each system developer has assumed that his system 

must carry the load to maintain an adequate clearance rate and therefore relaxes 

parameters that most directly affect timeliness. 

 

 System of Systems Single System Optimization: Single System Optimization: 

 Optimization Assume Other System is Better Assume Other System is Worse 

costfactor E Cost q E1 E2 E % Delta q E1 E2 E % Delta q 

1.3 34.32 36.49 0.846 26.99 9.50 36.49 6.3% 0.823 29.23 13.29 42.52 23.9% 0.860

1.4 28.38 39.29 0.846 21.84 8.44 30.28 6.7% 0.823 23.45 11.55 35.00 23.3% 0.860

1.5 25.35 42.10 0.846 17.91 7.54 25.45 0.4% 0.824 19.09 9.92 29.01 14.4% 0.860

1.6 23.07 44.91 0.846 16.19 6.75 22.95 -0.6% 0.823 16.76 8.76 25.52 10.6% 0.860

1.7 21.27 47.71 0.846 15.04 6.04 21.08 -0.9% 0.822 15.35 7.81 23.16 8.9% 0.860

1.8 19.74 50.52 0.846 14.30 5.39 19.69 -0.3% 0.836 14.50 6.98 21.48 8.8% 0.860

1.9 18.55 53.33 0.846 13.75 4.77 18.52 -0.2% 0.820 13.90 6.24 20.14 8.6% 0.860

2.0 17.77 56.13 0.846 13.31 4.57 17.88 0.6% 0.845 13.43 5.56 18.99 6.9% 0.861

2.1 17.18 58.94 0.846 12.94 4.56 17.50 1.9% 0.847 13.04 4.94 17.97 4.6% 0.861

2.2 17.35 61.75 0.846 12.62 4.55 17.17 -1.0% 0.845 12.70 4.60 17.30 -0.2% 0.862

2.3 16.88 64.55 0.846 12.34 4.46 16.80 -0.5% 0.816 12.41 4.59 16.99 0.7% 0.864

2.4 16.40 67.36 0.846 12.09 4.41 16.50 0.6% 0.815 12.15 4.57 16.71 1.9% 0.864

2.5 16.12 70.17 0.846 11.87 4.38 16.26 0.8% 0.813 11.91 4.53 16.44 2.0% 0.864

Figure 19:  Single System Optimization Assuming Better/Worse Other System Performance 

 

 As mentioned above, these analyses are each done assuming the same set of 

constraints and combining the separately obtained results to obtain the system of systems 

performance.  This is in itself a very optimistic assumption in that typical stovepipe 

developments would not be that well-coordinated in their assumptions.  For example, the 

reconnaissance system manager might be working towards spending no more than twice 

his threshold system cost whereas the clearance system manager might be limited to 1.5.  
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Worse, one system manager may not even be cost constrained, but seeking to maximize 

performance to the limits of technology.  We have quantified significant suboptimalities 

in single system optimization even under self-consistent system of systems constraints on 

cost, technology, and the quality MOE.  These models and analysis could be used to 

predict the effects of these other disparate approaches on system of system effectiveness. 

 In summary, this single system vs. system of systems optimization comparison 

illustrates what might be called common sense to the acquisition executive.  If we are not 

resource constrained, then the correct course of action is simply to optimize each 

component system for performance without regard to cost—and it doesn’t matter if this is 

implemented separately or as a system of systems.  This has been the situation in Defense 

for many decades.  But as the cost constraint is tightened it becomes increasingly 

important to consider the full impact of design decisions on the whole to get the most 

performance per unit dollar.  Our results in this regard vividly illustrate the maxim, 

“We are short of money, therefore we must think.” 

 

Constrained SQP Optimization Via Penalty Function Method 

The penalty function method described in Chapter 6 was applied to our MCM 

problem in order to incorporate the nonlinear constraints into the objective function.  

Appendix C contains MATLAB  code and results from implementing the method 

utilizing the CONSTR optimization algorithm.  The plots that constitute Figure 20 

demonstrate well-behaved but suboptimal results relative to the baseline.  These results 
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were obtained utilizing the quadratic penalty function, which was found to be less 

sensitive to initial conditions than the absolute value penalty function whose results are 

also displayed.  The quadratic penalty function formulation converged when initialized 

with the threshold system MOPs, whereas the absolute value penalty function would not 

converge unless it was initialized much closer to the optimal values—in this case, random 

perturbations of +/-20% from the baseline solution MOPs were sufficiently close to 

ensure convergence, though not always to a local minimum equivalent to the original 

problem.  Also, CONSTR took anywhere from 2-20 times the number of iterations 

required for the baseline to converge within the selected nominal termination criteria.  

The degree of suboptimality can be seen explicitly in the Figure 21 table and the plot in 

Figure 25.  Note that as the cost constraint is relaxed, the agreement converges. 

Keep in mind that the penalty function approach on the closed form MCM 

problem formulation is used simply to establish and understand its nominal behavior 

prior to attempting stochastic optimization using simulation.  Therefore, these results 

provide a best case limit for subsequent SPSA implementations.  The dramatic increase in 

the number of required iterations is an indication that the transformed objective function 

is much “shallower”, primarily due to an effective relaxation of the constraint 

requirements—which is quite realistic from a management point of view.  Therefore, the 

resulting minimum is nearly achieved in a rather large region rather than a single crisp 

point, implying that there should be some implications for flexibility in generating system 

requirements for the “optimal” CAIV sequence. 
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Figure 20:  Constrained SQP Optimization (Penalty Function) Results for S 
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  Baseline Results Quadratic P.F. Absolute Value P.F. 

Costfactor Cost E Fun. 
Evals. 

E Fun. 
Evals. 

E Fun. Evals. 

1.25 35.082 38.60 311 38.59 1329 38.46 1345 
1.30 36.486 34.32 452 66.52 668 34.18 1479 
1.35 37.889 30.75 374 44.94 792 30.59 1449 
1.40 39.292 28.38 398 38.95 1658 28.56 2688 
1.45 40.696 26.83 430 34.56 1778 26.82 1550 
1.50 42.099 25.35 407 39.93 1846 29.26 1559 
1.55 43.502 24.13 381 28.39 2356 28.89 1101 
1.60 44.906 23.07 394 26.82 2395 23.23 1273 
1.65 46.309 22.13 474 25.33 2247 24.02 2214 
1.70 47.712 21.27 372 24.10 1966 22.11 1049 
1.75 49.115 20.48 397 23.02 2525 20.97 1119 
1.80 50.519 19.74 418 22.07 2129 22.02 2386 
1.85 51.922 19.07 287 21.20 3429 19.52 1735 
1.90 53.325 18.55 344 20.40 3633 20.40 1683 
1.95 54.729 18.13 368 19.66 4130 18.61 961 
2.00 56.132 17.77 322 18.98 3704 17.78 1431 
2.05 57.535 17.46 232 18.45 5184 18.52 2527 
2.10 58.939 17.18 338 18.02 4160 18.19 1483 
2.15 60.342 17.66 505 17.66 5054 17.41 1277 
2.20 61.745 17.35 525 17.35 4042 17.70 1133 
2.25 63.148 17.07 482 17.07 6250 16.68 923 
2.30 64.552 16.82 503 16.82 5658 17.91 1137 
2.35 65.955 16.60 488 16.60 5391 16.25 899 
2.40 67.358 16.40 635 16.40 4955 16.38 705 
2.45 68.762 16.24 565 16.24 3347 16.43 794 
2.50 70.165 16.12 430 16.12 3268 16.11 452 

Figure 21:  Penalty Function vs. Baseline Numerical Comparison
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 First Order Constrained SPSA Optimization Via Penalty Function Method 

 Designed for stochastic optimization, the 1SPSA algorithm is itself a stochastic 

process due to the nature of generating the gradient approximation, as described in 

Chapter 6.  To better understand this behavior, a simple three-dimensional constrained 

optimization problem was posed and solved with 1SPSA.  The problem description and 

results summary are shown in Appendix D.  The points of interest are that the algorithm 

always found the solution exactly, while on the average taking about the same number of 

iterations (9.8 vs. 9) as did CONSTR, which was also implemented as a control.   

A variety of penalty functions and algorithm parameters were investigated and 

applied with 1SPSA on the closed form MCM problem formulation, with limited success.  

The wide range in parameter values at or near the optimal values cannot be handled well 

by a first order algorithm.  The best results were obtained with the absolute value penalty 

function, starting each solution by randomly perturbing the baseline solution by 20%—an 

initial uncertainty level that a domain-knowledgeable system developer can probably 

guess at for their system.  Figure 22 displays the usual plots for a 2500 iteration (5000 

function evaluations) implementation, and Appendix D has the detailed output, including 

the SPSA algorithm control parameters that were utilized.  While the top level MOE plot 

is not too noisy, there are some shortcomings (1) the resulting MOP plots are quite 

scattered, and (2) the clearance rate constraint is not well-satisfied, with q ranging from 

0.810 to 0.866, and (3) the cost constraint is not well-satisfied, with the “solution” cost 

exceeding the upper bound by up to $5M.  Regarding the first criticism, recall that we 
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would like to use the MOP solutions to specify requirements for the component systems.  

Since this behavior is so apparently erratic, the algorithm is unsatisfactory for this 

purpose, on this problem.  Actually, the problem with satisfying the clearance rate and 

cost constraints is more severe, in that the iterates do not “solve” the constrained problem.  
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Figure 22:  1SPSA Results--5000 function evaluations
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Second Order Constrained SPSA Optimization Via Penalty Function Method  

 To address the shortfalls of 1SPSA on this difficult problem, second order SPSA 

was implemented as mentioned in Chapter 6.  As can be seen by inspection of the 

complete code and results listed in Appendix E, it can generate solutions that satisfy the 

full set of constraints, and approaches the MOE optimum values produced by CONSTR 

on the penalty function reformulation.  Excellent satisfaction of both cost and quality 

constraints were obtained, unlike 1SPSA.  Unfortunately, it still suffers from apparently 

erratic MOP estimates, which would be difficult to translate into system requirements.  A 

wide variety of penalty function weightings, algorithm control parameters, blocking, 

Hessian averaging, and solution averaging techniques were applied in an attempt to 

obtain more stable MOP estimates with limited success.  Figure 23 illustrates the results 

obtained with the same number of function evaluations (5000, with 1000 iterations) on 

the absolute value penalty function, with initial conditions randomly perturbed 20% from 

the baseline solution. 
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Figure 23:  2SPSA Results--5000 function evaluations 

 

 To better understand this erratic behavior, and to determine the best the algorithm 

(which is itself stochastic in nature) can produce on this problem, it was re-solved by 

initializing the algorithm with the baseline solution obtained from MATLAB ’s 

CONSTR.  The following results were obtained, also with 5000 function evaluations 

(Figure 24): 



 98

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost Factor on Threshold System Costs

Ti
m

e 
to

 C
om

pl
et

e 
M

is
si

on
 (

ho
ur

s)

30 35 40 45 50 55 60 65 70 75
10

20

30

40

50

60

70
System of Systems MOE as Function of Cost

Cost ($M)

Ti
m

e 
to

 C
om

pl
et

e 
M

is
si

on
 (

ho
ur

s)

 

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s 

1-
4 

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y 
th

re
sh

ol
d)

x1
x2
x3
x4

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
System of Systems MOPs as Function of Cost

Cost Factor on Threshold System Costs

M
O

P
s 

5-
8 

(p
er

ce
nt

 o
f t

ec
hn

ol
og

y 
th

re
sh

ol
d)

x5
x6
x7
x8

 

Figure 24:  2SPSA Initialized at Baseline Optimum 

 

 These results are excellent, and indicate that 2SPSA is stable and can produce 

good MOP results if it is initialized “close enough” to the optimum.  It also confirms the 

previous finding that the transformed objective function is quite shallow.  Of course, this 

is difficult to achieve when one is approaching a new problem for the first time.  It should 
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be noted that similar well-behaved results were obtained when the initial values were only 

10% from the optimum, but getting that close to the optimum is probably impossible for a 

system architect to achieve, a priori.  Also, recalling our experience with the penalty 

function control cases, the absolute value penalty function may be converging to nearby 

local minima that aren’t optimal solutions to the original problem.  This effect may 

actually account for some of the “noise” in Figure 24 rather than having been generated 

from the inherent algorithm uncertainty. 

 Figure 25 plots the MOEs obtained from each of the four algorithms that have 

been applied.  There is good agreement with all four algorithms, even the two SPSA 

algorithms, which is encouraging as preparation for the stochastic simulation situation. 
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Figure 25:  Comparison of System of Systems MOE Results
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 Although the results look good at the MOE level, we have to look carefully at the 

degree to which the constraints have been satisfied with 1SPSA and 2SPSA.  Figure 26 

offers a table of results that compares not only the final MOE values, but the cost and 

quality values resulting from each optimization.  The cost upper bound is in the second 

column, and each algorithm is trying to produce q(x)=0.846—which was exactly satisfied 

with both the baseline and quadratic penalty function methods solved with CONSTR. 

 Cost  Baseline Results Quadratic P.F. 1SPSA:  5000 Fn. Evals 2SPSA:  5000 Fn. Evals. 

Costfactor Upper Bnd. E Fun. Evals. E Fun. Evals. E q(x) Cost E q(x) Cost 

1.25 35.082 38.60 311 38.59 1329 71.155 0.705 34.986 40.25 0.844 35.109

1.30 36.486 34.32 452 66.52 668 37.667 0.846 40.349 39.05 0.846 36.483

1.35 37.889 30.75 374 44.94 792 34.544 0.810 37.804 32.06 0.826 38.17

1.40 39.292 28.38 398 38.95 1658 33.915 0.846 41.980 37.63 0.846 39.292

1.45 40.696 26.83 430 34.56 1778 32.065 0.851 40.746 30.48 0.846 40.697

1.50 42.099 25.35 407 39.93 1846 23.24 0.846 46.095 27.90 0.846 42.105

1.55 43.502 24.13 381 28.39 2356 30.662 0.862 43.686 32.27 0.851 43.414

1.60 44.906 23.07 394 26.82 2395 26.708 0.848 45.738 36.75 0.846 44.906

1.65 46.309 22.13 474 25.33 2247 25.501 0.852 47.260 25.67 0.846 46.311

1.70 47.712 21.27 372 24.10 1966 23.766 0.830 47.672 25.62 0.846 47.712

1.75 49.115 20.48 397 23.02 2525 22.057 0.846 51.587 25.51 0.846 49.116

1.80 50.519 19.74 418 22.07 2129 20.791 0.846 54.596 22.77 0.846 50.518

1.85 51.922 19.07 287 21.20 3429 18.993 0.847 57.732 28.97 0.846 51.925

1.90 53.325 18.55 344 20.40 3633 20.388 0.851 53.791 22.18 0.846 53.322

1.95 54.729 18.13 368 19.66 4130 20.457 0.841 54.733 20.78 0.846 54.728

2.00 56.132 17.77 322 18.98 3704 20.579 0.847 57.189 20.97 0.846 56.134

2.05 57.535 17.46 232 18.45 5184 19.423 0.847 57.575 18.78 0.846 57.534

2.10 58.939 17.18 338 18.02 4160 19.642 0.853 59.005 22.23 0.846 58.939

2.15 60.342 17.66 505 17.66 5054 19.033 0.863 60.448 18.91 0.846 60.346

2.20 61.745 17.35 525 17.35 4042 19.042 0.866 61.897 20.12 0.846 61.746

2.25 63.148 17.07 482 17.07 6250 18.342 0.854 61.312 18.42 0.846 63.15

2.30 64.552 16.82 503 16.82 5658 18.121 0.855 61.619 23.95 0.846 64.552

2.35 65.955 16.60 488 16.60 5391 18.063 0.849 64.211 17.07 0.846 65.954

2.40 67.358 16.40 635 16.40 4955 16.936 0.852 67.868 17.40 0.846 67.358

2.45 68.762 16.24 565 16.24 3347 17.283 0.861 69.190 17.39 0.846 68.761

2.50 70.165 16.12 430 16.12 3268 16.377 0.850 70.334 16.52 0.846 70.166

Figure 26:  Comparison of Optimization Algorithm MOE, Cost, and q(x) Results 
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 To better compare 1SPSA vs. 2SPSA satisfaction of the constraints, Figures 27 

and 28 are plots that compare both algorithms’ final clearance rate and cost, respectively. 

While 2SPSA provides excellent results in this regard, 1SPSA does not, and therefore, 

almost none of its results are truly useful. 

 

Optimization Algorithm Comparison:  q(x)=0.846
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Figure 27:  Comparison of 1SPSA vs. 2SPSA Clearance Rate Results 
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Optimization Algorithm Comparison:  cost bound 
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Figure 28:  Comparison of 1SPSA vs. 2SPSA System of Systems Cost Results 

 

A final note regarding the nature of stochastic optimization is in order.  When 

performing a stochastic optimization, each point on the CAIV plot is a random realization 

resulting from both the stochastic nature of the underlying function as well as that of the 

algorithm itself.  Therefore, to obtain useable MOP estimates, many runs at each 

costfactor should be done and the most self-consistent composite set of runs should be 

selected as representative of solving the full range of the CAIV problem.  This was done 

to obtain results in Chapter 8 that utilize the simulation with 2SPSA. 
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CHAPTER 8 

PHASE II RESULTS:  SIMULATION OBJECTIVE FUNCTION 

Simulation Description 

 The MCM system of systems model was implemented as a simulation, patterned 

directly after the parameter dependency diagram developed in Chapter 5.  It contains 12 

functional blocks, as shown below (Figure 29), with parameters defined explicitly in 

Chapter 5. 

A

λ
Tdetect

E1

E2

E

TclassTc

Tcf

M0

Pfa

Dfa

Dft

Pd

Sminefield

λft

Dm•  

•  

•  •  

•  

•  

•  

•  

Pc

•  

•  

Cm

Cf

Tn

Tpf

PL

q

S1:  Reconnaissance System

S2:  Neutralization
       System

S:  Clearance 
System of  Systems

Quality Constraint on S

Pc

σ

Rr

f
qlb
cub

Dfa = no. of mine false alarms
Dft = no. false targets detected
Dm = no. of mines detected
Cf   = no. of non-mines incorrectly
         classified as mine-like
Cm   = no. of mines correctly
         classified as mine-like

1

5

4

3

2

10

8

7

9

6

11

12

PBCMs

 

Figure 29  MCM Simulation Block Diagram 

 



 104

The simulation was implemented as a MATLAB  function which produces one 

Monte Carlo realization of E and q with each function call.  The simulation randomly 

generates the specified events in accordance with the MOPs.  For example, looking at 

Block 4, if there are 100 mines in the minefield (i.e., M0=100) and Pd=0.90, then the 

number of  detected mines (Dm) is generated simply as 100 Bernoulli success/failure trials 

with probability of success equal to 0.90.  The randomly generated Dm is then passed to 

Block 7, which in turn similarly generates the number of correctly classified mines, and 

so on.  Eventually, the MOEs for that realization are produced and the resulting penalty 

function evaluation is returned by the simulation function MCMSIM after calculating the 

resultant system cost. 

 

Second Order Constrained SPSA Optimization Via Penalty Function And Simulation 

The resulting penalty function values are noisy and the amount of noise directly 

affects 2SPSA parameter selection.  To characterize the noise, an auxilliary program was 

written that takes x as input, calls MCMSIM many times and generates statistics.  For 

example, at the optimum for costfactor=2.0 and using the absolute value penalty function 

with gains A1=3 and A2=100, the standard deviation for FA ( )x  and E are 2.3 and 0.38, 

respectively.  Unfortunately, these modest gains for the cost and quality penalties did not 

produce acceptably close convergence.  The values used for the previous analyses (A1=50, 

A2=1000) were used instead, with better convergence properties—but at the cost of 

greatly increased noise on the penalty function FA ( )x :  a mean and sigma values of 46 

and 21 at costfactor equal to 2.0.  This level of noise is extremely difficult to deal with, 



 105

and is an artificiality of the penalty function method.  A quick analysis of the quadratic 

penalty function indicates that the resulting noise on FQ( )x  is unacceptably high when 

gains guaranteed to produce constraint agreement are used.  

In stochastic optimization, the issue arises as to what the final answer is to the 

problem at hand.  Specifically, what are the values for the MOEs E and q that are 

associated with the solution vector x (MOPs)?  Since MCMSIM produces a random 

realization of the objective function, it must be called many times and results averaged to 

generate expected values for E and q.  The 2SPSA code was therefore augmented to 

average 100 function calls to generate the average MOEs that are displayed. 

To characterize the effects this substantial noise would have on 2SPSA, the 

2SPSA code was initialized with the analytic model’s optimal results for each value of 

the costfactor and optimized using the simulation as the objective function.  The results 

are displayed in Appendix F and indicate that the algorithm is stable and would converge 

(or at least not wander far from) the optimal solution were it initialized sufficiently 

“close” to the optimum.  Another insight is that the problem from this type of control run 

is that the final MOE values are relatively insensitive to values of x(2) and x(3) but very 

sensitive to x(4).  As in the CONSTR baseline results, the value of x(4) took a step 

change at costfactor=2.5, where the problem changes character from a flat objective 

function to one that is much sharper.  Also interesting is the level of noise in satisfaction 

of the clearance rate constraint that can be observed in the summary table in Appendix F.  

The noise is consistent with the characterization mentioned above, giving an indicator of 

the problem difficulty and noise in the simulation. 
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As in Chapter 7, initial values for x were chosen as random 20% perturbations 

from the optimal values as determined by the baseline (noise-free, analytic model) 

CONSTR results.  Many runs were conducted at 1000 iterations, with some run out to 

2000 and 4000 iterations without significantly enhancing the results.  Figure 30 displays 

composite results of six sets of 1000-iteration runs that best satisfy the cost and clearance 

rate constraints.  They were obtained with 2SPSA algorithm parameters α=0.602, A=50, 

c=0.02, a=10, blocking the use of any iterate that increased the current value of the 

objective function by more than 3, and averaging the last three unblocked iterates to 

obtain the final estimate.  Although the MOE results are well-behaved, the MOP 

estimates are still noisy, exhibiting the same character as those obtained with the 

algorithm initialized at the optimum.   

Figure 31 displays a comparison of the 2SPSA simulation MOE results against the 

various methods applied to the analytic model.  Also included are 1 sigma bars on the 

average MOE obtained with the 2SPSA simulation results, as discussed above.  In the 

MOE domain, the 1000-iteration SPSA simulation results compare favorably with the 

deterministic results. 

 The cost constraint agreement is excellent, diverging generally less than $10K.  

Figure 32 below shows the degree of convergence to the clearance rate constraint of 0.846 

and the +/- one sigma bounds obtained numerically.  This too shows excellent agreement 

as did the 2SPSA results obtained on the analytic model. 

 Practicality questions remain, however, as (1) we have used knowledge of the 

analytic model results to select the initial iterate and (2) the MOP estimates are too 
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irregular to confidently assign system design parameters in a CAIV approach to the 

system of systems upgrade problem, as a small change in the cost constraint would 

produce unreasonably irregular changes in the corresponding MOPs. 
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Figure 30:  2SPSA Simulation Results--5000 Function Evaluations 



 108

2SPSA Simulation  vs. Analytic Results
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Figure 31:  2SPSA Simulation vs. Analytic Model Results 

2SPSA Simulation Results for Clearance Rate
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Figure 32:  2SPSA Simulation Results for Clearance Rate 
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Practical Selection of Initial MOP Estimates and Final Results 

 The question arises as to how, in the absence of prior analytic results, one would 

select an initial set of MOP values for the simulation optimization.   Recall that for the 

algorithm comparisons above, we randomly perturbed the true optimum by 20% to 

initialize each 1SPSA and 2SPSA run.  One “prior-free” way to do this is to first estimate 

the minimum value of the costfactor multiplier that would represent essentially no cost 

constraint—and therefore the optimization solution vector would move to the technology 

upper bound.   In the absence of understanding the sensitivity of the objective function to 

each MOP, we could then assume that the optimal MOP values would tend to be 

proportional to the costfactor across its interval constraints.  Therefore, when 

costfactor=1, we assume the optimum would be the threshold value, x*  and then linearly 

ramp up (or down) to its technology constraint as the costfactor constraint is relaxed to its 

asymptotic value.  In our MCM problem notation with the asymptotic costfactor equal to 

2.5,  
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This approach was used with 1000 iterations with marginally satisfactory results.  

Although it produced more stable MOP estimates, the MOEs were consistently worse 

than the random initialization scheme that was chosen to (1) provide a common challenge 

to all the algorithms, (2) represent some of the arbitrariness of most initial management 
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decisions regarding MOPs, and (3) be certain of being “close enough” to the optimum to 

expect algorithm convergence. 

To enhance results and their practical utility, two additional measures were taken.  

First, the number of iterations was increased to 2000 and a composite profile selected 

from the results of six separate runs at each costfactor value using the criteria of creating 

as smooth an overall MOE curve as possible—i.e., no prior information was used from 

the analytic baseline results.  Figure 33 displays the MOE and MOPs normalized to their 

interval constraints in the same manner as previously presented results.  The MOE 

estimates are very well-behaved as the costfactor constraint increases, and the MOP 

estimates are erratic yet still patterned. 

Secondly, to enhance the practical utility of the MOP results, they were 

interpolated utilizing second to sixth order polynomials, as appropriate.  The 2SPSA-

generated MOP estimates and the polynomial interpolated curves are shown in their 

natural units.  The solid red line in Figure 33 is the result of averaging the MOE 

realizations from 100 executions of the simulation function MCMSIM for each 

interpolated MOP vector as a function of the costfactor constraint.  These final results are 

excellent and demonstrate practical utility for use in specifying component system MOPs. 
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Figure 33:  2SPSA Simulation Results (MOE and Normalized MOPs)--2000 Iterations with Ramp 
Interpolation Initialization
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Figure 34:  2SPSA Simulation Results (MOP Values)--2000 Iterations with Ramp Interpolation 
Initialization 
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 Figure 35 compares these results to the baseline analytic results in the overall 

MOE domain.  The interpolated simulation results are very smooth, approximating the 

baseline results curve.  Of course, we always have to make sure that the quality and cost 

constraints are reasonably well satisfied, which is indeed the case, as shown in Figures 36 

and 37.  Actually, the interpolated MOP values result in underspending the cost constraint 

by as much as $4M (about 6%), though the raw 2SPSA results are much closer. 
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Figure 35:  2SPSA Simulation vs. Analytic Model Results 
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2SPSA Simulation Results for Clearance Rate
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Figure 36:  2SPSA Simulation Clearance Rate Results 
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Figure 37:  2SPSA Simulation Cost Results 
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Also of interest is the distribution of costs between the optimized systems, S1 and 

S2.  Figure 38 displays the resultant cost factor for each system as a function of the overall 

system of systems costfactor constraint.  The distribution of costs varies as the costfactor 

constraint is relaxed and the impact of certain parameters are automatically traded off. 

Single System Costfactor Results
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Figure 38:  2SPSA Simulation Costfactor Results by Individual System 

 

 Finally, referring back to the baseline analytic results from Chapter 7, we found 

that at a representative costfactor constraint value of 2.0, CONSTR  produced 

[ ]0.42,0.3,55.0,961.0,3.851 =p  and [ ]p2 4232 7 0 3 0= . , . , .  yielding 8.17=E , with clearance 

rate q=0.846 at a cost of $56.1M.  Our final results with utilizing nonlinear, constrained, 

stochastic optimization with the simulation as the means to evaluate the objective 
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function, produced [ ]8.55,2.3,1.1,965.0,3.741 =p  and [ ]3.3,4.4,6.4952 =p  

yielding 7.18=E , with clearance rate q=0.841 at a cost of $54.0M.   The overall MOE is 

about 5% worse for $2M less cost and a very slight decrease in clearance rate of 0.005. 

These runs have highlighted two fundamental difficulties created by the penalty 

function approach to constrained stochastic optimization:  (1) sufficiently large penalty 

gains to guarantee constraint agreement also makes the transformed objective function 

very “flat” and (2) the penalty function multiplies the effect of the simulation noise to the 

point where it makes convergence very difficult.  These factors should motivate further 

research in more direct methods for constrained stochastic optimization to enhance the 

likelihood of successful utilization of advanced M&S to support system of systems 

acquisition decisions.
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CHAPTER 9 

 

VERIFICATION AND VALIDATION ISSUES 

 

This Chapter concerns how Verification, Validation and Accreditation (VV&A) 

for the system of systems upgrade process would be approached when extending the 

methodology beyond a proof of principle demonstration.  Implementation of these VV&A 

approaches on a practical problem of significant scope and fidelity is beyond the scope of 

the dissertation effort.  The discussion is included here for purposes of scoping the 

practical aspects of gaining widespread acceptance for a newly proposed process.   

 

A commonly accepted set of definitions for VV&A of models and simulation 

(M&S) are as follows40: 

 

Verification:  The process of determining that a model implementation accurately 

represents the developer’s conceptual description and specifications. 

 

Validation:  The process of determining the degree to which a model is an 

accurate representation of the real world from the perspective of the intended 

uses of the model. 

 

                                                           
40 Williams, M.L. and Sikora, J., “SIMVAL Minisymposium—A Report”, Bulletin of Military Operations 

Research, Vol. 24, No. 2, June 1991. 
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Accreditation:  An official determination that a model is acceptable for a specific 

purpose. 

 

There are two parts to verification:  logical verification that ensures that the basic 

equations and algorithms are correct, while code verification checks whether these 

representations or abstractions of the real world are correctly implemented in the 

computer. 

Note that both V&V are considered to be processes. Since models and simulations 

are abstractions of the real world, complete validation is considered to be achievable for 

only the most simple of models.  Hence it is almost never considered appropriate to refer 

to a complex M&S as “validated”.  This is where accreditation comes in, representing a 

decision by an authoritative body that a given level of validation is sufficient to support a 

given decision process or application. 

There is a large body of literature on the V&V of software systems, and a lesser 

extent on the VV&A of M&S41.  This dissertation has examined a constrained 

optimization process that utilizes both an analytic model and a simulation to investigate 

upgrading a representative systems of systems.  The issues in verifying and validating a 

process such as this is not unlike those associated with an expert system.  An expert 

system implements an acknowledged process, although this process is not an expert 

system per se, due to the lack of an acknowledged knowledge base.  Practical 

implementation of this process in its mature form would generally utilize previously 

developed models and simulations, each of which presumably brings its own VV&A 
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approach arising from the single system development which it supports.  VV&A of the 

selected models and simulations is not part of the verifying and validating the process per 

se, but would be expected to have already been accomplished on the core models and 

simulations that would map component system MOPs to system of systems MOEs.  The 

discussion below is therefore adapted from literature on V&V of expert systems, which 

seem more applicable to V&V of a new process. 

 

 

What is Important and Why 

 

When applied to a software system, validation means building the right system, 

and verification means building the system right.  For a process, validation means 

implementation of the right process for the problem, whereas verification means 

implementing the intended, self-consistent and repeatable process.  Therefore, although 

verification is a necessary condition, we are ultimately concerned with validation, since a 

highly efficient implementation of an invalid (or inappropriate) process would be useless.  

In the context of the proposed process, we will not be solving the system of systems 

upgrade problem directly, but an abstraction of it—and we are therefore justifying the 

level of abstraction through the validation process.  Specific concerns that are applicable 

to the validation of the proposed process42: 

                                                                                                                                                                             
41 Pace, D.K., “Issues in Validating Simulations with Heterogeneous Levels of Fidelity”, Second High 

Fidelity Modeling and Simulation Workshop in the DIS Environment, Johns Hopkins University, 23 
March 1995. 

42 O’Keefe, R.M, Balci, O., and Smith, E.P., “Validating Expert System Performance”, IEEE Expert, 
Winter 1987, pp. 81-87.  
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•  What to validate.   Candidate items to validate include (1) intermediate results, (2) 

the final result, and/or (3) the reasoning of the process.  O’Keefe et al, recommend the 

reasoning process as the overall validation standard.  His logic is that although a poor 

reasoning process can produce a correct result on a trial problem, it is unlikely to be 

successfully scaled up to a problem with full complexity.  Also, it may be impossible 

to classify the final result as decidedly right or wrong.  Domain experts can be 

assembled to classify the intermediate results, final result, and process reasoning into 

categories such as:  ideal, acceptable, sub-optimal, and unacceptable. 

•  What to validate against.  The process can be validated against known results or 

against domain expert opinion as mentioned above.  Known results can be generated 

on carefully structured test cases, in particular system of systems models with closed 

form expressions for the component system MOEs and the overall MOE.  Domain 

expert opinion could be obtained by examination of “successful” Cost and 

Operational Effectiveness Assessment (COEA) studies, but there is no guarantee that 

they are correct—indeed, the operating hypothesis is that the proposed system of 

systems upgrade process would be superior to the typical COEA approach that 

concentrates on just one system. 

•  What to validate with.  For expert systems, validation efforts generally concentrate 

on comparisons against documented test cases.  But here, the sample of possible 

COEA test cases will be very small, and as mentioned above, would not produce a 

range of suggested enhancements across the full system of systems, but their solutions 

would necessarily be confined to one system.  The process constraints could be set up 
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to force enhancements to only one component system, or the system of systems could 

be composed of  the degenerate case of one system, but this would not be a 

comprehensive validation check case.  O’Keefe et al, recommend testing against a 

small number of complex cases and asking a panel of experts to assess how well the 

process handles them. 

•   When to validate.  No agreement exists on this in the context of expert system 

validation.  Initial validation of the process reasoning seems adequate, with 

subsequent re-validation as the process applications are extended. 

•  Controlling the cost of validation.  This is generally measured in terms of time and 

the cost to obtain applicable data, which can be substantial for a large system of 

systems. 

•  Controlling bias.  Several categories of bias must be guarded against, even when 

using experts in the validation process, such as: 

1. bias for or against a quantitative optimization approach 

2. developer bias in selection of test cases/scenarios that would favor his/her 

particular system’s potential contribution to the whole 

3. bias for or against a centralized authority imposing system of systems 

perspectives or requirements on system developers  
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Selection Strategies For  Ultimate Design Of The Process VV&A Approach(es) 

 

Validation of the reasoning process would necessarily be qualitative.  Potential 

qualitative approaches include: 

•  Face validation.  Experts in the problem domain (i.e., mine countermeasures, COEA 

studies, stochastic optimization, etc.) subjectively compare the process performance 

against their expert experience, assessing the process results at face value with regard 

to prescribed acceptable performance range. 

•  Predictive validation.  This approach utilizes historic test cases with known results 

and assessments of the errors previously obtained.  Here, it will be necessary to find a 

test case where multiple systems have been upgraded in an attempt to enhance a 

system of systems.  Again, the assessment will be against some acceptable 

performance range standard. 

•  Field tests.  This is a long term approach that would be used only after initial 

validation, in an attempt to widen the validated domain. 

•  Sensitivity analysis.  This is performed by systematically changing model parameters 

and constraint sets and observing impact on the solutions.  This is a particularly useful 

approach in this application, as the available test cases may only be special cases of 

the process in that generally only one component system of a particular system of 

systems is considered for upgrading or replacement. 

This area of validation of M&S and expert systems is one in which there is no 

consensus on approach.  My initial judgment is that a combination of face validation, 

predictive validation and sensitivity analysis will be appropriate. 
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Perspectives on the Limitations of V&V Approaches 

 

There are going to be limits and concerns related to any approach to verification 

and validation.  One of the most important is related to completeness and complexity43.  

This is of particular concern here, as we are expanding the scope of systems engineering 

into the system of systems domain.  At the system of systems level, the relationship of 

component systems’ MOPs to the overarching MOE becomes increasingly non-intuitive 

for all but the most significant parameters, as the complexity of the system of systems 

grows.  Therefore, the value of expert opinion wanes as the completeness of the 

representation or abstraction increases. 

Secondly, there is the problem of acquiring sufficient data, or test cases to perform 

the qualitative validation described above.  Since the whole approach represents a whole 

new way at looking at the system of systems upgrade process, it may be that the 

accumulated experience of available test cases will serve simply as knowledge acquisition 

for expert face validation. 

Finally, and perhaps most significantly, we don’t even know how well the current 

acquisition decision process “works” in a cost-constrained environment.  We do know 

that in the absence of cost constraints, it doesn’t matter whether one optimizes at the 

system of system of systems level.  We also know that those two factors are relatively 

                                                           
43 Rosness, R., “Limits to Analysis and Verification”, Verification and Validation of Complex Systems:  

Human Factors Issues , Springer-Verlag, 1992, Wise, J.A., Hopkin, V.D., and Stager, P., Eds. 
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new concerns in DoD acquisition policy and implementation:  (1) concern with cost 

rather than performance as the independent variable in trade studies, and (2) the system of 

systems perspective.  These new factors make it unlikely that an applicable process 

baseline could ever be established. 
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CHAPTER 10 

SUMMARY AND CONCLUSIONS 

 A systematic approach to considering how best to upgrade specific, complex 

systems of systems has been postulated and demonstrated.  The process treats cost as the 

independent variable and seeks to find the “best” point design for upgrading a particular 

system of systems, subject to stated cost and technology constraints, relative to an 

overarching measure of effectiveness.  The design requirements so generated represent an 

improved system of systems that may involve upgrading all component systems 

simultaneously, not just one at a time.  Extension of the typical COEA/AOA approach to 

the system of systems environment would hypothesize a manageable suite of point 

designs and assess them against a common metric generally functionalized by cost.  In 

contrast, this approach automatically generates a continuum of  “optimal” designs not 

only functionalized by total system of systems cost, but also taking into account realistic 

technology constraints as well. 

 The process has been demonstrated on a naval mine countermeasures system of 

systems representation of sufficient complexity and detail to demonstrate the feasibility of 

the approach.  This proof of principle demonstration features a constrained, nonlinear 

optimization algorithm whose objective function is a closed-form representation of the 

primary system of systems MOE, with constraints represented by functionalized 

Performance Based Cost Models, technology-driven bounds on system MOPs, and a 

secondary system of systems MOE.  Various optimization approaches have been 

demonstrated and differences quantified, including the suboptimality of considering just 
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one system at a time.  Due to the nature of complex system of systems interactions, 

implementation of this optimization technique on problems of national interest will 

require M&S to represent the mapping of system measures of performance to single 

system MOEs and on to the overarching system of systems MOE.  A stochastic 

simulation of the MCM system of systems was therefore implemented and optimized 

utilizing a constrained variant of the Stochastic Perturbation Simultaneous 

Approximation method. 

In short, a disciplined, quantitative approach to developing system of systems 

upgrade options for very complex engineering situations has been developed and 

demonstrated.  Application of this approach which can result in more effective and 

comprehensive systems acquisition and technology investment strategies, with the 

secondary benefit that the process can be used as a framework to determine how to utilize 

campaign-level M&S to support acquisition decisions. 

Conclusions 

The approach and methodology supports the quantitative elements of the System 

of Systems (S2) Engineering Process, especially those related to system performance 

optimization and development of transition or upgrade alternatives.  Inclusion of PBCMs 

and associated overall cost constraints enables the decisionmaker to proceed based upon 

cost as the independent variable considerations.  General methodology was developed and 

feasibility has been demonstrated through a proof of principle analysis of a naval mine 

countermeasures system of systems with realistic performance based cost models and 

technology constraints, and utilizing both classical and stochastic optimization 

algorithms. 
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In quantifying the sub-optimality of single-system optimization relative to 

simultaneously optimizing the entire system of systems, several significant insights were 

obtained and verified by examining some reasonable assumptions that might be held by 

component systems’ management concerning the concurrent system engineering 

processes of other systems.  For example, if a system engineer assumes that the other 

component systems are being developed for high performance, he will “under-engineer” 

his own system with respect to interfacing parameters and will tend to allocate his 

resources to enhancement of his single system MOE.  Conversely, if a system engineer 

assumes that the other systems are not performance-driven, the result is to “over-

engineer” his system at the interface and since resources are constrained, this forces 

degradation in his single system MOE.  In both cases, the overall system of systems is 

sub-optimal, because all system engineers are making the same erroneous assumptions.  

These effects are accentuated with restrictive cost constraints and become insignificant as 

overall cost constraints are relaxed to the point where the most advanced technology is 

affordable for all system components. 

Due to the complex interaction between systems (including multiple units of 

similar systems), closed form analytic expressions for system of systems performance are 

giving way to simulation-based representations.  Therefore, we developed an efficient 

methodology that can utilize stochastic simulation to evaluate the system of system’s 

measure of effectiveness.  Transformation of the constrained nonlinear stochastic 

optimization problem formulation to include only interval constraints enabled the 

application of a straightforward constrained optimization projection adaptation of the 

second-order SPSA algorithm.  Although feasible, the inherent ill-conditioning of the 
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selected penalty function approach and the number of simulation-based functions 

evaluations still required for convergence limits practical, large scale applications and 

therefore motivates future research to enhance efficiency. 

 

Future Research 

Several interesting avenues for further research have become apparent in working 

through the general system of systems optimization approach and the proof of principle 

demonstration.  The following areas need to be addressed to varying degrees in order to 

implement the methodology on systems of systems of national interest, scope and 

complexity: 

1. Nonlinear constrained stochastic optimization.   Efficient methods for nonlinear 

constrained stochastic optimization will be necessary to utilize simulations of 

reasonable fidelity to evaluate system of systems MOEs as part of optimization 

objective functions.  The penalty function approach utilized here is a simple, brute 

force method that “works”, but brings with it certain ill-conditioning that should be 

avoided.  An approach that incorporates the efficient function evaluation properties of 

2SPSA into a classical nonlinear programming algorithm such as SQP should be 

effective. 

2. Incorporation of performance based cost modeling into system engineering.  The 

development of a PBCM should be an integral part of the system engineering process, 

as they are necessary for any reasonable CAIV approach, including this one.  

Although research into methods and standards for software development cost 

estimating is active, similar efforts should be initiated for appropriate categories of 
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full systems, and incorporated into system engineering standards efforts.  

Furthermore, the modeling and simulation community will increasingly seek to 

integrate PBCMs into campaign-level simulations to reflect the cost of acquiring and 

using certain systems of systems.  Therefore, a PBCM should be a requirement for all 

acquisition programs. 

3. Extension to force level analysis.  Although the general formulation included notation 

for force level analysis, only one system of each type was treated by the optimization 

approach utilized in this dissertation.  Due to the small numbers of systems that 

generally make up a system of systems, an integer programming approach tailored to 

this problem structure is necessary to extend the analysis to determine how many 

systems of each type are appropriate to optimize the system of systems MOE. 

4. Faster than real-time simulations.  The trend in modeling and simulation is towards 

full-fidelity, “physics-based” models with graphical interfaces that provide realistic 

visualization to enable training and face validation by subject matter experts.  The 

associated level of fidelity comes at the expense of execution speed that is at odds 

with the needs of quantitative analyses that generally utilize Monte Carlo 

implementations to enhance stochastic simulation sample size—and clearly at odds 

with the approach utilized here that may need several thousand simulation-generated 

function evaluations to optimize a system of system at just one cost constraint value.  

Research into methods of quantifying the effects of lowering the model fidelity on our 

system of systems optimization method is necessary to complement the research into 

efficient constrained nonlinear stochastic optimization algorithms. 
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APPENDIX A 

CONSTRAINED SQP OPTIMIZATION MATLAB  CODE, EXAMPLE, AND 

RESULTS 

% MCM System of Systems
% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32 output.doc','w');
fprintf(fid,'output from execution of MCM32.m\n\n');

%================================================================================
%
% MCM Initialization
%
%================================================================================
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[10,0.9,2.0,9.17,90,75,6.6,10.0]; %Might need to start at feasible point. This won't
meet q(x) constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0,0.9,0.25,3.0,42,75,1.0,3.0]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90,700,7.0,10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
%y1=[3,4.483,7.655,11.445];%original PBCM for Pc
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
%x2=0.9:.01:1.0;
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];



 131

px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(
px5,x0(5))+polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
costfactor
fprintf(fid,'\n');

cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound--remember that constraints are less-
thans, not gt's.
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'
cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Initial Values\n');
x=x0;

cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))

q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) +

p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));

fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%================================================================================
%
% CONSTR Initialization and Call
%
%================================================================================
% Modify x0 so that it satisfies initial quality constraint, g(2)

%x0(2)=0.96
%x0(5)=45
%x0(6)=600
[f,g]=mcmfun(x0,p1,p2,p3,p4,p5,p6,p7)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
%options(3)=1e-3; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfun',x0,options,vlb,vub,'mcmgrad',p1,p2,p3,p4,p5,p6,p7)
[f,g]=mcmfun(x,p1,p2,p3,p4,p5,p6,p7)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
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E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-x0(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-x0(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-x0(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-x0(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-x0(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-x0(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-x0(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-x0(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));fprintf(fid,'%10.3f',fval(j))
;fprintf(fid,'%10.3f',costi(j));fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fev
als(j));
end
status=fclose(fid)

function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7)
%updated Px2, 7/3/97
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
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f=f1+f2;
% evaluate cost constraint
g(1) =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g(2) = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

function [df,dg] = mcmgrad(x,p1,p2,p3,p4,p5,p6,p7)
df = [];
dg = [];

09/10/97 4:58 PM       Baseline 9-10-97.doc 
output from execution of MCM32.m. 
 
x0= 
    10.000     0.900     2.000     9.170    90.000    75.000     6.600    10.000 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
 
 
Run with Costfactor =      1.250   cub=    35.082   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    38.597       cost=    35.082      q=     0.846 
x=    57.379     0.963     2.000     4.983    45.108   417.391     7.000     8.793 
Function evaluations=      311 
 
Run with Costfactor =      1.300   cub=    36.486   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    34.316       cost=    36.486      q=     0.846 
x=    58.915     0.963     2.000     3.915    44.820   417.374     7.000     8.555 
Function evaluations=      452 
 
Run with Costfactor =      1.350   cub=    37.889   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    30.747       cost=    37.889      q=     0.846 
x=    60.058     0.963     2.000     3.017    44.418   417.371     7.000     8.355 
Function evaluations=      374 
 
Run with Costfactor =      1.400   cub=    39.292   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    28.375       cost=    39.292      q=     0.846 
x=    65.201     0.963     2.000     3.000    44.632   417.375     7.000     7.162 
Function evaluations=      398 
 
Run with Costfactor =      1.450   cub=    40.696   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
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Total time, E=    26.831       cost=    40.696      q=     0.846 
x=    67.996     0.963     2.000     3.000    44.802   417.387     7.000     6.282 
Function evaluations=      430 
 
Run with Costfactor =      1.500   cub=    42.099   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    25.349       cost=    42.099      q=     0.846 
x=    68.194     0.962     1.342     3.000    43.341   417.304     7.000     6.213 
Function evaluations=      407 
 
Run with Costfactor =      1.550   cub=    43.502   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    24.131       cost=    43.502      q=     0.846 
x=    69.825     0.962     1.249     3.000    42.959   417.274     7.000     5.603 
Function evaluations=      381 
 
Run with Costfactor =      1.600   cub=    44.906   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    23.073       cost=    44.906      q=     0.846 
x=    71.172     0.962     1.181     3.000    42.596   417.237     7.000     5.045 
Function evaluations=      394 
 
Run with Costfactor =      1.650   cub=    46.309   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    22.129       cost=    46.309      q=     0.846 
x=    72.316     0.961     1.126     3.000    42.245   417.195     7.000     4.532 
Function evaluations=      474 
 
Run with Costfactor =      1.700   cub=    47.712   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    21.270       cost=    47.712      q=     0.846 
x=    73.310     0.961     1.080     3.000    42.000   417.254     7.000     4.055 
Function evaluations=      372 
 
Run with Costfactor =      1.750   cub=    49.115   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    20.478       cost=    49.115      q=     0.846 
x=    74.189     0.961     1.040     3.000    42.000   417.519     7.000     3.607 
Function evaluations=      397 
 
Run with Costfactor =      1.800   cub=    50.519   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    19.740       cost=    50.519      q=     0.846 
x=    74.979     0.961     1.004     3.000    42.000   417.757     7.000     3.184 
Function evaluations=      418 
 
Run with Costfactor =      1.850   cub=    51.922   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    19.071       cost=    51.922      q=     0.846 
x=    77.328     0.961     0.901     3.000    42.000   418.623     7.000     3.000 
Function evaluations=      287 
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Run with Costfactor =      1.900   cub=    53.325   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    18.549       cost=    53.325      q=     0.846 
x=    80.440     0.961     0.765     3.000    42.000   420.090     7.000     3.000 
Function evaluations=      344 
 
Run with Costfactor =      1.950   cub=    54.729   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    18.125       cost=    54.729      q=     0.846 
x=    83.033     0.961     0.651     3.000    42.000   421.627     7.000     3.000 
Function evaluations=      368 
 
Run with Costfactor =      2.000   cub=    56.132   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.768       cost=    56.132      q=     0.846 
x=    85.261     0.961     0.552     3.000    42.000   423.201     7.000     3.000 
Function evaluations=      322 
 
Run with Costfactor =      2.050   cub=    57.535   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.458       cost=    57.535      q=     0.846 
x=    87.217     0.961     0.463     3.000    42.000   424.790     7.000     3.000 
Function evaluations=      323 
 
Run with Costfactor =      2.100   cub=    58.939   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.183       cost=    58.939      q=     0.846 
x=    88.965     0.961     0.383     3.000    42.000   426.399     7.000     3.000 
Function evaluations=      338 
 
Run with Costfactor =      2.150   cub=    60.342   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.658       cost=    60.342      q=     0.846 
x=    85.153     0.963     0.570     3.000    45.839   417.389     3.948     3.000 
Function evaluations=      505 
 
Run with Costfactor =      2.200   cub=    61.745   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.346       cost=    61.745      q=     0.846 
x=    87.149     0.963     0.481     3.000    45.694   417.395     3.921     3.000 
Function evaluations=      525 
 
Run with Costfactor =      2.250   cub=    63.148   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    17.070       cost=    63.148      q=     0.846 
x=    88.941     0.963     0.400     3.000    45.508   417.412     3.894     3.000 
Function evaluations=      482 
 
Run with Costfactor =      2.300   cub=    64.552   qlb=     0.846 
Initial Values 
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f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    16.822       cost=    64.552      q=     0.846 
x=    90.539     0.963     0.326     3.000    45.239   417.380     3.876     3.000 
Function evaluations=      503 
 
Run with Costfactor =      2.350   cub=    65.955   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    16.596       cost=    65.955      q=     0.846 
x=    92.010     0.963     0.257     3.000    44.947   417.360     3.857     3.000 
Function evaluations=      488 
 
Run with Costfactor =      2.400   cub=    67.358   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    16.399       cost=    67.358      q=     0.846 
x=    95.302     0.963     0.250     3.000    45.572   417.461     3.797     3.000 
Function evaluations=      635 
 
Run with Costfactor =      2.450   cub=    68.762   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    16.236       cost=    68.762      q=     0.846 
x=    98.430     0.964     0.250     3.000    46.343   417.398     3.737     3.000 
Function evaluations=      565 
 
Run with Costfactor =      2.500   cub=    70.165   qlb=     0.846 
Initial Values 
f=    93.871   E=    93.871   cost=    28.066      q=     0.620 
Final Values 
Total time, E=    16.122       cost=    70.165      q=     0.846 
x=   100.000     0.973     0.250     3.000    64.008   412.202     3.162     3.000 
Function evaluations=      430 
 
cost factor   cub          E      cost        qfinal      fun. evals 
      1.25    35.082    38.597    35.082     0.846       311 
      1.30    36.486    34.316    36.486     0.846       452 
      1.35    37.889    30.747    37.889     0.846       374 
      1.40    39.292    28.375    39.292     0.846       398 
      1.45    40.696    26.831    40.696     0.846       430 
      1.50    42.099    25.349    42.099     0.846       407 
      1.55    43.502    24.131    43.502     0.846       381 
      1.60    44.906    23.073    44.906     0.846       394 
      1.65    46.309    22.129    46.309     0.846       474 
      1.70    47.712    21.270    47.712     0.846       372 
      1.75    49.115    20.478    49.115     0.846       397 
      1.80    50.519    19.740    50.519     0.846       418 
      1.85    51.922    19.071    51.922     0.846       287 
      1.90    53.325    18.549    53.325     0.846       344 
      1.95    54.729    18.125    54.729     0.846       368 
      2.00    56.132    17.768    56.132     0.846       322 
      2.05    57.535    17.458    57.535     0.846       323 
      2.10    58.939    17.183    58.939     0.846       338 
      2.15    60.342    17.658    60.342     0.846       505 
      2.20    61.745    17.346    61.745     0.846       525 
      2.25    63.148    17.070    63.148     0.846       482 
      2.30    64.552    16.822    64.552     0.846       503 
      2.35    65.955    16.596    65.955     0.846       488 
      2.40    67.358    16.399    67.358     0.846       635 
      2.45    68.762    16.236    68.762     0.846       565 
      2.50    70.165    16.122    70.165     0.846       430 
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APPENDIX B 

SINGLE SYSTEM CONSTRAINED SQP OPTIMIZATION CODE AND RESULTS 

MCM System S1—Single System Optimization Code: 

 % MCM System One of Two--Single System Optimization
% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32s1.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32s1 output.doc','w');
fprintf(fid,'output from execution of MCM32s1.m\n\n');

%================================================================================
%
% MCM Initialization--System S1 only
%
%================================================================================
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)

s2x6(1)=417.352;s2x6(2)=417.320;s2x6(3)=417.268;s2x6(4)=417.201;s2x6(5)=418.311;
s2x6(6)=419.238;s2x6(7)=419.491;s2x6(8)=420.166;s2x6(9)=420.781;s2x6(10)=421.338;
s2x6(11)=421.861;s2x6(12)=422.339;s2x6(13)=422.792;s2x6(14)=424.387;s2x6(15)=426.622;
s2x6(16)=428.734;s2x6(17)=430.719;s2x6(18)=432.599;s2x6(19)=434.390;s2x6(20)=418.950;
s2x6(21)=419.408;s2x6(22)=419.837;s2x6(23)=420.239;s2x6(24)=420.626;s2x6(25)=421.301;
s2x6(26)=421.916;s2x6(27)=416.997;
pd=0.90; %S1 detection system probability of detection
x0=[10,0.9,2.0,9.17,90]; %Might need to start at feasible point. This won't meet q(x)
constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0,0.9,0.25,3.0,42]; % lower bound constraint on x
vub=[100,0.98,2.0,9.17,90]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
%x2=0.9:.01:1.0;
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,x0(1))+polyval(px2,x0(2))+polyval(px3,x0(3))+polyval(px4,x0(4))+polyval(
px5,x0(5));
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.2:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
x6=s2x6(i)
x6=300%Hardwired to "reasonable", knee-of-the-curve guess
costfactor
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cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound
fprintf(fid,'\n');
fprintf(fid,'Run with Costfactor = ');
fprintf(fid,'%10.3f',costfactor);fprintf(fid,' cub=');
fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);

sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfuns1(x0,p1,p2,p3,p4,p5,p6,p7,x6)
fprintf(fid,'Initial Values\n');
x=x0;
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x
(5))
q=p1*x(2)*exp(-x(5)/(4.481*x6));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
E=f1;
q=p1*x0(2)*exp(-x0(5)/(4.481*x6));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%================================================================================
%
% CONSTR Initialization and Call
%
%================================================================================
% Modify x0 so that it satisfies initial quality constraint, g(2)
%x0(2)=0.96
%x0(5)=45
%x0(6)=600

[f,g]=mcmfuns1(x0,p1,p2,p3,p4,p5,p6,p7,x6)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
%options(3)=1e-3; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfuns1',x0,options,vlb,vub,'mcmgrads1',p1,p2,p3,p4,p5,p6,p7,x6)
[f,g]=mcmfuns1(x,p1,p2,p3,p4,p5,p6,p7,x6)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))
q=p1*x(2)*exp(-x(5)/(4.481*x6))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
E=f1
fprintf(fid,'S1 Recon Time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);
z1(i)=abs((z1(i)-x0(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-x0(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-x0(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-x0(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-x0(5))/(vlb(5)-vub(5)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
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plot(cf,fval,'-*b')
title('System S1 MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System S1 MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx',cf,z5,'-m.')
legend('x1','x2','x3','x4','x5')
title('System S1 MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-5 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fevals(j));
end
status=fclose(fid)

function [f,g] = mcmfun(x,p1,p2,p3,p4,p5,p6,p7,x6)
% Function to just optimize system S1 alone, with S2's parameter x6 passed by argument
%updated Px2, 7/3/97
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f=f1;
% evaluate cost constraint
g(1) =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))-
p6;
% evaluate negative of quality constraint
g(2) = -p1*x(2)*exp(-x(5)/(4.481*x6))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

S1 Optimization Results with Imperfect Knowledge of S2: 

output from execution of MCM32s1.m 
S1 Imperfect.doc   09/14/97 8:19 PM 
 
x0= 
    10.000     0.900     2.000     9.170    90.000 
vlb= 
    10.000     0.900     0.250     3.000    42.000 
vub= 
   100.000     0.980     2.000     9.170    90.000 
 
 
Run with Costfactor =      1.250   cub=    20.307   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
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Final Values 
S1 Recon Time, E=    30.766       cost=    20.307      q=     0.846 
x=    55.007     0.963     2.000     6.329    53.739 
Function evaluations=      115 
 
Run with Costfactor =      1.300   cub=    21.119   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    27.286       cost=    21.119      q=     0.846 
x=    56.693     0.963     2.000     5.406    53.912 
Function evaluations=      175 
 
Run with Costfactor =      1.350   cub=    21.932   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    24.478       cost=    21.932      q=     0.846 
x=    57.880     0.963     2.000     4.651    53.954 
Function evaluations=      172 
 
Run with Costfactor =      1.400   cub=    22.744   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    22.061       cost=    22.744      q=     0.846 
x=    58.808     0.963     2.000     3.996    53.912 
Function evaluations=      148 
 
Run with Costfactor =      1.450   cub=    23.556   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    19.909       cost=    23.556      q=     0.846 
x=    59.575     0.963     2.000     3.409    53.816 
Function evaluations=      136 
 
Run with Costfactor =      1.500   cub=    24.369   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    18.028       cost=    24.369      q=     0.846 
x=    63.112     0.963     2.000     3.000    54.410 
Function evaluations=      133 
 
Run with Costfactor =      1.550   cub=    25.181   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    17.152       cost=    25.181      q=     0.846 
x=    66.920     0.964     1.778     3.000    55.570 
Function evaluations=      188 
 
Run with Costfactor =      1.600   cub=    25.993   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    16.266       cost=    25.993      q=     0.846 
x=    67.955     0.964     1.387     3.000    55.945 
Function evaluations=      174 
 
Run with Costfactor =      1.650   cub=    26.805   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    15.592       cost=    26.805      q=     0.846 
x=    71.112     0.964     1.207     3.000    57.276 
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Function evaluations=      155 
 
Run with Costfactor =      1.700   cub=    27.618   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    15.081       cost=    27.618      q=     0.846 
x=    73.868     0.965     1.078     3.000    58.688 
Function evaluations=      187 
 
Run with Costfactor =      1.750   cub=    28.430   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    14.670       cost=    28.430      q=     0.846 
x=    76.226     0.966     0.973     3.000    60.101 
Function evaluations=      191 
 
Run with Costfactor =      1.800   cub=    29.242   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    14.326       cost=    29.242      q=     0.846 
x=    78.274     0.966     0.885     3.000    61.499 
Function evaluations=      183 
 
Run with Costfactor =      1.850   cub=    30.055   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    14.030       cost=    30.055      q=     0.846 
x=    80.083     0.967     0.807     3.000    62.876 
Function evaluations=      179 
 
Run with Costfactor =      1.900   cub=    30.867   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    13.769       cost=    30.867      q=     0.846 
x=    81.703     0.967     0.736     3.000    64.224 
Function evaluations=      214 
 
Run with Costfactor =      1.950   cub=    31.679   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    13.536       cost=    31.679      q=     0.846 
x=    83.174     0.968     0.673     3.000    65.563 
Function evaluations=      207 
 
Run with Costfactor =      2.000   cub=    32.491   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    13.325       cost=    32.491      q=     0.846 
x=    84.519     0.968     0.614     3.000    66.873 
Function evaluations=      172 
 
Run with Costfactor =      2.050   cub=    33.304   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    13.132       cost=    33.304      q=     0.846 
x=    85.760     0.969     0.559     3.000    68.159 
Function evaluations=      190 
 
Run with Costfactor =      2.100   cub=    34.116   qlb=     0.846 
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Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.953       cost=    34.116      q=     0.846 
x=    86.914     0.970     0.508     3.000    69.435 
Function evaluations=      189 
 
Run with Costfactor =      2.150   cub=    34.928   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.787       cost=    34.928      q=     0.846 
x=    87.991     0.970     0.460     3.000    70.690 
Function evaluations=      199 
 
Run with Costfactor =      2.200   cub=    35.741   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.632       cost=    35.741      q=     0.846 
x=    89.003     0.971     0.414     3.000    71.926 
Function evaluations=      204 
 
Run with Costfactor =      2.250   cub=    36.553   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.486       cost=    36.553      q=     0.846 
x=    89.957     0.971     0.370     3.000    73.145 
Function evaluations=      212 
 
Run with Costfactor =      2.300   cub=    37.365   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.348       cost=    37.365      q=     0.846 
x=    90.859     0.972     0.329     3.000    74.355 
Function evaluations=      154 
 
Run with Costfactor =      2.350   cub=    38.177   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.218       cost=    38.177      q=     0.846 
x=    91.716     0.972     0.289     3.000    75.546 
Function evaluations=      190 
 
Run with Costfactor =      2.400   cub=    38.990   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    12.094       cost=    38.990      q=     0.846 
x=    92.532     0.973     0.251     3.000    76.727 
Function evaluations=      157 
 
Run with Costfactor =      2.450   cub=    39.802   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
S1 Recon Time, E=    11.979       cost=    39.802      q=     0.846 
x=    94.477     0.974     0.250     3.000    79.711 
Function evaluations=      123 
 
Run with Costfactor =      2.500   cub=    40.614   qlb=     0.846 
Initial Values 
f=    80.811   E=    80.811   cost=    16.246      q=     0.778 
Final Values 
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S1 Recon Time, E=    11.877       cost=    40.614      q=     0.846 
x=    96.309     0.975     0.250     3.000    82.769 
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Function evaluations=      125 
cost factor   cub          E      cost        qfinal      fun. evals 
      1.25    20.307    30.766    20.307     0.846       115 
      1.30    21.119    27.286    21.119     0.846       175 
      1.35    21.932    24.478    21.932     0.846       172 
      1.40    22.744    22.061    22.744     0.846       148 
      1.45    23.556    19.909    23.556     0.846       136 
      1.50    24.369    18.028    24.369     0.846       133 
      1.55    25.181    17.152    25.181     0.846       188 
      1.60    25.993    16.266    25.993     0.846       174 
      1.65    26.805    15.592    26.805     0.846       155 
      1.70    27.618    15.081    27.618     0.846       187 
      1.75    28.430    14.670    28.430     0.846       191 
      1.80    29.242    14.326    29.242     0.846       183 
      1.85    30.055    14.030    30.055     0.846       179 
      1.90    30.867    13.769    30.867     0.846       214 
      1.95    31.679    13.536    31.679     0.846       207 
      2.00    32.491    13.325    32.491     0.846       172 
      2.05    33.304    13.132    33.304     0.846       190 
      2.10    34.116    12.953    34.116     0.846       189 
      2.15    34.928    12.787    34.928     0.846       199 
      2.20    35.741    12.632    35.741     0.846       204 
      2.25    36.553    12.486    36.553     0.846       212 
      2.30    37.365    12.348    37.365     0.846       154 
      2.35    38.177    12.218    38.177     0.846       190 
      2.40    38.990    12.094    38.990     0.846       157 
      2.45    39.802    11.979    39.802     0.846       123 
      2.50    40.614    11.877    40.614     0.846       125 
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MCM System S2—Single System Optimization Code: 
 
% MCM System Two of Two--Single System Optimization

% CONSTR w/o Explicit Gradient
%
% Filename: \matlab\dissertation\MCM32s2.m
% Output file initialization

fid=fopen('c:\matlab\dissertation\mcm32s2 output.doc','w');
fprintf(fid,'output from execution of MCM32s2.m\n\n');

%================================================================================
%
% MCM Initialization
%
%================================================================================
% x2=p12= S1 classification probability
% x3=p13= S1 FAR (#/nm^2)
% x5=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S3 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[0,0,0,0,0,75,6.6,10.0]; %Might need to start at feasible point. This won't meet q(x)
constraint.
fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[0,0,0,0,0,75,1.0,3.0]; % lower bound constraint on x
vub=[0,0,0,0,0,700,7.0,10.0]; % upper bound constraint on x
%Try to get away with not re-coding x6-x8, so set up dummy x1-x5 with zerio initial
conditions and bounds
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
%
s2x2(1)=.963;s2x2(2)=.963;s2x2(3)=.963;s2x2(4)=.963;s2x2(5)=.963;
s2x2(6)=.962;s2x2(7)=.962;s2x2(8)=.962;s2x2(9)=.961;s2x2(10)=.961;
s2x2(11)=.961;s2x2(12)=.961;s2x2(13)=.961;s2x2(14)=.961;s2x2(15)=.961;
s2x2(16)=.961;s2x2(17)=.961;s2x2(18)=.961;s2x2(19)=.963;s2x2(20)=.963;
s2x2(21)=.963;s2x2(22)=.963;s2x2(23)=.963;s2x2(24)=.963;s2x2(25)=.964;
s2x2(26)=.973;
s2x3(1)=2;s2x3(2)=2;s2x3(3)=2;s2x3(4)=2;s2x3(5)=2;
s2x3(6)=1.342;s2x3(7)=1.249;s2x3(8)=1.181;s2x3(9)=1.126;s2x3(10)=1.080;
s2x3(11)=1.040;s2x3(12)=1.004;s2x3(13)=0.901;s2x3(14)=0.765;s2x3(15)=0.651;
s2x3(16)=.552;s2x3(17)=.463;s2x3(18)=.383;s2x3(19)=.570;s2x3(20)=.481;
s2x3(21)=.400;s2x3(22)=.326;s2x3(23)=.257;s2x3(24)=.250;s2x3(25)=.250;
s2x3(26)=.250;
s2x5(1)=45.108;s2x5(2)=44.820;s2x5(3)=44.418;s2x5(4)=44.632;s2x5(5)=44.802;
s2x5(6)=43.341;s2x5(7)=43.502;s2x5(8)=42.596;s2x5(9)=42.245;s2x5(10)=42;
s2x5(11)=42;s2x5(12)=42;s2x5(13)=42;s2x5(14)=42;s2x5(15)=42;
s2x5(16)=42;s2x5(17)=42;s2x5(18)=42;s2x5(19)=45.839;s2x5(20)=45.694;
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s2x5(21)=45.508;s2x5(22)=45.239;s2x5(23)=44.947;s2x5(24)=45.575;s2x5(25)=46.343;
s2x5(26)=64.008;
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
%
cost0=polyval(px6,x0(6))+polyval(px7,x0(7))+polyval(px8,x0(8))
costfactor=1.5; %nominal value
%Insert costfactor loop
i=0
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1
x2=s2x2(i);x3=s2x3(i);x5=s2x5(i);
x2=.958;x3=1.0;x5=55;
costfactor
cub=costfactor*cost0 %system of systems cost constraint
qlb=0.846 %quality constraint lower bound
fprintf(fid,'\n');
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'

cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
fprintf(fid,'Initial Values\n');
x=x0;

cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x2*exp(-x5/(4.481*x(6)));
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-

x5/(4.481*x(6))))*p1*x2*x(7)*p2 + (1-x2)*(x3+p1*p3)*x(7));
E=f2;
q=p1*x2*exp(-x5/(4.481*x0(6)));

fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');
fprintf(fid,'%10.3f',E);fprintf(fid,' cost=');
fprintf(fid,'%10.3f',cost);fprintf(fid,' q=');fprintf(fid,'%10.3f\n',q);
% Print out threshold system values for f and constraints, g.

%================================================================================
%
% CONSTR Initialization and Call
%
%================================================================================

[f,g]=mcmfuns2(x0,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
% Print out initial system values for f and constraints, g.
grad=[]; % need to set to null matrix in order to pass p1....p7 to mcmfun
options(1)=1; % print output table
%options(2)=1e-5; % relax x termination criteria
options(3)=1e-5; % relax f termination criteria
%options(4)=1e-5; % relax constraint violation limits
options(9) = 0; % if =1, check analytic gradient
[x,options]=constr('mcmfuns2',x0,options,vlb,vub,'mcmgrads2',p1,p2,p3,p4,p5,p6,p7,x2,x3,x5
)
[f,g]=mcmfuns2(x,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
fprintf(fid,'Final Values\n');
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cost = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x2*exp(-x5/(4.481*x(6)))
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*(x3+p1*p3)*x(7));
E=f2
fprintf(fid,'S2 Clearance time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f\n',q);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
fprintf(fid,'Function evaluations= ');fprintf(fid,'%8.0f\n',options(10));
cf(i)=costfactor; fval(i)=f;
costval(i)=cub;fevals(i)=options(10);costi(i)=cost;qfinal(i)=q;
z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z6(i)=abs((z6(i)-x0(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-x0(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-x0(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System S2 MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System S2 MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z6,'-b*',cf,z7,'-r+',cf,z8,'-go')
legend('x6','x7','x8')
title('System S2 MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 6-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f\n',fevals(j));
end
status=fclose(fid)
 
 
function [f,g] = mcmfuns2(x,p1,p2,p3,p4,p5,p6,p7,x2,x3,x5)
%MCM function for optimizing system S2 only
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f2 = (p5/60)*(p1*x2*x(8)*p2*exp(-x5/(4.481*x(6)))+(1-exp(-x5/(4.481*x(6))))*p1*x2*x(7)*p2
+ (1-x2)*(x3+p1*p3));
f=f2;
% evaluate cost constraint
g(1) = polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g(2) = -p1*x2*exp(-x5/(4.481*x(6)))+p7;
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
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S2 Optimization Results with Imperfect Knowledge of S1: 

output from execution of MCM32s2.m 
S2 Imperfect.doc       09/14/97 9:14 PM 
 
x0= 
     0.000     0.000     0.000     0.000     0.000    75.000     6.600    10.000 
vlb= 
     0.000     0.000     0.000     0.000     0.000    75.000     1.000     3.000 
vub= 
     0.000     0.000     0.000     0.000     0.000   700.000     7.000    10.000 
 
 
Run with Costfactor =      1.250   cub=    14.775   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.585       cost=    25.086      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.966     3.000 
Function evaluations=      504 
 
Run with Costfactor =      1.300   cub=    15.366   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=    13.155       cost=    15.366      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     9.077 
Function evaluations=       91 
 
Run with Costfactor =      1.350   cub=    15.957   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=    11.578       cost=    15.957      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     7.958 
Function evaluations=       82 
 
Run with Costfactor =      1.400   cub=    16.548   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=    10.653       cost=    16.548      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     7.302 
Function evaluations=       82 
 
Run with Costfactor =      1.450   cub=    17.139   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     9.927       cost=    17.139      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     6.787 
Function evaluations=       82 
 
Run with Costfactor =      1.500   cub=    17.730   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     9.308       cost=    17.730      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     6.349 
Function evaluations=       73 
 
Run with Costfactor =      1.550   cub=    18.321   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
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S2 Clearance time, E=     8.761       cost=    18.321      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     5.960 
Function evaluations=       91 
 
Run with Costfactor =      1.600   cub=    18.912   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     8.264       cost=    18.912      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     5.608 
Function evaluations=       82 
 
Run with Costfactor =      1.650   cub=    19.503   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     7.806       cost=    19.503      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     5.283 
Function evaluations=       82 
 
Run with Costfactor =      1.700   cub=    20.094   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     7.379       cost=    20.094      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     4.980 
Function evaluations=       91 
 
Run with Costfactor =      1.750   cub=    20.685   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     6.978       cost=    20.685      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     4.695 
Function evaluations=       91 
 
Run with Costfactor =      1.800   cub=    21.276   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     6.597       cost=    21.276      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     4.426 
Function evaluations=      100 
 
Run with Costfactor =      1.850   cub=    21.867   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     6.236       cost=    21.867      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     4.169 
Function evaluations=      100 
 
Run with Costfactor =      1.900   cub=    22.458   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     5.889       cost=    22.458      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     3.924 
Function evaluations=      100 
 
Run with Costfactor =      1.950   cub=    23.049   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     5.557       cost=    23.049      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     3.688 
Function evaluations=      100 
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Run with Costfactor =      2.000   cub=    23.641   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     5.238       cost=    23.641      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     3.461 
Function evaluations=      100 
 
Run with Costfactor =      2.050   cub=    24.232   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.929       cost=    24.232      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     3.243 
Function evaluations=      109 
 
Run with Costfactor =      2.100   cub=    24.823   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.630       cost=    24.823      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     7.000     3.031 
Function evaluations=      109 
 
Run with Costfactor =      2.150   cub=    25.414   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.582       cost=    25.414      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.901     3.000 
Function evaluations=      127 
 
Run with Costfactor =      2.200   cub=    26.005   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.575       cost=    26.005      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.774     3.000 
Function evaluations=      127 
 
Run with Costfactor =      2.250   cub=    26.596   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.568       cost=    26.596      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.631     3.000 
Function evaluations=      127 
 
Run with Costfactor =      2.300   cub=    27.187   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.560       cost=    27.187      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.465     3.000 
Function evaluations=      127 
 
Run with Costfactor =      2.350   cub=    27.778   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.549       cost=    27.778      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     6.264     3.000 
Function evaluations=      145 
 
Run with Costfactor =      2.400   cub=    28.369   qlb=     0.846 
Initial Values 



 152

f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.906       cost=    28.369      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     4.102     3.331 
Function evaluations=      157 
 
Run with Costfactor =      2.450   cub=    28.960   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.604       cost=    28.960      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     4.098     3.117 
Function evaluations=      147 
 
Run with Costfactor =      2.500   cub=    29.551   qlb=     0.846 
Initial Values 
f=    13.941   E=    13.941   cost=    11.820      q=     0.759 
Final Values 
S2 Clearance time, E=     4.407       cost=    29.551      q=     0.846 
x=     0.000     0.000     0.000     0.000     0.000   592.043     3.479     3.000 
Function evaluations=      118 
 
cost factor   cub          E      cost        qfinal      fun. evals 
      1.25    14.775     4.585    25.086     0.846       504 
      1.30    15.366    13.155    15.366     0.846        91 
      1.35    15.957    11.578    15.957     0.846        82 
      1.40    16.548    10.653    16.548     0.846        82 
      1.45    17.139     9.927    17.139     0.846        82 
      1.50    17.730     9.308    17.730     0.846        73 
      1.55    18.321     8.761    18.321     0.846        91 
      1.60    18.912     8.264    18.912     0.846        82 
      1.65    19.503     7.806    19.503     0.846        82 
      1.70    20.094     7.379    20.094     0.846        91 
      1.75    20.685     6.978    20.685     0.846        91 
      1.80    21.276     6.597    21.276     0.846       100 
      1.85    21.867     6.236    21.867     0.846       100 
      1.90    22.458     5.889    22.458     0.846       100 
      1.95    23.049     5.557    23.049     0.846       100 
      2.00    23.641     5.238    23.641     0.846       100 
      2.05    24.232     4.929    24.232     0.846       109 
      2.10    24.823     4.630    24.823     0.846       109 
      2.15    25.414     4.582    25.414     0.846       127 
      2.20    26.005     4.575    26.005     0.846       127 
      2.25    26.596     4.568    26.596     0.846       127 
      2.30    27.187     4.560    27.187     0.846       127 
      2.35    27.778     4.549    27.778     0.846       145 
      2.40    28.369     4.906    28.369     0.846       157 
      2.45    28.960     4.604    28.960     0.846       147 
      2.50    29.551     4.407    29.551     0.846       118
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APPENDIX C 

CONSTRAINED SQP OPTIMIZATION (PENALTY FUNCTION) MATLAB  CODE 

AND RESULTS 

The same basic code it utilized for this method as that shown in Appendix A, with the 

exception of the objective function, which is listed below.

function [f,g] = mcmfunpf(x,p1,p2,p3,p4,p5,p6,p7)
% Modified to have smaller Px2 on 7/3/97
a1=2000; % penalty function gains for absolute value PF
a2=2e6;
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
f=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
f=f1 + f2 + a1*g1*g1 + a2*g2*g2;
%f=f1+f2+a1*abs(g1)+a2*abs(g2);
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb

output from execution of MCM42pf.m 
09/15/97 12:15 AM    MCM42PF Baseline 9-15-97.doc 
 
x0= 
    10.000     0.900     2.000     9.170    90.000    75.000     6.600    10.000 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
 
Run with Costfactor =      1.250 
Initial Values 
Total time, f=200978.782 
Costfactor =      1.250 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    38.589 
cost=    35.083      q=     0.846 
x=    57.379     0.963     2.000     4.981    45.127   417.387     7.000     8.793 
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Function evaluations=     1329 
 
Run with Costfactor =      1.300 
Initial Values 
Total time, f=244302.199 
Costfactor =      1.300 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    66.522 
cost=    36.491      q=     0.846 
x=    21.494     0.962     2.000     8.703    44.724   417.375     4.285     9.622 
Function evaluations=      668 
 
Run with Costfactor =      1.350 
Initial Values 
Total time, f=295502.600 
Costfactor =      1.350 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    44.935 
cost=    37.890      q=     0.846 
x=    54.484     0.963     2.000     6.584    45.440   417.385     4.259     9.150 
Function evaluations=      792 
 
Run with Costfactor =      1.400 
Initial Values 
Total time, f=354579.987 
Costfactor =      1.400 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    38.954 
cost=    39.293      q=     0.846 
x=    57.161     0.963     2.000     5.120    45.533   417.408     4.243     8.824 
Function evaluations=     1658 
 
Run with Costfactor =      1.450 
Initial Values 
Total time, f=421534.358 
Costfactor =      1.450 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    34.564 
cost=    40.696      q=     0.846 
x=    58.769     0.963     2.000     4.026    45.351   417.392     4.231     8.580 
Function evaluations=     1778 
 
Run with Costfactor =      1.500 
Initial Values 
Total time, f=496365.715 
Costfactor =      1.500 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    30.932 
cost=    42.100      q=     0.846 
x=    59.942     0.963     2.000     3.113    45.043   417.385     4.222     8.376 
Function evaluations=     1846 
 
Run with Costfactor =      1.550 
Initial Values 
Total time, f=579074.056 
Costfactor =      1.550 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    28.390 
cost=    43.503      q=     0.846 
x=    64.779     0.963     2.000     3.000    45.649   417.394     4.177     7.280 
Function evaluations=     2356 
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Run with Costfactor =      1.600 
Initial Values 
Total time, f=669659.382 
Costfactor =      1.600 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    26.816 
cost=    44.906      q=     0.846 
x=    65.900     0.963     1.533     3.000    45.352   416.227     4.173     6.928 
Function evaluations=     2395 
 
Run with Costfactor =      1.650 
Initial Values 
Total time, f=768121.693 
Costfactor =      1.650 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    25.329 
cost=    46.309      q=     0.846 
x=    68.013     0.963     1.366     3.000    45.410   417.394     4.154     6.276 
Function evaluations=     2247 
 
Run with Costfactor =      1.700 
Initial Values 
Total time, f=874460.989 
Costfactor =      1.700 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    24.096 
cost=    47.712      q=     0.846 
x=    69.876     0.963     1.260     3.000    47.367   429.961     4.147     5.688 
Function evaluations=     1966 
 
Run with Costfactor =      1.750 
Initial Values 
Total time, f=988677.270 
Costfactor =      1.750 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    23.020 
cost=    49.116      q=     0.846 
x=    71.052     0.963     1.197     3.000    45.337   417.504     4.123     5.098 
Function evaluations=     2525 
 
Run with Costfactor =      1.800 
Initial Values 
Total time, f=1110770.536 
Costfactor =      1.800 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    22.066 
cost=    50.519      q=     0.846 
x=    72.231     0.963     1.141     3.000    45.808   419.586     4.090     4.582 
Function evaluations=     2129 
 
Run with Costfactor =      1.850 
Initial Values 
Total time, f=1240740.786 
Costfactor =      1.850 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    21.200 
cost=    51.922      q=     0.846 
x=    73.220     0.963     1.094     3.000    45.681   417.212     4.100     4.099 
Function evaluations=     3429 
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Run with Costfactor =      1.900 
Initial Values 
Total time, f=1378588.022 
Costfactor =      1.900 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    20.402 
cost=    53.325      q=     0.846 
x=    74.134     0.963     1.052     3.000    46.129   418.973     4.084     3.651 
Function evaluations=     3633 
 
Run with Costfactor =      1.950 
Initial Values 
Total time, f=1524312.242 
Costfactor =      1.950 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    19.660 
cost=    54.729      q=     0.846 
x=    74.887     0.963     1.015     3.000    45.445   416.088     4.080     3.225 
Function evaluations=     4130 
 
Run with Costfactor =      2.000 
Initial Values 
Total time, f=1677913.448 
Costfactor =      2.000 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    18.981 
cost=    56.132      q=     0.846 
x=    76.993     0.964     0.924     3.000    46.944   419.530     4.055     3.000 
Function evaluations=     3704 
 
Run with Costfactor =      2.050 
Initial Values 
Total time, f=1839391.638 
Costfactor =      2.050 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    18.448 
cost=    57.535      q=     0.846 
x=    80.227     0.964     0.787     3.000    45.544   408.849     4.012     3.000 
Function evaluations=     5184 
 
Run with Costfactor =      2.100 
Initial Values 
Total time, f=2008746.813 
Costfactor =      2.100 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    18.022 
cost=    58.939      q=     0.846 
x=    82.877     0.963     0.672     3.000    46.788   434.541     3.980     3.000 
Function evaluations=     4160 
 
Run with Costfactor =      2.150 
Initial Values 
Total time, f=2185978.973 
Costfactor =      2.150 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    17.661 
cost=    60.342      q=     0.846 
x=    85.025     0.964     0.567     3.000    48.223   435.763     3.962     3.000 
Function evaluations=     5054 
 
Run with Costfactor =      2.200 
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Initial Values 
Total time, f=2371088.117 
Costfactor =      2.200 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    17.346 
cost=    61.745      q=     0.846 
x=    87.141     0.963     0.481     3.000    45.604   417.051     3.920     3.000 
Function evaluations=     4042 
 
Run with Costfactor =      2.250 
Initial Values 
Total time, f=2564074.247 
Costfactor =      2.250 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    17.070 
cost=    63.148      q=     0.846 
x=    88.943     0.963     0.401     3.000    45.574   417.080     3.887     3.000 
Function evaluations=     6250 
 
Run with Costfactor =      2.300 
Initial Values 
Total time, f=2764937.362 
Costfactor =      2.300 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    16.822 
cost=    64.552      q=     0.846 
x=    90.519     0.963     0.325     3.000    45.361   417.815     3.876     3.000 
Function evaluations=     5658 
 
Run with Costfactor =      2.350 
Initial Values 
Total time, f=2973677.461 
Costfactor =      2.350 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    16.596 
cost=    65.955      q=     0.846 
x=    92.032     0.963     0.257     3.000    45.133   417.483     3.856     3.000 
Function evaluations=     5391 
 
Run with Costfactor =      2.400 
Initial Values 
Total time, f=3190294.545 
Costfactor =      2.400 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    16.399 
cost=    67.358      q=     0.846 
x=    95.287     0.964     0.250     3.000    46.376   417.007     3.783     3.000 
Function evaluations=     4955 
 
Run with Costfactor =      2.450 
Initial Values 
Total time, f=3414788.615 
Costfactor =      2.450 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    16.237 
cost=    68.762      q=     0.846 
x=    98.415     0.966     0.250     3.000    50.354   415.269     3.745     3.000 
Function evaluations=     3347 
 
Run with Costfactor =      2.500 
Initial Values 
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Total time, f=3647159.669 
Costfactor =      2.500 
cost=    28.066      q=     0.620 
Final Values 
Total time, f=    16.122 
cost=    70.165      q=     0.846 
x=   100.000     0.973     0.250     3.000    65.289   417.588     3.166     3.000 
Function evaluations=     3268 
 
cost factor  cost        MOE      function evals 
      1.25    35.082    38.589  1329.000 
      1.30    36.486    66.522   668.000 
      1.35    37.889    44.935   792.000 
      1.40    39.292    38.954  1658.000 
      1.45    40.696    34.564  1778.000 
      1.50    42.099    30.932  1846.000 
      1.55    43.502    28.390  2356.000 
      1.60    44.906    26.816  2395.000 
      1.65    46.309    25.329  2247.000 
      1.70    47.712    24.096  1966.000 
      1.75    49.115    23.020  2525.000 
      1.80    50.519    22.066  2129.000 
      1.85    51.922    21.200  3429.000 
      1.90    53.325    20.402  3633.000 
      1.95    54.729    19.660  4130.000 
      2.00    56.132    18.981  3704.000 
      2.05    57.535    18.448  5184.000 
      2.10    58.939    18.022  4160.000 
      2.15    60.342    17.661  5054.000 
      2.20    61.745    17.346  4042.000 
      2.25    63.148    17.070  6250.000 
      2.30    64.552    16.822  5658.000 
      2.35    65.955    16.596  5391.000 
      2.40    67.358    16.399  4955.000 
      2.45    68.762    16.237  3347.000 
      2.50    70.165    16.122  3268.000 
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APPENDIX D 

FIRST ORDER CONSTRAINED SPSA MATLAB  CODE, EXAMPLE, AND 

RESULTS 

The following three dimensional nonlinear programming problem was used to 

check out implementation of the constrained SPSA algorithm and code developed for this 

dissertation effort: 

26
42

1032
:subject to
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Geometrically, z is an elliptic cone with its origin at (0,0).  The interval constraints form a 

box with the linear constraint making an intersecting plane.  The problem boils down to 

finding a point on section of  the elliptic cone that lies inside the clipped box formed by 

the constraints.  The correct solution is [2,-2], yielding z=28 as the constrained minimum.  

Since the objective function is simply a quadratic, the Lagrangian method was used in a 

straightforward manner to transform the problem: 

multiplier Lagrangian  theis  here         w,0
26

42
:subject to
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With initial condition vector [3,-4,0], 1SPSA took an average of 9.8 iterations to achieve 

the exact solution, with an absolute blocking criteria applied.  Without blocking, the 

average number of iterations was 13.4.  Other initial conditions were investigated, with 

similar results.  The following code was used to solve this initial problem, and served as 

the basis for algorithm/code development for the MCM system of systems problem. 
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% Filename: \lumanrr1\matlab\prob43xx.m
% Output file initialization
fid=fopen('/home/lumanrr1/matlab/output.txt','w');
fprintf(fid,'output from execution of prob43.m\n\n');
%=======================================================================%
% SPSA Initialization
%
%=======================================================================
x0=[3,-4,0]
fprintf(fid,'x0=');
fprintf(fid,'%8.3f %8.3f %8.3f\n',x0);
vlb=[2,-6,0] % lower bound constraint on x
vub=[4,-2,1000] % upper bound constraint on x
x=x0
n=100 % maximum allowable number of iterations
blocks=0 % number of blocked iterations
tolf=0.001 % convergence tolerances
tolx=0.00001
p=3 % dimension of x
[f,g]=funa4(x) % evaluate f right away
%
A=20 % Spall cookbook, about 5% of max iterations
alpha=0.602 % Spall cookbook values
gamma=0.101
c=0.5 % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=0.078 % Select a consistent with expectation of about 0.1 movement
% in x during initial iterations. Hence,
% [a/(A+1)^alpha]*20.0 = 0.1, solve for a.
fprintf(fid,'vlb=\n');fprintf(fid,'%8.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%8.3f',vub);fprintf(fid,'\n');
fprintf(fid,'tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'tolx=');fprintf(fid,'%10.6f\n',tolx);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'
alpha=');fprintf(fid,'%8.3f\n',alpha);
fprintf(fid,'c=');fprintf(fid,'%8.3f',c);fprintf(fid,' a=');fprintf(fid,'%8.3f\n',a);
%=======================================================================
%
% SPSA Loop
%
%=======================================================================
for k=1:n

k
fprintf(fid,'\n');fprintf(fid,'===================================================

=\n');
fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
a_k=a/(k+A)^alpha % strongly dependent on a, A initialization
c_k=c/k^gamma % strongly dependednt on c: small relative to x
fprintf(fid,'a_k=');fprintf(fid,'%8.3f',a_k);fprintf(fid,'

c_k=');fprintf(fid,'%8.3f\n',c_k);
for j=1:p

delta(j)=2*round(rand(1))-1;
delta(j);

end
% delta

xplus=x+c_k*delta % If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta % then should either scale delta or x elements.
fprintf(fid,'delta=');fprintf(fid,'%8.3f',delta);fprintf(fid,'\n');
fprintf(fid,'xminus(raw)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
fprintf(fid,'xplus(raw)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

% Key is probably the jitter, not magnitude.
% check for infeasible vectors

for j=1:p
if xplus(j)<vlb(j)
xplus(j)=vlb(j);
end
if xminus(j)<vlb(j)
xminus(j)=vlb(j);
end
if xplus(j)>vub(j)
xplus(j)=vub(j);
end
if xminus(j)>vub(j)
xminus(j)=vub(j);



 163

end
end
xminus,xplus
fprintf(fid,'xminus(constr)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
fprintf(fid,'xplus(constr)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

%
% Update, checking for convergence

[fplus,g]=funa4(xplus);
[fminus,g]=funa4(xminus);
fminus
fplus
ghat=(fplus-fminus)./(2*c_k*delta)
fprintf(fid,'fminus=');fprintf(fid,'%8.3f',fminus);
fprintf(fid,' fplus=');fprintf(fid,'%8.3f\n',fplus);
fprintf(fid,'ghat=');fprintf(fid,'%8.3f',ghat);fprintf(fid,'\n');
xkp1=x-a_k*ghat
fprintf(fid,'xkp1(raw)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');

%
% check for infeasible updated estimate

for j=1:p
if xkp1(j)<vlb(j)
xkp1(j)=vlb(j);
end
if xkp1(j)>vub(j)
xkp1(j)=vub(j);
end

end
xkp1
fprintf(fid,'xkp1(constr)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
[fkp1,g]=funa4(xkp1);
fkp1
fprintf(fid,'f_k=');fprintf(fid,'%8.3f',f);fprintf(fid,'f_kp1=');
fprintf(fid,'%8.3f\n',fkp1);

%
fundiff=abs(fkp1-f);
if fundiff < tolf

fundiff
xkp1
fkp1
k
fprintf(fid,'Terminate: fundiff=');fprintf(fid,'%12.8f\n',fundiff);
return

end
xdifnorm=norm(x-xkp1);
if xdifnorm < tolx

xdifnorm
xkp1
fkp1
k
fprintf(fid,'Terminate: xdifnorm=');fprintf(fid,'%12.8f\n',xdifnorm);
return

end
if fkp1<f

x=xkp1 % Accept new estimate. Otherwise block the update passively.
f=fkp1

else
blocks=blocks+1
fprintf(fid,'Update Blocked. Block number:');fprintf(fid,'%3.0\n',blocks)

end
end

function [f,g] = funa4(x)
f = 3*(x(1))^2 + 4*(x(2))^2 + x(3)*(2*x(1)-3*x(2)-10); % LaGrangian
g=[] ; % only constraints are upper and lower bounds

1SPSA Code for MCM System of Systems:

% MCM System of Systems
% SPSA utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration

number.
% Filename: \matlab\dissertation\MCMSPSA.m
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%This file utilizes the standard scalar gain, a_k, which will not compensate for
scaling

%differences in variables.
% Output file initialization
clear

fid=fopen('c:\matlab\dissertation\output SPSA.doc','w');
fprintf(fid,'output from execution of MCMspsa.m, scalar gain a_k\n\n');

%================================================================================
%
% MCM Initialization
%
%================================================================================
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S2 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection

x0=[10;0.9;2.0;9.17;90;75;6.6;10.0]; %Might need to start at feasible point. This won't
meet q(x) constraint.

p=8; % dimension of x
xstar=x0 %this is the threshold system. But too far from opimal for SPSA to start with.
x0=[70;.95;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal=[10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000;...

57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793;...
58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555;...
60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355;...
65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162;...
67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282;...
68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213;...
69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603;...
71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045;...
72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532;...
73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055;...
74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607;...
74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184;...
77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000;...
80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000;...
83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000;...
85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000;...
87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000;...
88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000;...
85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000;...
87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000;...
88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000;...
90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000;...
92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000;...
95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000;...
98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000;...
100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000];

fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
vlb=[10.0;0.9;0.25;3.0;42;75;1.0;3.0]; % lower bound constraint on x
vub=[100;0.98;2.0;9.17;90;700;7.0;10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
x1=[0.9,0.93,0.96,0.98];
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
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% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(
4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,xstar(8)
)
%Insert costfactor loop
i=0;
for costfactor=1.25:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1;
for j=1:p %start "near the optimal solution"--perturb randomly by 20%

del=2*round(rand)-1; %this is +/-1 random number
x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
if x0(j)>vub(j);x0(j)=vub(j);end
end

costfactor
fprintf(fid,'\n');
cub=costfactor*cost0; %system of systems cost constraint
qlb=0.846; %quality constraint lower bound
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);fprintf(fid,'

cub=');fprintf(fid,'%10.3f',cub);fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
p8=1; %Placeholder---p8 will be iteration number of SPSA algorithm.
[f,g]=mcmfunpfs(x0,p1,p2,p3,p4,p5,p6,p7,p8);
fprintf(fid,'Initial Values\n');
x=x0
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
% Print out threshold system values for f and constraints, g.
%================================================================================
%
% SPSA Initialization
%
%================================================================================
n=2500; % maximum allowable number of iterations
blocks=0; % number of blocked iterations
tolf=0.000015; % convergence tolerances
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tolx=0.00001;
p=8; % dimension of x
%[f,g]=mcmfunpfs(x0,p1,p2,p3,p4,p5,p6,p7,p8) % evaluate f right away
%
A=50; % Spall cookbook, about 5% of max iterations
alpha=0.602; % Spall cookbook values
gamma=0.101;
c=0.002; % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=0.02;
%a=[.02,1e-4,.006,.02,.2,.4,.02,.02] % Select a consistent with
expectation of about 0.1 movement
% in x during initial iterations. Hence,
% [a/(A+1)^alpha]*20.0 = 0.1, solve for a.
fprintf(fid,' tolx=');fprintf(fid,'%10.6f',tolx);
fprintf(fid,' tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'
alpha=');fprintf(fid,'%8.3f',alpha);
fprintf(fid,' c=');fprintf(fid,'%8.3f',c);fprintf(fid,'
a=');fprintf(fid,'%8.3f\n',a);
%=================================================================================
%
% SPSA Loop
%
%=================================================================================
for k=1:n;

p8=k;
%fprintf(fid,'\n');fprintf(fid,'====================================================\n');
%fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
a_k=a/(k+A)^alpha; % strongly dependent on a, A initialization
c_k=c/k^gamma; % strongly dependednt on c: small relative to x
%fprintf(fid,'a_k=');fprintf(fid,'%8.3f',a_k);fprintf(fid,'
c_k=');fprintf(fid,'%8.3f\n',c_k);
delta=2*round(rand(p,1))-1;

% delta
xplus=x+c_k*delta; % If the elements of x vary significantly in magnitude,
xminus=x-c_k*delta; % then should either scale delta or x elements.
%fprintf(fid,'delta=');fprintf(fid,'%8.3f',delta);fprintf(fid,'\n');
%fprintf(fid,'xminus(raw)=');fprintf(fid,'%8.3f',xminus);fprintf(fid,'\n');
%fprintf(fid,'xplus(raw)=');fprintf(fid,'%8.3f',xplus);fprintf(fid,'\n');

% Key is probably the jitter, not magnitude.
% check for infeasible vectors
for j=1:p; %if on a border, pull back and adjust c_k component j.

if xplus(j)<vlb(j);
xplus(j)=vlb(j);

end;
if xminus(j)<vlb(j);

xminus(j)=vlb(j);
end;
if xplus(j)>vub(j);

xplus(j)=vub(j);
end;

if xminus(j)>vub(j);
xminus(j)=vub(j);

end;
end;

%xminus,xplus
%fprintf(fid,'xminus(constr)=');%fprintf(fid,'%8.3f',xminus);%fprintf(fid,'\n');
%fprintf(fid,'xplus(constr)=');%fprintf(fid,'%8.3f',xplus);%fprintf(fid,'\n');

%
% Update, checking for convergence

[fplus,g]=mcmfunpfs(xplus,p1,p2,p3,p4,p5,p6,p7,p8);
[fminus,g]=mcmfunpfs(xminus,p1,p2,p3,p4,p5,p6,p7,p8);

fminus;
fplus;
ghat=(fplus-fminus)./(2*c_k*delta);

% xkp1(j)=x(j)-a_k(j)*ghat(j); %vector gain to compensate for scaling
xkp1=x-a_k*ghat; %scalar gain as standard SPSA
%fprintf(fid,'fminus=');fprintf(fid,'%8.3f',fminus);fprintf(fid,'
fplus=');fprintf(fid,'%8.3f\n',fplus);
%fprintf(fid,'ghat=');fprintf(fid,'%8.3f',ghat);fprintf(fid,'\n');
%fprintf(fid,'xkp1(raw)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
%
% check for infeasible updated estimate
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for j=1:p;
if xkp1(j)<vlb(j);
xkp1(j)=vlb(j);
end;
if xkp1(j)>vub(j);
xkp1(j)=vub(j);
end;

end;
xkp1;
%fprintf(fid,'xkp1(constr)=');fprintf(fid,'%8.3f',xkp1);fprintf(fid,'\n');
[fkp1,g]=mcmfunpfs(xkp1,p1,p2,p3,p4,p5,p6,p7,p8);
%fprintf(fid,'f_k=');fprintf(fid,'%8.3f',f);fprintf(fid,'
f_kp1=');fprintf(fid,'%8.3f\n',fkp1);

%
if fkp1<f+1;

x=xkp1; % Accept new estimate. Otherwise block the update passively.
f=fkp1;

else;
blocks=blocks+1;
%%fprintf(fid,'Update Blocked. Block number:');%fprintf(fid,'%3.0\n',blocks)

end;
end
mcmeval(x,p1,p2,p3,p4,p5,p6,p7)
[f,g]=mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
fprintf(fid,'Final Values\n');
cost =
polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5))+
polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
fprintf(fid,' Function evaluations= ');fprintf(fid,'%8.0f',2*k);
fprintf(fid,' Blocks=');fprintf(fid,'%8.0f\n',blocks);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
cf(i)=costfactor; fval(i)=E; costval(i)=cub;fevals(i)=2*k; costi(i)=cost;
qfinal(i)=q;nblock(i)=blocks;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-xstar(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-xstar(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-xstar(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-xstar(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-xstar(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-xstar(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-xstar(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-xstar(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
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xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals');fprintf(fid,'
#blocks\n');
for j=1:i
fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f\n',nblock(j));
end
status=fclose(fid)

function [f,g] = mcmfunpfs(x,p1,p2,p3,p4,p5,p6,p7,p8)
% squared penalty function version
kmax=600;
k=p8; %k is the iteration number of the SPSA algorithm
A1=20;
A2=2000;
if k<kmax

a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;

else
a1=A1;
a2=A2;

end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%f=f1 + f2 + a1*g1*g1 + a2*g2*g2;
%E,g1,g2,f
f=f1+f2+a1*abs(g1)+a2*abs(g2);
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
%p8=k

09/11/97 6:48 PM    1SPSA Baseline 9-11-97.doc 
 
Block criteria relaxed to 1.0.  Came out pretty good. 
 
output from execution of mcmspsa2500Final.m, scalar gain a_k 
 
x0= 
    70.000     0.950     1.000     5.000    45.000   430.000     3.500     6.000 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
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   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
 
 
Run with Costfactor =      1.250   cub=    35.082   qlb=     0.846 
Initial Values 
f=    88.894   E=    83.317   cost=    29.646      q=     0.706   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    71.155       cost=    34.986      q=     0.705   Function evaluations=     5000   Blocks=    2419 
x=    13.048     0.980     1.090     8.328    89.695    89.340     6.366     7.356 
 
Run with Costfactor =      1.300   cub=    36.486   qlb=     0.846 
Initial Values 
f=    43.267   E=    38.874   cost=    40.863      q=     0.861   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    37.667       cost=    40.349      q=     0.846   Function evaluations=     5000   Blocks=    2422 
x=    45.835     0.963     1.994     3.733    54.072   500.902     5.711     9.805 
 
Run with Costfactor =      1.350   cub=    37.889   qlb=     0.846 
Initial Values 
f=    35.761   E=    35.349   cost=    38.290      q=     0.858   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    34.544       cost=    37.804      q=     0.810   Function evaluations=     5000   Blocks=    2460 
x=    47.373     0.926     1.227     4.886    42.049   334.142     6.902     6.680 
 
Run with Costfactor =      1.400   cub=    39.292   qlb=     0.846 
Initial Values 
f=    35.161   E=    33.700   cost=    40.694      q=     0.788   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    33.915       cost=    41.980      q=     0.846   Function evaluations=     5000   Blocks=    2418 
x=    48.108     0.967     1.618     3.010    42.049   333.894     5.699     9.836 
 
Run with Costfactor =      1.450   cub=    40.696   qlb=     0.846 
Initial Values 
f=    39.858   E=    34.258   cost=    35.160      q=     0.782   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    32.065       cost=    40.746      q=     0.851   Function evaluations=     5000   Blocks=    2453 
x=    52.340     0.980     1.615     3.208    53.654   333.883     6.471     8.603 
 
Run with Costfactor =      1.500   cub=    42.099   qlb=     0.846 
Initial Values 
f=    26.358   E=    23.208   cost=    45.198      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    23.240       cost=    46.095      q=     0.846   Function evaluations=     5000   Blocks=    2439 
x=    81.526     0.958     1.641     3.007    42.041   500.990     7.000     5.077 
 
Run with Costfactor =      1.550   cub=    43.502   qlb=     0.846 
Initial Values 
f=    31.370   E=    31.285   cost=    43.433      q=     0.862   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    30.662       cost=    43.686      q=     0.862   Function evaluations=     5000   Blocks=    2488 
x=    54.368     0.980     1.667     3.524    52.024   500.858     5.734     7.072 
 
Run with Costfactor =      1.600   cub=    44.906   qlb=     0.846 
Initial Values 
f=    27.323   E=    26.697   cost=    44.338      q=     0.788   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    26.708       cost=    45.738      q=     0.848   Function evaluations=     5000   Blocks=    2432 
x=    56.366     0.969     1.044     3.006    42.094   334.064     5.687     6.605 
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Run with Costfactor =      1.650   cub=    46.309   qlb=     0.846 
Initial Values 
f=    26.913   E=    26.584   cost=    45.986      q=     0.852   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    25.501       cost=    47.260      q=     0.852   Function evaluations=     5000   Blocks=    2438 
x=    57.010     0.980     0.976     3.000    51.396   333.643     5.797     5.920 
 
Run with Costfactor =      1.700   cub=    47.712   qlb=     0.846 
Initial Values 
f=    29.037   E=    24.617   cost=    43.344      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    23.766       cost=    47.672      q=     0.830   Function evaluations=     5000   Blocks=    2471 
x=    58.073     0.940     0.483     3.163    42.000   500.474     6.887     5.209 
 
Run with Costfactor =      1.750   cub=    49.115   qlb=     0.846 
Initial Values 
f=    23.467   E=    21.615   cost=    50.917      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    22.057       cost=    51.587      q=     0.846   Function evaluations=     5000   Blocks=    2434 
x=    87.775     0.958     1.415     3.698    42.074   500.725     6.942     3.353 
 
Run with Costfactor =      1.800   cub=    50.519   qlb=     0.846 
Initial Values 
f=    24.508   E=    19.979   cost=    54.993      q=     0.792   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    20.791       cost=    54.596      q=     0.846   Function evaluations=     5000   Blocks=    2429 
x=    88.950     0.962     1.101     3.038    50.396   501.052     5.634     4.478 
 
Run with Costfactor =      1.850   cub=    51.922   qlb=     0.846 
Initial Values 
f=    26.518   E=    17.885   cost=    60.544      q=     0.858   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    18.993       cost=    57.732      q=     0.847   Function evaluations=     5000   Blocks=    2429 
x=    89.906     0.968     1.186     3.000    42.124   334.208     5.653     3.198 
 
Run with Costfactor =      1.900   cub=    53.325   qlb=     0.846 
Initial Values 
f=    24.233   E=    21.072   cost=    50.176      q=     0.858   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    20.388       cost=    53.791      q=     0.851   Function evaluations=     5000   Blocks=    2450 
x=    62.143     0.972     0.363     3.068    42.123   335.117     6.866     3.536 
 
Run with Costfactor =      1.950   cub=    54.729   qlb=     0.846 
Initial Values 
f=    21.818   E=    20.607   cost=    53.571      q=     0.792   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    20.457       cost=    54.733      q=     0.841   Function evaluations=     5000   Blocks=    2460 
x=    64.350     0.956     0.602     3.032    50.405   504.265     5.704     3.515 
 
Run with Costfactor =      2.000   cub=    56.132   qlb=     0.846 
Initial Values 
f=    22.244   E=    19.815   cost=    58.544      q=     0.863   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    20.579       cost=    57.189      q=     0.847   Function evaluations=     5000   Blocks=    2444 
x=    99.689     0.962     0.914     3.803    50.305   505.697     6.996     3.467 
 
Run with Costfactor =      2.050   cub=    57.535   qlb=     0.846 
Initial Values 
f=    19.888   E=    19.686   cost=    57.718      q=     0.866   tolx=  0.000010   tolf=  0.000015 
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A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    19.423       cost=    57.575      q=     0.847   Function evaluations=     5000   Blocks=    2473 
x=    68.126     0.959     0.326     3.044    42.300   507.746     6.124     3.464 
 
Run with Costfactor =      2.100   cub=    58.939   qlb=     0.846 
Initial Values 
f=    29.146   E=    21.381   cost=    51.182      q=     0.853   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    19.642       cost=    59.005      q=     0.853   Function evaluations=     5000   Blocks=    2389 
x=    69.626     0.980     0.250     3.206    51.167   339.978     5.719     3.576 
 
Run with Costfactor =      2.150   cub=    60.342   qlb=     0.846 
Initial Values 
f=    22.147   E=    19.227   cost=    57.476      q=     0.792   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    19.033       cost=    60.448      q=     0.863   Function evaluations=     5000   Blocks=    2429 
x=    71.258     0.980     0.250     3.031    49.908   512.145     5.377     3.575 
 
Run with Costfactor =      2.200   cub=    61.745   qlb=     0.846 
Initial Values 
f=    25.242   E=    21.096   cost=    57.619      q=     0.866   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    19.042       cost=    61.897      q=     0.866   Function evaluations=     5000   Blocks=    2448 
x=    68.379     0.980     0.250     3.237    42.274   500.831     3.130     3.116 
 
Run with Costfactor =      2.250   cub=    63.148   qlb=     0.846 
Initial Values 
f=    26.027   E=    19.099   cost=    56.276      q=     0.790   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    18.342       cost=    61.312      q=     0.854   Function evaluations=     5000   Blocks=    2391 
x=    68.871     0.973     0.257     3.000    55.084   500.842     3.983     3.000 
 
Run with Costfactor =      2.300   cub=    64.552   qlb=     0.846 
Initial Values 
f=    24.204   E=    19.125   cost=    59.488      q=     0.861   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    18.121       cost=    61.619      q=     0.855   Function evaluations=     5000   Blocks=    2395 
x=    71.850     0.973     0.257     3.007    55.124   500.295     5.139     3.000 
 
Run with Costfactor =      2.350   cub=    65.955   qlb=     0.846 
Initial Values 
f=    25.381   E=    19.502   cost=    60.127      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    18.063       cost=    64.211      q=     0.849   Function evaluations=     5000   Blocks=    2389 
x=    72.962     0.961     0.269     3.021    42.005   500.999     2.284     3.071 
 
Run with Costfactor =      2.400   cub=    67.358   qlb=     0.846 
Initial Values 
f=    18.302   E=    16.198   cost=    69.412      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    16.936       cost=    67.868      q=     0.852   Function evaluations=     5000   Blocks=    2457 
x=    99.799     0.965     0.378     3.033    42.000   500.886     3.283     3.320 
 
Run with Costfactor =      2.450   cub=    68.762   qlb=     0.846 
Initial Values 
f=    18.166   E=    16.985   cost=    67.637      q=     0.791   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    17.283       cost=    69.190      q=     0.861   Function evaluations=     5000   Blocks=    2465 
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x=    99.760     0.980     0.250     3.265    54.661   501.335     3.478     3.374 
 
Run with Costfactor =      2.500   cub=    70.165   qlb=     0.846 
Initial Values 
f=    16.824   E=    16.191   cost=    69.584      q=     0.795   tolx=  0.000010   tolf=  0.000015 
A=  50.000   alpha=   0.602    c=   0.002   a=   0.020 
Final Values 
Total time, E=    16.377       cost=    70.334      q=     0.850   Function evaluations=     5000   Blocks=    2467 
x=    99.906     0.963     0.283     3.049    42.083   501.176     2.910     3.050 
 
cost factor   cub          E      cost        qfinal      fun. evals  #blocks 
      1.25    35.082    71.155    34.986     0.705      5000      2419 
      1.30    36.486    37.667    40.349     0.846      5000      2422 
      1.35    37.889    34.544    37.804     0.810      5000      2460 
      1.40    39.292    33.915    41.980     0.846      5000      2418 
      1.45    40.696    32.065    40.746     0.851      5000      2453 
      1.50    42.099    23.240    46.095     0.846      5000      2439 
      1.55    43.502    30.662    43.686     0.862      5000      2488 
      1.60    44.906    26.708    45.738     0.848      5000      2432 
      1.65    46.309    25.501    47.260     0.852      5000      2438 
      1.70    47.712    23.766    47.672     0.830      5000      2471 
      1.75    49.115    22.057    51.587     0.846      5000      2434 
      1.80    50.519    20.791    54.596     0.846      5000      2429 
      1.85    51.922    18.993    57.732     0.847      5000      2429 
      1.90    53.325    20.388    53.791     0.851      5000      2450 
      1.95    54.729    20.457    54.733     0.841      5000      2460 
      2.00    56.132    20.579    57.189     0.847      5000      2444 
      2.05    57.535    19.423    57.575     0.847      5000      2473 
      2.10    58.939    19.642    59.005     0.853      5000      2389 
      2.15    60.342    19.033    60.448     0.863      5000      2429 
      2.20    61.745    19.042    61.897     0.866      5000      2448 
      2.25    63.148    18.342    61.312     0.854      5000      2391 
      2.30    64.552    18.121    61.619     0.855      5000      2395 
      2.35    65.955    18.063    64.211     0.849      5000      2389 
      2.40    67.358    16.936    67.868     0.852      5000      2457 
      2.45    68.762    17.283    69.190     0.861      5000      2465 
      2.50    70.165    16.377    70.334     0.850      5000      2467 
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APPENDIX E 
 

SECOND ORDER CONSTRAINED SPSA MATLAB  CODE AND RESULTS 

% MCM System of Systems
% SPSA utilizing penalty function MCMFUNPF that was used with MCM42PF.m
% Except that the penalty functions have a gain that increases with k, iteration

number.
% Filename: \matlab\dissertation\MCMSPSA.m
%This file implements constrained, second-order SPSA, with fixed number of

iterations.
% Output file initialization

clear
fid=fopen('c:\matlab\dissertation\output 2SPSA.doc','w');
fprintf(fid,'output from execution of MCM2spsaAvgFinal.m with stepped blocktol (0.2,0.1),
averaging of last 5 iterates\n\n');

%================================================================================
%
% MCM Initialization
%
%================================================================================
%
% x(1)=p11= S1 area coverage rate (nm^2/day)
% x(2)=p12= S1 classification probability
% x(3)=p13= S1 FAR (#/nm^2)
% x(4)=p14= S1 time to classify (min)
% x(5)=p15= S1 navigation accuracy (yards)
% x(6)=p21= S2 Re-acquisition range (yards)
% x(7)=p22= S2 time to prosecute a false target (min)
% x(8)=p23= S2 time to neutralize (min)
pd=0.90; %S1 detection system probability of detection
p=8; % dimension of x
xstar=[10;0.9;2.0;9.17;90;75;6.6;10.0];
%this is the threshold system. But too far from opimal for SPSA to start with.

x0=[70;.95;1.0;5.0;45;430;3.5;6]; %pretty near optimal for costfactor around 1.6.
xoptimal=[10.000 0.900 2.000 9.170 90.000 75.000 6.600 10.000;...

57.379 0.963 2.000 4.983 45.108 417.391 7.000 8.793;...
58.915 0.963 2.000 3.915 44.820 417.374 7.000 8.555;...
60.058 0.963 2.000 3.017 44.418 417.371 7.000 8.355;...
65.201 0.963 2.000 3.000 44.632 417.375 7.000 7.162;...
67.996 0.963 2.000 3.000 44.802 417.387 7.000 6.282;...
68.194 0.962 1.342 3.000 43.341 417.304 7.000 6.213;...
69.825 0.962 1.249 3.000 42.959 417.274 7.000 5.603;...
71.172 0.962 1.181 3.000 42.596 417.237 7.000 5.045;...
72.316 0.961 1.126 3.000 42.245 417.195 7.000 4.532;...
73.310 0.961 1.080 3.000 42.000 417.254 7.000 4.055;...
74.189 0.961 1.040 3.000 42.000 417.519 7.000 3.607;...
74.979 0.961 1.004 3.000 42.000 417.757 7.000 3.184;...
77.328 0.961 0.901 3.000 42.000 418.623 7.000 3.000;...
80.440 0.961 0.765 3.000 42.000 420.090 7.000 3.000;...
83.033 0.961 0.651 3.000 42.000 421.627 7.000 3.000;...
85.261 0.961 0.552 3.000 42.000 423.201 7.000 3.000;...
87.217 0.961 0.463 3.000 42.000 424.790 7.000 3.000;...
88.965 0.961 0.383 3.000 42.000 426.399 7.000 3.000;...
85.153 0.963 0.570 3.000 45.839 417.389 3.948 3.000;...
87.149 0.963 0.481 3.000 45.694 417.395 3.921 3.000;...
88.941 0.963 0.400 3.000 45.508 417.412 3.894 3.000;...
90.539 0.963 0.326 3.000 45.239 417.380 3.876 3.000;...
92.010 0.963 0.257 3.000 44.947 417.360 3.857 3.000;...
95.302 0.963 0.250 3.000 45.572 417.461 3.797 3.000;...
98.430 0.964 0.250 3.000 46.343 417.398 3.737 3.000;...
100.000 0.973 0.250 3.000 64.008 412.202 3.162 3.000];

%fprintf(fid,'x0=\n');fprintf(fid,'%10.3f',xoptimal);fprintf(fid,'\n');
vlb=[10.0;0.9;0.25;3.0;42;75;1.0;3.0]; % lower bound constraint on x
vub=[100;0.98;2.0;9.17;90;700;7.0;10.0]; % upper bound constraint on x
fprintf(fid,'vlb=\n');fprintf(fid,'%10.3f',vlb);fprintf(fid,'\n');
fprintf(fid,'vub=\n');fprintf(fid,'%10.3f',vub);fprintf(fid,'\n\n');
% Compute px1, polynomial fit cost function parameters for x(1)
x1=[10,57,82,94];
y1=[3,4.483,7.655,11.445];
px1=polyfit(x1,y1,3);
% Compute px2, polynomial fit cost function parameters for x(2)
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x1=[0.9,0.93,0.96,0.98];
%y1=[3,4.483,7.655,11.445];%original PBCM for Pc
y1=[.2,.5,1.4,2.2]; %revised PBCM that reflects COTS/NDI development
px2=polyfit(x1,y1,2);
% Compute px3, polynomial fit cost function parameters for x(3)
x1=[2,1,0.5,0.25];
y1=[8,10.319,13.592,16.429];
px3=polyfit(x1,y1,3);
% Compute px4, polynomial fit cost function parameters for x(4)
x1=[3.513,3.89,4.77,9.17];
y1=[9.191,8.190,7.574,5.0];
px4=polyfit(x1,y1,2);
% Compute px5, polynomial fit cost function parameters for x(5)
x1=[90,60,48,42];
y1=[0.050,0.250,0.450,0.550];
px5=polyfit(x1,y1,2);
% Compute px6, polynomial fit cost function parameters for x(6)
x1=[129,457,622,75];
y1=[3,4.8,7.655,1.5];
px6=polyfit(x1,y1,3);
% Compute px7, polynomial fit cost function parameters for x(7)
x1=[6.6,4.4,3.3,2.64,1.32];
y1=[5.0,7.5,8.190,9.191,16.621];
px7=polyfit(x1,y1,3);
% Compute px8, polynomial fit cost function parameters for x(8)
x1=[10,8,7,5,3];
y1=[5.3,6,7,10,15];
px8=polyfit(x1,y1,2);
%compute threshold system cost
cost0=polyval(px1,xstar(1))+polyval(px2,xstar(2))+polyval(px3,xstar(3))+polyval(px4,xstar(

4))+polyval(px5,xstar(5))+polyval(px6,xstar(6))+polyval(px7,xstar(7))+polyval(px8,
xstar(8))

%Insert costfactor loop
i=0;
for costfactor=1.2:0.05:2.5 %Note problem is infeasible with costfactor<1.25

i=i+1;
for j=1:p %start 2SPSA "near the optimal solution"--perturb randomly by 20%
del=2*round(rand)-1; %this is +/-1 random number
x0(j)=(1+0.20*del)*xoptimal(i,j); % results in either 120% or 80% of optimal.
if x0(j)<vlb(j);x0(j)=vlb(j);end %make sure x0 is feasible
if x0(j)>vub(j);x0(j)=vub(j);end

end
costfactor
fprintf(fid,'\n');
cub=costfactor*cost0; %system of systems cost constraint
qlb=0.846; %quality constraint lower bound
fprintf(fid,'Run with Costfactor = ');fprintf(fid,'%10.3f',costfactor);
fprintf(fid,' cub=');fprintf(fid,'%10.3f',cub);
fprintf(fid,' qlb=');fprintf(fid,'%10.3f\n',qlb);
sminefield=20; %minefield area, (nm^2)
m0=100; %number of mines in minefield, initially
lambda=m0/sminefield; %mine density, (#/nm^2)
dmine=600; %average distance between mines, (yards)
vtransit=7; %S1 vehicle transit speed (knots)
ttransit=dmine/(2000*vtransit); %transit time during classification (hours)
lambdaft=1.0; %false target density (#/nm^2)
% Define parameters for the objective function
p1=pd;
p2=lambda;
p3=lambdaft;
p4=ttransit;
p5=sminefield;
p6=cub;
p7=qlb;
p8=1; %Placeholder---p8 will be iteration number of SPSA algorithm.
[f,g]=mcmfunpf2s(x0,p1,p2,p3,p4,p5,p6,p7,p8);
fprintf(fid,'Initial Values\n');
fprintf(fid,'x0=');fprintf(fid,'%10.3f',x0);fprintf(fid,'\n');
x=x0;
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)));
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
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E=f1+f2;
q=p1*x0(2)*exp(-x0(5)/(4.481*x0(6)));
fprintf(fid,'f=');fprintf(fid,'%10.3f',f);fprintf(fid,' E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);fprintf(fid,'
q=');fprintf(fid,'%10.3f',q);
% Print out threshold system values for f and constraints, g.
%================================================================================
%
% SPSA Initialization
%
%================================================================================
for k1=1:50;s1(k1)=0;s2(k1)=0;s3(k1)=0;s4(k1)=0;s5(k1)=0;s6(k1)=0;s7(k1)=0;s8(k1)=0;end
n=1000; % maximum allowable number of iterations
N=0;
blocks=0; % number of blocked iterations
tolf=0.00005; % convergence tolerances
tolx=0.00001;
A=10; % Spall cookbook, about 5% of max iterations
alpha=0.602; % Spall cookbook values
gamma=0.101;
c=0.005; % Value for c used by Ilenda was 0.05. Critical parameter.
% May need to scale whole problem's x so that the optimal
% values lie in a similar range.
a=50;
fprintf(fid,' tolx=');fprintf(fid,'%10.6f',tolx);
fprintf(fid,' tolf=');fprintf(fid,'%10.6f\n',tolf);
fprintf(fid,'A=');fprintf(fid,'%8.3f',A);fprintf(fid,'alpha=');
fprintf(fid,'%8.3f',alpha);fprintf(fid,' c=');fprintf(fid,'%8.3f',c);
fprintf(fid,' a=');fprintf(fid,'%8.3f\n',a);
%2SPSA Initialization
%number of individual gradient/Hessian estimates to be averaged at each iter.
gH_avg=3;
%rand('seed',31415297) %this makes each run the same, if fixed number of iterations.
%randn('seed',111113)
%
%
%the loop 1:n does 2SPSA following guidelines in Spall, 1997 CISS.
%
%lines below initialize various recuresions for the gradient/Hess. averaging
%and for final error reporting based on the average of the solutions for
%"cases" replications.
meanHbar=0;
errthetaH=0;
errtheta=0;
losstheta=0;
lossthetaH=0;
theta_0=x0;
[f,g]=mcmfunpf2s(theta_0,p1,p2,p3,p4,p5,p6,p7,p8) % evaluate f right away
%DUMMY STATEMENT FOR SETTING DIMENSIONS OF Hhat (AVOIDS OCCASIONAL
%ERROR MESSAGES)
Hhat=eye(p);
theta=theta_0;
thetaH=theta;
Hbar=eye(p);
%=================================================================================
%
% SPSA Loop
%
%=================================================================================
k1=0; %counter for last fifty iterations
for k=1:n;

p8=k;
%fprintf(fid,'\n');fprintf(fid,'====================================================\n');
%fprintf(fid,'iteration #');fprintf(fid,'%3.0f\n',k);
ak=a/(k+A)^alpha;
ck=c/k^gamma;
ghatinput=0;
Hhatinput=0;
% GENERATION OF AVERAGED GRADIENT AND HESSIAN (NO AVERAGING IF gH_avg=1)

for m=1:gH_avg
delta=2*round(rand(p,1))-1;
thetaplus=thetaH+ck*delta;
thetaminus=thetaH-ck*delta;
% check for infeasible vectors
for j=1:p;
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if thetaplus(j)<vlb(j);
thetaplus(j)=vlb(j);

end;
if thetaminus(j)<vlb(j);

thetaminus(j)=vlb(j);
end;
if thetaplus(j)>vub(j);

thetaplus(j)=vub(j);
end;
if thetaminus(j)>vub(j);

thetaminus(j)=vub(j);
end;

end;
[yplus,g]=mcmfunpf2s(thetaplus,p1,p2,p3,p4,p5,p6,p7,p8);
[yminus,g]=mcmfunpf2s(thetaminus,p1,p2,p3,p4,p5,p6,p7,p8);
ghat=(yplus-yminus)./(2*ck*delta);

% GENERATE THE HESSIAN UPDATE
deltatilda=2*round(rand(p,1))-1;
thetaplustilda=thetaplus+ck*deltatilda;
thetaminustilda=thetaminus+ck*deltatilda;
% check for infeasible vectors
for j=1:p;

if thetaplustilda(j)<vlb(j);
thetaplustilda(j)=vlb(j);

end;
if thetaminustilda(j)<vlb(j);

thetaminustilda(j)=vlb(j);
end;
if thetaplustilda(j)>vub(j);

thetaplustilda(j)=vub(j);
end;
if thetaminustilda(j)>vub(j);

thetaminustilda(j)=vub(j);
end;

end;
% LOSS FUNCTION CALLS

[yplustilda,g]=mcmfunpf2s(thetaplustilda,p1,p2,p3,p4,p5,p6,p7,p8);
[yminustilda,g]=mcmfunpf2s(thetaminustilda,p1,p2,p3,p4,p5,p6,p7,p8);
ghatplus=(yplustilda-yplus)./(ck*deltatilda);
ghatminus=(yminustilda-yminus)./(ck*deltatilda);

% STATEMENT PROVIDING AN AVERAGE OF SP GRAD. APPROXS. PER ITERATION
ghatinput=((m-1)/m)*ghatinput+ghat/m;
deltaghat=ghatplus-ghatminus;
for j=1:p

Hhat(:,j)=deltaghat(j)./(2*ck*delta);
end
Hhat=.5*(Hhat+Hhat');
Hhatinput=((m-1)/m)*Hhatinput+Hhat/m;

end
Hbar=((k-N)/(k-N+1))*Hbar+Hhatinput/(k-N+1);

% THE THETA UPDATE (FORM BELOW USES NAIVE DIRECT HESSIAN INVERSE FORM;
% LARGER-SCALE IMPLEMENTATIONS SHOULD USE MORE NUMERICALLY EFFICIENT APPROACH
% SUCH AS GAUSSIAN ELIMINATION TO AVOID DIRECT COMPUTATION OF HESSIAN INVERSE)

thetaHlag=thetaH;
Hbarbar=sqrtm(Hbar*Hbar)+.000001*eye(p)/k;
update=inv(Hbarbar)*ghatinput;
thetaH=thetaH-ak*update;
% check for infeasible updated estimate

for j=1:p;
if thetaH(j)<vlb(j);
thetaH(j)=vlb(j);
end;
if thetaH(j)>vub(j);
thetaH(j)=vub(j);
end;

end;
thetaH;
xkp1=thetaH;x=thetaHlag;
[fkp1,g]=mcmfunpf2s(xkp1,p1,p2,p3,p4,p5,p6,p7,p8);
%Blocking test on f.
if k<200; blocktol=0.2; else blocktol=0.1;end;
if fkp1<f+blocktol;

x=xkp1; % Accept new estimate. Otherwise block the update passively.
f=fkp1;
k1=k1+1; %store last 10 iterates for averaging
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if k1<6;
s1(k1)=x(1);s2(k1)=x(2);s3(k1)=x(3);s4(k1)=x(4);s5(k1)=x(5);s6(k1)=x(6);s7(k1)=x(7

);s8(k1)=x(8);
else
for j=1:4
s1(j)=s1(j+1);s2(j)=s2(j+1);s3(j)=s3(j+1);s4(j)=s4(j+1);s5(j)=s5(j+1);

s6(j)=s6(j+1);s7(j)=s7(j+1);s8(j)=s8(j+1);
s1(5)=x(1);s2(5)=x(2);s3(5)=x(3);s4(5)=x(4);s5(5)=x(5);s6(5)=x(6);

s7(5)=x(7);s8(5)=x(8);
end

end
else;

blocks=blocks+1;
thetaH=thetaHlag;

end;
end

%average the last 5 unblocked iterates to get final estimate
if k1>5; k1=5; end
sum1=0;sum2=0;sum3=0;sum4=0;sum5=0;sum6=0;sum7=0;sum8=0;
for j=1:k1

sum1=sum1+s1(j);sum2=sum2+s2(j);sum3=sum3+s3(j);sum4=sum4+s4(j);
sum5=sum5+s5(j);sum6=sum6+s6(j);sum7=sum7+s7(j);sum8=sum8+s8(j);

end
x(1)=sum1/k1;x(2)=sum2/k1;x(3)=sum3/k1;x(4)=sum4/k1;x(5)=sum5/k1;

x(6)=sum6/k1;x(7)=sum7/k1;x(8)=sum8/k1;
x %x is now average over last 5 unblocked iterates, or all iterates if less than 5 are
blocked.
[f,g]=mcmfunpf2s(x,p1,p2,p3,p4,p5,p6,p7,p8)
fprintf(fid,'Final Values\n');
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyval(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))
q=p1*x(2)*exp(-x(5)/(4.481*x(6)))
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-

x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2
fprintf(fid,'Total time, E=');fprintf(fid,'%10.3f',E);
fprintf(fid,' cost=');fprintf(fid,'%10.3f',cost);
fprintf(fid,' q=');fprintf(fid,'%10.3f',q);
fprintf(fid,' Function evaluations= ');fprintf(fid,'%8.0f',5*k);
fprintf(fid,' Blocks=');fprintf(fid,'%8.0f\n',blocks);
fprintf(fid,'x=');fprintf(fid,'%10.3f',x);fprintf(fid,'\n');
cf(i)=costfactor; fval(i)=E; costval(i)=cub;fevals(i)=5*k; costi(i)=cost;
qfinal(i)=q;nblock(i)=blocks;
z1(i)=x(1);z2(i)=x(2);z3(i)=x(3);z4(i)=x(4);z5(i)=x(5);z6(i)=x(6);z7(i)=x(7);z8(i)=x(8);
z1(i)=abs((z1(i)-xstar(1))/(vlb(1)-vub(1)));
z2(i)=abs((z2(i)-xstar(2))/(vlb(2)-vub(2)));
z3(i)=abs((z3(i)-xstar(3))/(vlb(3)-vub(3)));
z4(i)=abs((z4(i)-xstar(4))/(vlb(4)-vub(4)));
z5(i)=abs((z5(i)-xstar(5))/(vlb(5)-vub(5)));
z6(i)=abs((z6(i)-xstar(6))/(vlb(6)-vub(6)));
z7(i)=abs((z7(i)-xstar(7))/(vlb(7)-vub(7)));
z8(i)=abs((z8(i)-xstar(8))/(vlb(8)-vub(8)));
end
% Plot option 1: Plot System of systems MOE as CAIV
figure
plot(cf,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('Time to Complete Mission (hours)')
figure
plot(costval,fval,'-*b')
title('System of Systems MOE as Function of Cost')
xlabel('Cost ($M)')
ylabel('Time to Complete Mission (hours)')
%
%
% Plot option 2: Plot MOPs as CAIV
figure
plot(cf,z1,'-b*',cf,z2,'-r+',cf,z3,'-go',cf,z4,'-kx')
legend('x1','x2','x3','x4')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 1-4 (percent of technology threshold)')
figure
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plot(cf,z5,'-b*',cf,z6,'-r+',cf,z7,'-go',cf,z8,'-kx')
legend('x5','x6','x7','x8')
title('System of Systems MOPs as Function of Cost')
xlabel('Cost Factor on Threshold System Costs')
ylabel('MOPs 5-8 (percent of technology threshold)')
% print table of results to file
fprintf(fid,'\n');
fprintf(fid,'cost factor');fprintf(fid,' cub');fprintf(fid,' E');fprintf(fid,'
cost');fprintf(fid,' qfinal');fprintf(fid,' fun. evals');fprintf(fid,'
#blocks\n');
for j=1:i

fprintf(fid,'%10.2f',cf(j));fprintf(fid,'%10.3f',costval(j));
fprintf(fid,'%10.3f',fval(j));fprintf(fid,'%10.3f',costi(j));
fprintf(fid,'%10.3f',qfinal(j));fprintf(fid,'%10.0f',fevals(j));
fprintf(fid,'%10.0f\n',nblock(j));

end
status=fclose(fid)

function [f,g] = mcmfunpf2s(x,p1,p2,p3,p4,p5,p6,p7,p8)
A1=50;
A2=1e3;
kmax=600;
k=p8; %k is the iteration number of the SPSA algorithm
if k<kmax

a1=0.5*(A1)*sin((k-1)*pi/kmax-pi/2)+A1/2+1;
a2=0.5*(A2)*sin((k-1)*pi/kmax-pi/2)+A2/2+1;

else
a1=A1;
a2=A2;

end
px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,

1.334245377520354e+000];
px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -1.794233333333325e+001,

2.032238095238094e+001];
px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];
px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002, -

1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -1.726423877731832e+001,

3.334408692656030e+001];
px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
f1 = (p5/60)*(24*60/x(1) + p2*x(2)*x(4)*p1 + (2*x(4)-p4)*((1-x(2))*p1*p2 + x(3) + p1*p3));
f2 = (p5/60)*(p1*x(2)*x(8)*p2*exp(-x(5)/(4.481*x(6)))+(1-exp(-
x(5)/(4.481*x(6))))*p1*x(2)*x(7)*p2 + (1-x(2))*(x(3)+p1*p3)*x(7));
E=f1+f2;
% evaluate cost constraint
g1=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x(5
))+polyval (px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8))-p6;
% evaluate negative of quality constraint
g2 = -p1*x(2)*exp(-x(5)/(4.481*x(6)))+p7;
%E,g1,g2,f
f=f1+f2+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];
%p1=pd
%p2=lambda
%p3=lambdaft
%p4=ttransit
%p5=sminefield
%p6=cub
%p7=qlb
%p8=k

 
output from execution of MCM2spsaAvgFinal.m with stepped blocktol (0.2,0.1), averaging of last 5 iterates 
09/14/97 3:04 PM    2SPSA Baseline C 9-14-97.doc 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
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Run with Costfactor =      1.200   cub=    33.679   qlb=     0.846 
Initial Values 
x0=    10.000     0.900     1.600     9.170    72.000    75.000     5.280     8.000 
f=   362.523   E=    88.904   cost=    32.051      q=     0.654   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    52.545       cost=    33.695      q=     0.737   Function evaluations=     5000   Blocks=     978 
x=    18.548     0.980     1.739     4.921    61.902    76.895     6.994     7.087 
 
Run with Costfactor =      1.250   cub=    35.082   qlb=     0.846 
Initial Values 
x0=    68.855     0.980     2.000     5.980    42.000   500.869     5.600    10.000 
f=   315.989   E=    42.326   cost=    40.163      q=     0.866   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    40.251       cost=    35.109      q=     0.844   Function evaluations=     5000   Blocks=     980 
x=    64.176     0.956     1.999     5.600    43.213   502.870     7.000     9.053 
 
Run with Costfactor =      1.300   cub=    36.486   qlb=     0.846 
Initial Values 
x0=    47.132     0.900     1.600     3.132    53.784   333.899     7.000    10.000 
f=   110.994   E=    34.470   cost=    36.247      q=     0.781   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    39.047       cost=    36.483      q=     0.846   Function evaluations=     5000   Blocks=     917 
x=    45.805     0.974     1.585     4.488    52.753   333.880     6.956     9.758 
 
Run with Costfactor =      1.350   cub=    37.889   qlb=     0.846 
Initial Values 
x0=    72.070     0.900     2.000     3.000    53.302   333.897     5.600     6.684 
f=   356.863   E=    26.876   cost=    43.202      q=     0.782   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    32.061       cost=    38.170      q=     0.826   Function evaluations=     5000   Blocks=     990 
x=    75.543     0.948     1.911     3.656    48.934   333.321     6.960     9.061 
 
Run with Costfactor =      1.400   cub=    39.292   qlb=     0.846 
Initial Values 
x0=    78.241     0.980     1.600     3.000    42.000   333.900     5.600     8.594 
f=   352.992   E=    28.293   cost=    45.555      q=     0.858   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    37.628       cost=    39.292      q=     0.846   Function evaluations=     5000   Blocks=     676 
x=    83.273     0.967     1.956     5.039    42.065   333.152     6.858     9.937 
 
Run with Costfactor =      1.450   cub=    40.696   qlb=     0.846 
Initial Values 
x0=    81.595     0.900     1.600     3.600    42.000   500.864     5.600     7.538 
f=   279.433   E=    28.376   cost=    44.696      q=     0.795   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    30.482       cost=    40.697      q=     0.846   Function evaluations=     5000   Blocks=     603 
x=    79.004     0.959     1.608     4.091    45.503   497.790     6.941     7.646 
 
Run with Costfactor =      1.500   cub=    42.099   qlb=     0.846 
Initial Values 
x0=    81.833     0.980     1.610     3.000    52.009   333.843     7.000     7.456 
f=    74.647   E=    26.493   cost=    42.945      q=     0.852   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    27.900       cost=    42.105      q=     0.846   Function evaluations=     5000   Blocks=     569 
x=    81.656     0.973     1.522     3.270    52.242   333.536     6.959     7.974 
 
Run with Costfactor =      1.550   cub=    43.502   qlb=     0.846 
Initial Values 
x0=    83.790     0.980     1.499     3.000    42.000   333.819     5.600     6.724 
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f=   295.128   E=    25.008   cost=    48.673      q=     0.858   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    32.265       cost=    43.414      q=     0.851   Function evaluations=     5000   Blocks=     983 
x=    86.095     0.973     0.921     5.707    42.042   329.523     6.847     7.476 
 
Run with Costfactor =      1.600   cub=    44.906   qlb=     0.846 
Initial Values 
x0=    85.406     0.900     0.945     3.600    42.000   500.684     7.000     4.036 
f=   291.830   E=    21.908   cost=    49.284      q=     0.795   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    36.752       cost=    44.906      q=     0.846   Function evaluations=     5000   Blocks=     884 
x=    75.642     0.958     0.935     8.797    42.201   500.654     6.944     3.941 
 
Run with Costfactor =      1.650   cub=    46.309   qlb=     0.846 
Initial Values 
x0=    86.779     0.900     0.901     3.600    50.694   333.756     7.000     3.626 
f=   280.516   E=    21.228   cost=    50.235      q=     0.783   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    25.668       cost=    46.311      q=     0.846   Function evaluations=     5000   Blocks=     699 
x=    86.141     0.972     1.941     3.702    49.255   332.978     6.943     4.892 
 
Run with Costfactor =      1.700   cub=    47.712   qlb=     0.846 
Initial Values 
x0=    58.648     0.980     1.296     3.000    50.400   500.705     5.600     4.866 
f=   105.715   E=    24.393   cost=    49.010      q=     0.862   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    25.618       cost=    47.712      q=     0.846   Function evaluations=     5000   Blocks=     822 
x=    58.614     0.960     1.043     3.867    48.174   500.120     6.313     4.302 
 
Run with Costfactor =      1.750   cub=    49.115   qlb=     0.846 
Initial Values 
x0=    89.027     0.980     1.248     3.000    42.000   334.015     5.600     4.328 
f=   327.869   E=    20.740   cost=    55.026      q=     0.858   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    25.512       cost=    49.116      q=     0.846   Function evaluations=     5000   Blocks=     673 
x=    90.694     0.966     0.988     3.587    42.052   337.661     6.335     6.942 
 
Run with Costfactor =      1.800   cub=    50.519   qlb=     0.846 
Initial Values 
x0=    59.983     0.980     0.803     3.600    50.400   501.308     7.000     3.000 
f=    47.558   E=    22.192   cost=    50.697      q=     0.862   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    22.765       cost=    50.518      q=     0.846   Function evaluations=     5000   Blocks=     885 
x=    60.105     0.961     0.896     3.630    50.130   501.648     6.663     3.148 
 
Run with Costfactor =      1.850   cub=    51.922   qlb=     0.846 
Initial Values 
x0=    92.794     0.900     1.081     3.000    42.000   502.348     5.600     3.600 
f=   331.992   E=    19.330   cost=    57.156      q=     0.795   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    28.971       cost=    51.925      q=     0.846   Function evaluations=     5000   Blocks=     973 
x=    93.851     0.958     2.000     4.860    42.234   505.560     5.539     4.632 
 
Run with Costfactor =      1.900   cub=    53.325   qlb=     0.846 
Initial Values 
x0=    64.352     0.980     0.612     3.600    42.000   336.072     5.600     3.600 
f=    84.933   E=    22.002   cost=    54.349      q=     0.858   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    22.177       cost=    53.322      q=     0.846   Function evaluations=     5000   Blocks=     735 
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x=    64.517     0.967     0.700     3.554    42.470   336.011     4.754     3.679 
 
Run with Costfactor =      1.950   cub=    54.729   qlb=     0.846 
Initial Values 
x0=    66.426     0.900     0.781     3.000    42.000   337.302     7.000     3.000 
f=   326.228   E=    20.098   cost=    49.770      q=     0.788   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    20.777       cost=    54.728      q=     0.846   Function evaluations=     5000   Blocks=     903 
x=    66.356     0.967     0.832     3.343    42.248   337.055     4.621     3.016 
 
Run with Costfactor =      2.000   cub=    56.132   qlb=     0.846 
Initial Values 
x0=   100.000     0.900     0.662     3.600    50.400   507.841     7.000     3.000 
f=   223.718   E=    18.994   cost=    59.152      q=     0.792   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    20.968       cost=    56.134      q=     0.846   Function evaluations=     5000   Blocks=     936 
x=    99.862     0.961     1.325     3.573    50.507   508.225     6.995     3.479 
 
Run with Costfactor =      2.050   cub=    57.535   qlb=     0.846 
Initial Values 
x0=    69.774     0.900     0.370     3.000    42.000   509.748     7.000     3.000 
f=   232.757   E=    18.790   cost=    54.271      q=     0.795   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    18.779       cost=    57.534      q=     0.846   Function evaluations=     5000   Blocks=     958 
x=    69.611     0.958     0.256     3.077    42.334   509.696     6.724     3.145 
 
Run with Costfactor =      2.100   cub=    58.939   qlb=     0.846 
Initial Values 
x0=   100.000     0.900     0.460     3.600    50.400   341.119     5.600     3.000 
f=   351.322   E=    18.395   cost=    64.352      q=     0.784   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    22.231       cost=    58.939      q=     0.846   Function evaluations=     5000   Blocks=     943 
x=    97.030     0.970     0.552     4.772    47.497   343.415     6.535     3.494 
 
Run with Costfactor =      2.150   cub=    60.342   qlb=     0.846 
Initial Values 
x0=    68.122     0.980     0.684     3.600    55.007   333.911     4.738     3.600 
f=   329.078   E=    21.734   cost=    54.278      q=     0.850   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    18.912       cost=    60.346      q=     0.846   Function evaluations=     5000   Blocks=     974 
x=    67.364     0.975     0.261     3.131    54.230   332.306     5.260     3.006 
 
Run with Costfactor =      2.200   cub=    61.745   qlb=     0.846 
Initial Values 
x0=   100.000     0.980     0.577     3.000    54.833   500.874     3.137     3.600 
f=   243.127   E=    17.628   cost=    65.961      q=     0.861   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    20.120       cost=    61.746      q=     0.846   Function evaluations=     5000   Blocks=     812 
x=    99.685     0.963     1.137     3.661    54.956   501.232     4.931     3.103 
 
Run with Costfactor =      2.250   cub=    63.148   qlb=     0.846 
Initial Values 
x0=   100.000     0.900     0.320     3.000    54.610   500.894     3.115     3.000 
f=   326.717   E=    16.347   cost=    68.246      q=     0.791   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    18.415       cost=    63.150      q=     0.846   Function evaluations=     5000   Blocks=     777 
x=    99.864     0.966     1.145     3.136    62.152   509.218     3.395     3.041 
 
Run with Costfactor =      2.300   cub=    64.552   qlb=     0.846 
Initial Values 
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x0=   100.000     0.900     0.261     3.000    42.000   333.904     4.651     3.600 
f=   166.315   E=    17.128   cost=    66.367      q=     0.788   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    23.948       cost=    64.552      q=     0.846   Function evaluations=     5000   Blocks=     894 
x=    99.555     0.967     0.606     4.199    42.004   330.610     1.567     5.916 
 
Run with Costfactor =      2.350   cub=    65.955   qlb=     0.846 
Initial Values 
x0=   100.000     0.900     0.250     3.000    53.936   333.888     4.628     3.000 
f=   179.673   E=    16.332   cost=    67.928      q=     0.781   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    17.068       cost=    65.954      q=     0.846   Function evaluations=     5000   Blocks=     916 
x=    99.874     0.975     0.577     3.058    53.951   333.661     5.078     3.008 
 
Run with Costfactor =      2.400   cub=    67.358   qlb=     0.846 
Initial Values 
x0=   100.000     0.980     0.300     3.000    54.686   500.953     4.556     3.600 
f=    72.965   E=    17.134   cost=    68.179      q=     0.861   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    17.395       cost=    67.358      q=     0.846   Function evaluations=     5000   Blocks=     712 
x=    99.979     0.963     0.265     3.009    54.520   501.143     4.722     3.806 
 
Run with Costfactor =      2.450   cub=    68.762   qlb=     0.846 
Initial Values 
x0=    78.744     0.900     0.300     3.600    55.612   500.878     4.484     3.600 
f=   607.749   E=    19.961   cost=    58.122      q=     0.790   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    17.390       cost=    68.761      q=     0.846   Function evaluations=     5000   Blocks=     952 
x=    82.212     0.960     0.255     3.071    48.147   509.330     1.764     3.075 
 
Run with Costfactor =      2.500   cub=    70.165   qlb=     0.846 
Initial Values 
x0=    80.000     0.980     0.300     3.000    76.810   329.762     3.794     3.000 
f=   423.314   E=    17.471   cost=    62.222      q=     0.837   tolx=  0.000010   tolf=  0.000050 
A=  10.000   alpha=   0.602    c=   0.005   a=  50.000 
Final Values 
Total time, E=    16.516       cost=    70.166      q=     0.846   Function evaluations=     5000   Blocks=     929 
x=    95.704     0.963     0.256     3.051    42.267   382.521     2.287     3.058 
 
cost factor   cub          E      cost        qfinal      fun. evals  #blocks 
      1.20    33.679    52.545    33.695     0.737      5000       978 
      1.25    35.082    40.251    35.109     0.844      5000       980 
      1.30    36.486    39.047    36.483     0.846      5000       917 
      1.35    37.889    32.061    38.170     0.826      5000       990 
      1.40    39.292    37.628    39.292     0.846      5000       676 
      1.45    40.696    30.482    40.697     0.846      5000       603 
      1.50    42.099    27.900    42.105     0.846      5000       569 
      1.55    43.502    32.265    43.414     0.851      5000       983 
      1.60    44.906    36.752    44.906     0.846      5000       884 
      1.65    46.309    25.668    46.311     0.846      5000       699 
      1.70    47.712    25.618    47.712     0.846      5000       822 
      1.75    49.115    25.512    49.116     0.846      5000       673 
      1.80    50.519    22.765    50.518     0.846      5000       885 
      1.85    51.922    28.971    51.925     0.846      5000       973 
      1.90    53.325    22.177    53.322     0.846      5000       735 
      1.95    54.729    20.777    54.728     0.846      5000       903 
      2.00    56.132    20.968    56.134     0.846      5000       936 
      2.05    57.535    18.779    57.534     0.846      5000       958 
      2.10    58.939    22.231    58.939     0.846      5000       943 
      2.15    60.342    18.912    60.346     0.846      5000       974 
      2.20    61.745    20.120    61.746     0.846      5000       812 
      2.25    63.148    18.415    63.150     0.846      5000       777 
      2.30    64.552    23.948    64.552     0.846      5000       894 
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      2.35    65.955    17.068    65.954     0.846      5000       916 
      2.40    67.358    17.395    67.358     0.846      5000       712 
      2.45    68.762    17.390    68.761     0.846      5000       952 
      2.50    70.165    16.516    70.166     0.846      5000       929 
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APPENDIX F 

MCM SYSTEM OF SYSTEMS MATLAB  SIMULATION CODE AND RESULTS 

function
[E,cost,q,f,g]=mcmsim(x,m0,lambda,sminefield,pd,lambdaft,dmine,vtransit,cub,qlb,k)

p11=x(1);p12=x(2);p13=x(3);p14=x(4);p15=x(5);p21=x(6);p22=x(7);p23=x(8);
Tdetect=Block1(m0,lambda,p11);
Dfa=Block2(sminefield,p13);
Dft=Block3(pd,lambdaft,sminefield);
Dm=Block4(pd,m0);
[Tclass,Cm,Cf]=Block578(Dm,Dfa,Dft,p12,p14,dmine,vtransit);
E1=Block6(Tdetect,Tclass);
PL=Block9(p15,p21);
[E2,Nreacq,Nmiss]=Block10(PL,Cm,Cf,p23,p22);
E=Block12(E1,E2);
q=Block11(Nreacq,m0);
%
A1=3;
A2=100;

px1=[4.503408803940725e-005, -5.386095666335044e-003, 2.159330101073730e-001,
1.334245377520354e+000];

px2=[2.834645669291690e+002, -5.076377952756583e+002, 2.274598425197177e+002];
px3=[-2.048380952380911e+000, 9.987333333333214e+000, -
1.794233333333325e+001, 2.032238095238094e+001];

px4=[1.159691730856429e-001, -2.175732453433467e+000, 1.520381256718985e+001];
px5=[2.061825086032983e-004, -3.775958229500408e-002, 1.777803488786043e+000];

px6=[1.504875482450802e-007, -1.578229837871938e-004, 5.516694369186904e-002,
-1.813253427503106e+000];
px7=[ -2.850358103957624e-001, 3.846213159671302e+000, -
1.726423877731832e+001, 3.334408692656030e+001];

px8=[2.102445277065673e-001, -4.109593768487483e+000, 2.539723920331297e+001];
cost=polyval(px1,x(1))+polyval(px2,x(2))+polyval(px3,x(3))+polyval(px4,x(4))+polyval(px5,x

(5))+polyv al(px6,x(6))+polyval(px7,x(7))+polyval(px8,x(8));
% evaluate negative of quality constraint
g1=cost-cub;
g2 = -q+qlb;
%E,g1,g2,f
f=E+A1*abs(g1)+A2*abs(g2);
%f=f1+f2+A1*g1*g1+A2*g2*g2;
g=[];

function Tdetect=Block1(m0,lambda,p11)
Tdetect=24*m0/(lambda*p11);

function Dfa=Block2(sminefield,p13)
area=round(sminefield);
Dfa=success(p13,area);

function Dft=Block3(pd,lambdaft,sminefield)
F0=round(lambdaft*sminefield);
Dft=success(pd,F0);

function Dm=Block4(pd,m0)
Dm=success(pd,m0);

function [Tclass,Cm,Cf]=Block578(Dm,Dfa,Dft,p12,p14,dmine,vtransit)
% Number of classifications of detected mines
Cm=success(p12,Dm);
% Number of incorrect classifications of detected mines
Cf=Dm-Cm;
% Total time to classify
Tc=p14;
Tcf=2*Tc-60*dmine/(vtransit*2000);
Tclass=(1/60)*(Tc*Cm+Cf*Tcf+Tcf*(Dfa+Dft));

function E1=Block6(Tdetect,Tclass)
E1=Tdetect+Tclass;

function PL=Block9(p15,p21)
PL=exp(-p15/(4.481*p21));

function [E2,Nreacq,Nmiss]=Block10(PL,Cm,Cf,p23,p22)
% # of re-acquired MLOs
Nreacq=success(PL,Cm);
% # of not re-acquired MLOs
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Nmiss=Cm-Nreacq;
E2=(1/60)*(Nreacq*p23+Nmiss*p22+Cf*p22);

function q=Block11(Nreacq,m0)
q=Nreacq/m0;

function E=Block12(E1,E2)
E=E1+E2;

 

2SPSA Simulation Optimization Results with Perfect Initial Conditions: 

output from execution of MCM2spsaAvgsim.m with blocktol=5, averages last 3 iterates, gains A1=50,A2=1000 an initial x=optimum 
09/21/97 11:37 AM     2SPSAsim 1000 x0=optimal.doc 
 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
 
 
Run with Costfactor =      1.250   cub=    35.082   qlb=     0.846 
Initial Values 
x0=    57.379     0.963     2.000     4.983    45.108   417.391     7.000     8.793 
f=    68.400   E=    34.290   cost=    35.085      q=     0.880A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    38.766       cost=    35.076      q=     0.810   Function evaluations=     5000   Blocks=     885 
x=    56.037     0.941     1.352     6.954    44.677   416.403     6.750     9.367 
Average total time, Eavg=    40.212   Esigma=     0.969   Average q=     0.827   qsigma=     0.042 
 
 
Run with Costfactor =      1.300   cub=    36.486   qlb=     0.846 
Initial Values 
x0=    58.915     0.963     2.000     3.915    44.820   417.374     7.000     8.555 
f=    65.324   E=    28.959   cost=    36.493      q=     0.810A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    34.542       cost=    36.406      q=     0.920   Function evaluations=     5000   Blocks=     862 
x=    58.836     0.967     1.988     5.253    45.256   418.608     6.759     8.459 
Average total time, Eavg=    33.629   Esigma=     0.706   Average q=     0.844   qsigma=     0.036 
 
 
Run with Costfactor =      1.350   cub=    37.889   qlb=     0.846 
Initial Values 
x0=    60.058     0.963     2.000     3.017    44.418   417.371     7.000     8.355 
f=    31.878   E=    27.108   cost=    37.904      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    28.537       cost=    37.860      q=     0.830   Function evaluations=     5000   Blocks=     923 
x=    59.196     0.954     1.683     3.307    44.472   417.321     6.984     8.331 
Average total time, Eavg=    27.964   Esigma=     0.578   Average q=     0.833   qsigma=     0.034 
 
 
Run with Costfactor =      1.400   cub=    39.292   qlb=     0.846 
Initial Values 
x0=    65.201     0.963     2.000     3.000    44.632   417.375     7.000     7.162 
f=    80.883   E=    24.304   cost=    39.304      q=     0.790A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    28.144       cost=    39.406      q=     0.750   Function evaluations=     5000   Blocks=     938 
x=    63.202     0.901     1.899     4.643    42.301   417.354     6.584     6.025 
Average total time, Eavg=    28.355   Esigma=     0.579   Average q=     0.792   qsigma=     0.040 
 
 
Run with Costfactor =      1.450   cub=    40.696   qlb=     0.846 
Initial Values 
x0=    67.996     0.963     2.000     3.000    44.802   417.387     7.000     6.282 
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f=    49.092   E=    22.714   cost=    40.703      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    23.039       cost=    40.715      q=     0.830   Function evaluations=     5000   Blocks=     907 
x=    69.049     0.920     1.984     3.346    46.114   417.417     6.986     5.420 
Average total time, Eavg=    23.023   Esigma=     0.434   Average q=     0.816   qsigma=     0.037 
 
 
Run with Costfactor =      1.500   cub=    42.099   qlb=     0.846 
Initial Values 
x0=    68.194     0.962     1.342     3.000    43.341   417.304     7.000     6.213 
f=    27.022   E=    22.943   cost=    42.097      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    22.659       cost=    42.113      q=     0.870   Function evaluations=     5000   Blocks=     934 
x=    70.984     0.979     1.998     3.001    42.885   418.882     7.000     6.080 
Average total time, Eavg=    22.591   Esigma=     0.440   Average q=     0.858   qsigma=     0.037 
 
 
Run with Costfactor =      1.550   cub=    43.502   qlb=     0.846 
Initial Values 
x0=    69.825     0.962     1.249     3.000    42.959   417.274     7.000     5.603 
f=    26.120   E=    21.874   cost=    43.507      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    23.389       cost=    43.552      q=     0.900   Function evaluations=     5000   Blocks=     886 
x=    71.513     0.977     1.948     3.058    42.124   416.226     6.677     6.115 
Average total time, Eavg=    22.801   Esigma=     0.437   Average q=     0.861   qsigma=     0.031 
 
 
Run with Costfactor =      1.600   cub=    44.906   qlb=     0.846 
Initial Values 
x0=    71.172     0.962     1.181     3.000    42.596   417.237     7.000     5.045 
f=    36.120   E=    21.518   cost=    44.918      q=     0.860A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    22.408       cost=    44.876      q=     0.840   Function evaluations=     5000   Blocks=     909 
x=    72.903     0.979     1.594     3.390    42.230   418.895     6.669     5.651 
Average total time, Eavg=    22.869   Esigma=     0.493   Average q=     0.859   qsigma=     0.034 
 
 
Run with Costfactor =      1.650   cub=    46.309   qlb=     0.846 
Initial Values 
x0=    72.316     0.961     1.126     3.000    42.245   417.195     7.000     4.532 
f=    25.770   E=    20.841   cost=    46.290      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    22.202       cost=    46.300      q=     0.740   Function evaluations=     5000   Blocks=     856 
x=    72.953     0.930     0.936     3.317    42.428   417.224     6.682     4.992 
Average total time, Eavg=    21.856   Esigma=     0.461   Average q=     0.823   qsigma=     0.043 
 
 
Run with Costfactor =      1.700   cub=    47.712   qlb=     0.846 
Initial Values 
x0=    73.310     0.961     1.080     3.000    42.000   417.254     7.000     4.055 
f=    36.061   E=    19.319   cost=    47.697      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    19.120       cost=    47.617      q=     0.840   Function evaluations=     5000   Blocks=     910 
x=    73.339     0.950     1.841     3.043    42.795   418.061     6.831     3.585 
Average total time, Eavg=    19.105   Esigma=     0.367   Average q=     0.837   qsigma=     0.037 
 
 
Run with Costfactor =      1.750   cub=    49.115   qlb=     0.846 
Initial Values 
x0=    74.189     0.961     1.040     3.000    42.000   417.519     7.000     3.607 
f=    44.120   E=    19.431   cost=    49.102      q=     0.870A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    19.982       cost=    49.161      q=     0.860   Function evaluations=     5000   Blocks=     856 
x=    74.626     0.977     1.210     3.263    42.528   417.385     6.799     3.884 
Average total time, Eavg=    19.851   Esigma=     0.423   Average q=     0.855   qsigma=     0.034 
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Run with Costfactor =      1.800   cub=    50.519   qlb=     0.846 
Initial Values 
x0=    74.979     0.961     1.004     3.000    42.000   417.757     7.000     3.184 
f=    43.092   E=    18.569   cost=    50.508      q=     0.870A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.429       cost=    50.667      q=     0.820   Function evaluations=     5000   Blocks=     893 
x=    75.439     0.940     1.715     3.049    42.450   417.358     6.103     3.453 
Average total time, Eavg=    18.746   Esigma=     0.376   Average q=     0.832   qsigma=     0.037 
 
 
Run with Costfactor =      1.850   cub=    51.922   qlb=     0.846 
Initial Values 
x0=    77.328     0.961     0.901     3.000    42.000   418.623     7.000     3.000 
f=    43.706   E=    17.160   cost=    51.911      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.529       cost=    51.909      q=     0.890   Function evaluations=     5000   Blocks=     888 
x=    77.849     0.964     1.635     3.208    42.881   418.669     6.479     3.029 
Average total time, Eavg=    18.332   Esigma=     0.343   Average q=     0.852   qsigma=     0.033 
 
 
Run with Costfactor =      1.900   cub=    53.325   qlb=     0.846 
Initial Values 
x0=    80.440     0.961     0.765     3.000    42.000   420.090     7.000     3.000 
f=    21.814   E=    17.393   cost=    53.317      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.850       cost=    53.308      q=     0.810   Function evaluations=     5000   Blocks=     904 
x=    80.105     0.940     0.584     3.458    42.623   419.849     6.733     3.438 
Average total time, Eavg=    18.893   Esigma=     0.410   Average q=     0.826   qsigma=     0.036 
 
 
Run with Costfactor =      1.950   cub=    54.729   qlb=     0.846 
Initial Values 
x0=    83.033     0.961     0.651     3.000    42.000   421.627     7.000     3.000 
f=    43.357   E=    17.078   cost=    54.723      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.601       cost=    54.759      q=     0.820   Function evaluations=     5000   Blocks=     893 
x=    83.277     0.966     0.612     3.110    42.588   421.281     6.968     3.190 
Average total time, Eavg=    17.482   Esigma=     0.360   Average q=     0.859   qsigma=     0.035 
 
 
Run with Costfactor =      2.000   cub=    56.132   qlb=     0.846 
Initial Values 
x0=    85.261     0.961     0.552     3.000    42.000   423.201     7.000     3.000 
f=    30.685   E=    16.451   cost=    56.127      q=     0.860A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.278       cost=    56.211      q=     0.820   Function evaluations=     5000   Blocks=     908 
x=    84.923     0.971     0.493     3.244    42.517   423.708     6.999     3.142 
Average total time, Eavg=    17.389   Esigma=     0.403   Average q=     0.855   qsigma=     0.031 
 
 
Run with Costfactor =      2.050   cub=    57.535   qlb=     0.846 
Initial Values 
x0=    87.217     0.961     0.463     3.000    42.000   424.790     7.000     3.000 
f=    30.414   E=    16.284   cost=    57.538      q=     0.860A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.536       cost=    57.356      q=     0.880   Function evaluations=     5000   Blocks=     918 
x=    87.659     0.978     0.568     3.188    42.387   424.798     6.877     3.144 
Average total time, Eavg=    17.143   Esigma=     0.398   Average q=     0.862   qsigma=     0.034 
 
 
Run with Costfactor =      2.100   cub=    58.939   qlb=     0.846 
Initial Values 
x0=    88.965     0.961     0.383     3.000    42.000   426.399     7.000     3.000 
f=    42.309   E=    16.183   cost=    58.941      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.663       cost=    59.030      q=     0.820   Function evaluations=     5000   Blocks=     941 
x=    88.815     0.977     0.512     3.255    42.271   426.596     6.651     3.154 
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Average total time, Eavg=    17.132   Esigma=     0.405   Average q=     0.861   qsigma=     0.032 
 
 
Run with Costfactor =      2.150   cub=    60.342   qlb=     0.846 
Initial Values 
x0=    85.153     0.963     0.570     3.000    45.839   417.389     3.948     3.000 
f=    30.843   E=    16.304   cost=    60.331      q=     0.860A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.923       cost=    60.532      q=     0.880   Function evaluations=     5000   Blocks=     870 
x=    84.689     0.978     0.409     3.319    45.397   417.880     4.576     3.506 
Average total time, Eavg=    17.816   Esigma=     0.403   Average q=     0.859   qsigma=     0.035 
 
 
Run with Costfactor =      2.200   cub=    61.745   qlb=     0.846 
Initial Values 
x0=    87.149     0.963     0.481     3.000    45.694   417.395     3.921     3.000 
f=    32.601   E=    16.065   cost=    61.734      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.071       cost=    61.688      q=     0.820   Function evaluations=     5000   Blocks=     922 
x=    86.919     0.967     0.453     3.103    44.451   418.260     4.383     3.085 
Average total time, Eavg=    16.563   Esigma=     0.376   Average q=     0.849   qsigma=     0.034 
 
 
Run with Costfactor =      2.250   cub=    63.148   qlb=     0.846 
Initial Values 
x0=    88.941     0.963     0.400     3.000    45.508   417.412     3.894     3.000 
f=    20.122   E=    16.036   cost=    63.147      q=     0.850A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.174       cost=    62.948      q=     0.890   Function evaluations=     5000   Blocks=     924 
x=    88.578     0.976     0.407     3.287    45.502   417.372     3.688     3.077 
Average total time, Eavg=    16.772   Esigma=     0.362   Average q=     0.857   qsigma=     0.034 
 
 
Run with Costfactor =      2.300   cub=    64.552   qlb=     0.846 
Initial Values 
x0=    90.539     0.963     0.326     3.000    45.239   417.380     3.876     3.000 
f=    40.080   E=    15.853   cost=    64.547      q=     0.870A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    15.952       cost=    64.590      q=     0.810   Function evaluations=     5000   Blocks=     940 
x=    92.654     0.901     0.252     3.231    44.103   417.150     4.998     3.000 
Average total time, Eavg=    16.444   Esigma=     0.367   Average q=     0.795   qsigma=     0.035 
 
 
Run with Costfactor =      2.350   cub=    65.955   qlb=     0.846 
Initial Values 
x0=    92.010     0.963     0.257     3.000    44.947   417.360     3.857     3.000 
f=    40.045   E=    15.895   cost=    65.958      q=     0.870A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.042       cost=    65.224      q=     0.870   Function evaluations=     5000   Blocks=     938 
x=    90.813     0.977     0.250     3.672    44.740   417.499     4.396     3.006 
Average total time, Eavg=    17.359   Esigma=     0.397   Average q=     0.865   qsigma=     0.036 
 
 
Run with Costfactor =      2.400   cub=    67.358   qlb=     0.846 
Initial Values 
x0=    95.302     0.963     0.250     3.000    45.572   417.461     3.797     3.000 
f=    21.907   E=    15.559   cost=    67.351      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    15.782       cost=    67.321      q=     0.890   Function evaluations=     5000   Blocks=     932 
x=    95.686     0.980     0.282     3.089    44.954   417.610     3.999     3.113 
Average total time, Eavg=    15.838   Esigma=     0.287   Average q=     0.859   qsigma=     0.032 
 
 
Run with Costfactor =      2.450   cub=    68.762   qlb=     0.846 
Initial Values 
x0=    98.430     0.964     0.250     3.000    46.343   417.398     3.737     3.000 
f=    70.632   E=    15.828   cost=    68.778      q=     0.900A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
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Final Values 
Total time, E=    16.469       cost=    68.433      q=     0.850   Function evaluations=     5000   Blocks=     944 
x=    98.813     0.980     0.251     3.004    46.567   417.829     4.772     3.394 
Average total time, Eavg=    15.802   Esigma=     0.388   Average q=     0.858   qsigma=     0.040 
 
 
Run with Costfactor =      2.500   cub=    70.165   qlb=     0.846 
Initial Values 
x0=   100.000     0.973     0.250     3.000    64.008   412.202     3.162     3.000 
f=    69.488   E=    15.144   cost=    70.158      q=     0.900A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    30.983       cost=    70.135      q=     0.900   Function evaluations=     5000   Blocks=     925 
x=    96.936     0.980     0.895     8.545    61.870   414.896     1.010     3.005 
Average total time, Eavg=    31.005   Esigma=     0.815   Average q=     0.852   qsigma=     0.038 
 
 
cost factor   cub       Avg E      cost     Avg qfinal      fun. evals  #blocks 
      1.25    35.082    40.212    35.076     0.827      5000       885 
      1.30    36.486    33.629    36.406     0.844      5000       862 
      1.35    37.889    27.964    37.860     0.833      5000       923 
      1.40    39.292    28.355    39.406     0.792      5000       938 
      1.45    40.696    23.023    40.715     0.816      5000       907 
      1.50    42.099    22.591    42.113     0.858      5000       934 
      1.55    43.502    22.801    43.552     0.861      5000       886 
      1.60    44.906    22.869    44.876     0.859      5000       909 
      1.65    46.309    21.856    46.300     0.823      5000       856 
      1.70    47.712    19.105    47.617     0.837      5000       910 
      1.75    49.115    19.851    49.161     0.855      5000       856 
      1.80    50.519    18.746    50.667     0.832      5000       893 
      1.85    51.922    18.332    51.909     0.852      5000       888 
      1.90    53.325    18.893    53.308     0.826      5000       904 
      1.95    54.729    17.482    54.759     0.859      5000       893 
      2.00    56.132    17.389    56.211     0.855      5000       908 
      2.05    57.535    17.143    57.356     0.862      5000       918 
      2.10    58.939    17.132    59.030     0.861      5000       941 
      2.15    60.342    17.816    60.532     0.859      5000       870 
      2.20    61.745    16.563    61.688     0.849      5000       922 
      2.25    63.148    16.772    62.948     0.857      5000       924 
      2.30    64.552    16.444    64.590     0.795      5000       940 
      2.35    65.955    17.359    65.224     0.865      5000       938 
      2.40    67.358    15.838    67.321     0.859      5000       932 
      2.45    68.762    15.802    68.433     0.858      5000       944 
      2.50    70.165    31.005    70.135     0.852      5000       925 
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2SPSA Simulation Composite 2000-Iteration Optimization Results: 

COMPOSITE  2000 ITERATION RUN RESULTS:  
 File “composite Ramp 2000 output 10-8.doc” 
 
output from execution of MCM2spsaAvgsim.m with blocktol=3/1, averages last 3 iterates, gains A1=50,A2=1000, ramp for x0 
proportional to costfactor 
 
vlb= 
    10.000     0.900     0.250     3.000    42.000    75.000     1.000     3.000 
vub= 
   100.000     0.980     2.000     9.170    90.000   700.000     7.000    10.000 
 
 
Run with Costfactor =      1.250   cub=    35.082   qlb=     0.846 
Initial Values 
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x0=    25.000     0.913     1.708     8.142    82.000   179.167     6.000     8.833 
f=    69.228   E=    53.049   cost=    34.223      q=     0.710A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    38.113       cost=    36.307      q=     0.840   Function evaluations=    10000   Blocks=    1775 
x=    29.280     0.962     1.916     3.900    82.457   177.871     6.805     8.020 
Average total time, Eavg=    37.379   Esigma=     0.664   Average q=     0.780   qsigma=     0.047 
 
 
Run with Costfactor =      1.300   cub=    36.486   qlb=     0.846 
Initial Values 
x0=    28.000     0.916     1.650     7.936    80.400   200.000     5.800     8.600 
f=    67.004   E=    49.470   cost=    35.174      q=     0.710A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    34.616       cost=    36.595      q=     0.810   Function evaluations=    10000   Blocks=    1700 
x=    39.126     0.940     1.418     3.152    82.181   204.082     6.949     9.847 
Average total time, Eavg=    33.591   Esigma=     0.691   Average q=     0.774   qsigma=     0.042 
 
Run with Costfactor =      1.350   cub=    37.889   qlb=     0.846 
Initial Values 
x0=    31.000     0.919     1.592     7.730    78.800   220.833     5.600     8.367 
f=    61.319   E=    48.010   cost=    35.986      q=     0.770A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    31.892       cost=    37.862      q=     0.840   Function evaluations=    10000   Blocks=    1627 
x=    50.156     0.980     1.786     3.381    89.427   226.955     6.835     9.838 
Average total time, Eavg=    31.579   Esigma=     0.726   Average q=     0.806   qsigma=     0.041 
 
Run with Costfactor =      1.400   cub=    39.292   qlb=     0.846 
Initial Values 
x0=    34.000     0.921     1.533     7.525    77.200   241.667     5.400     8.133 
f=    58.045   E=    45.637   cost=    36.690      q=     0.800A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    40.198       cost=    39.219      q=     0.810   Function evaluations=    10000   Blocks=    1680 
x=    28.007     0.967     1.511     3.904    71.816   241.400     6.242     9.940 
Average total time, Eavg=    40.951   Esigma=     0.712   Average q=     0.823   qsigma=     0.041 
 
Run with Costfactor =      1.450   cub=    40.696   qlb=     0.846 
Initial Values 
x0=    37.000     0.924     1.475     7.319    75.600   262.500     5.200     7.900 
f=    59.454   E=    42.716   cost=    37.317      q=     0.780A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    35.251       cost=    40.624      q=     0.870   Function evaluations=    10000   Blocks=    1532 
x=    43.661     0.968     1.517     5.078    80.725   261.692     3.505     7.672 
Average total time, Eavg=    34.528   Esigma=     0.657   Average q=     0.814   qsigma=     0.038 
 
Run with Costfactor =      1.500   cub=    42.099   qlb=     0.846 
Initial Values 
x0=    40.000     0.927     1.417     7.113    74.000   283.333     5.000     7.667 
f=    59.358   E=    41.156   cost=    37.898      q=     0.790A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    26.304       cost=    42.038      q=     0.890   Function evaluations=    10000   Blocks=    1461 
x=    65.215     0.969     1.313     3.068    62.550   300.401     6.533     7.626 
Average total time, Eavg=    25.557   Esigma=     0.554   Average q=     0.832   qsigma=     0.038 
 
 
Run with Costfactor =      1.550   cub=    43.502   qlb=     0.846 
Initial Values 
x0=    43.000     0.929     1.358     6.908    72.400   304.167     4.800     7.433 
f=    56.217   E=    39.510   cost=    38.467      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    28.408       cost=    43.655      q=     0.790   Function evaluations=    10000   Blocks=    1526 
x=    38.211     0.971     1.950     3.010    74.526   314.854     3.284     6.915 
Average total time, Eavg=    29.256   Esigma=     0.447   Average q=     0.834   qsigma=     0.036 
 
 
Run with Costfactor =      1.600   cub=    44.906   qlb=     0.846 
Initial Values 
x0=    46.000     0.932     1.300     6.702    70.800   325.000     4.600     7.200 
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f=    57.677   E=    37.520   cost=    39.053      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    26.660       cost=    44.286      q=     0.810   Function evaluations=    10000   Blocks=    1585 
x=    42.734     0.970     0.756     3.104    71.039   330.399     6.814     6.011 
Average total time, Eavg=    27.056   Esigma=     0.502   Average q=     0.835   qsigma=     0.038 
 
Run with Costfactor =      1.650   cub=    46.309   qlb=     0.846 
Initial Values 
x0=    49.000     0.935     1.242     6.496    69.200   345.833     4.400     6.967 
f=    57.509   E=    36.051   cost=    39.689      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    23.609       cost=    46.372      q=     0.790   Function evaluations=    10000   Blocks=    1399 
x=    52.165     0.979     1.738     3.104    59.748   343.736     5.978     4.973 
Average total time, Eavg=    23.739   Esigma=     0.421   Average q=     0.845   qsigma=     0.035 
 
Run with Costfactor =      1.700   cub=    47.712   qlb=     0.846 
Initial Values 
x0=    52.000     0.937     1.183     6.291    67.600   366.667     4.200     6.733 
f=    62.633   E=    35.316   cost=    40.407      q=     0.900A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    22.254       cost=    48.101      q=     0.830   Function evaluations=    10000   Blocks=    1630 
x=    54.244     0.970     0.658     3.195    71.728   366.155     6.904     4.200 
Average total time, Eavg=    22.233   Esigma=     0.452   Average q=     0.834   qsigma=     0.036 
 
Run with Costfactor =      1.750   cub=    49.115   qlb=     0.846 
Initial Values 
x0=    55.000     0.940     1.125     6.085    66.000   387.500     4.000     6.500 
f=    58.240   E=    34.004   cost=    41.237      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    20.055       cost=    49.102      q=     0.810   Function evaluations=    10000   Blocks=    1560 
x=    78.208     0.970     1.352     3.074    59.283   357.190     6.395     4.538 
Average total time, Eavg=    20.004   Esigma=     0.351   Average q=     0.842   qsigma=     0.033 
 
Run with Costfactor =      1.800   cub=    50.519   qlb=     0.846 
Initial Values 
x0=    58.000     0.943     1.067     5.879    64.400   408.333     3.800     6.267 
f=    62.264   E=    31.743   cost=    42.212      q=     0.790A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    19.954       cost=    50.334      q=     0.830   Function evaluations=    10000   Blocks=    1481 
x=    57.487     0.980     1.998     3.222    62.682   410.679     6.129     3.001 
Average total time, Eavg=    20.406   Esigma=     0.341   Average q=     0.847   qsigma=     0.036 
 
Run with Costfactor =      1.850   cub=    51.922   qlb=     0.846 
Initial Values 
x0=    61.000     0.945     1.008     5.674    62.800   429.167     3.600     6.033 
f=    63.178   E=    28.899   cost=    43.362      q=     0.760A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    19.793       cost=    51.961      q=     0.870   Function evaluations=    10000   Blocks=    1503 
x=    72.033     0.971     0.762     3.555    45.498   515.835     6.921     3.158 
Average total time, Eavg=    19.584   Esigma=     0.406   Average q=     0.855   qsigma=     0.035 
 
 
Run with Costfactor =      1.900   cub=    53.325   qlb=     0.846 
Initial Values 
x0=    64.000     0.948     0.950     5.468    61.200   450.000     3.400     5.800 
f=    62.783   E=    29.370   cost=    44.721      q=     0.770A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.940       cost=    53.336      q=     0.840   Function evaluations=    10000   Blocks=    1353 
x=    71.521     0.974     1.449     3.219    71.836   454.461     3.184     3.293 
Average total time, Eavg=    18.949   Esigma=     0.337   Average q=     0.843   qsigma=     0.034 
 
Run with Costfactor =      1.950   cub=    54.729   qlb=     0.846 
Initial Values 
x0=    67.000     0.951     0.892     5.262    59.600   470.833     3.200     5.567 
f=    54.525   E=    27.694   cost=    46.318      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.566       cost=    54.787      q=     0.860   Function evaluations=    10000   Blocks=    1533 
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x=    92.837     0.961     0.959     3.237    58.676   469.751     6.808     3.630 
Average total time, Eavg=    18.194   Esigma=     0.418   Average q=     0.838   qsigma=     0.041 
 
Run with Costfactor =      2.000   cub=    56.132   qlb=     0.846 
Initial Values 
x0=    70.000     0.953     0.833     5.057    58.000   491.667     3.000     5.333 
f=    59.620   E=    25.184   cost=    48.187      q=     0.740A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    20.360       cost=    55.028      q=     0.790   Function evaluations=    10000   Blocks=    1463 
x=    61.926     0.976     1.539     3.416    65.406   491.500     2.033     3.632 
Average total time, Eavg=    20.861   Esigma=     0.363   Average q=     0.847   qsigma=     0.035 
 
Run with Costfactor =      2.050   cub=    57.535   qlb=     0.846 
Initial Values 
x0=    73.000     0.956     0.775     4.851    56.400   512.500     2.800     5.100 
f=    47.599   E=    25.464   cost=    50.357      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.734       cost=    57.559      q=     0.860   Function evaluations=    10000   Blocks=    1502 
x=    77.539     0.959     0.673     3.112    50.409   499.238     4.888     3.069 
Average total time, Eavg=    17.561   Esigma=     0.347   Average q=     0.835   qsigma=     0.035 
 
Run with Costfactor =      2.100   cub=    58.939   qlb=     0.846 
Initial Values 
x0=    76.000     0.959     0.717     4.645    54.800   533.333     2.600     4.867 
f=    42.745   E=    23.915   cost=    52.862      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    18.328       cost=    58.691      q=     0.840   Function evaluations=    10000   Blocks=    1513 
x=    72.180     0.948     1.804     3.104    49.428   532.036     1.678     3.296 
Average total time, Eavg=    18.406   Esigma=     0.348   Average q=     0.837   qsigma=     0.039 
 
Run with Costfactor =      2.150   cub=    60.342   qlb=     0.846 
Initial Values 
x0=    79.000     0.961     0.658     4.440    53.200   554.167     2.400     4.633 
f=    36.838   E=    22.407   cost=    55.732      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.943       cost=    60.324      q=     0.790   Function evaluations=    10000   Blocks=    1635 
x=    78.434     0.961     0.285     3.241    42.279   552.864     6.461     3.061 
Average total time, Eavg=    17.419   Esigma=     0.351   Average q=     0.851   qsigma=     0.031 
 
Run with Costfactor =      2.200   cub=    61.745   qlb=     0.846 
Initial Values 
x0=    82.000     0.964     0.600     4.234    51.600   575.000     2.200     4.400 
f=    33.543   E=    21.904   cost=    58.999      q=     0.880A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.365       cost=    61.710      q=     0.790   Function evaluations=    10000   Blocks=    1487 
x=    79.608     0.976     1.067     3.209    50.661   575.874     2.091     3.030 
Average total time, Eavg=    17.805   Esigma=     0.313   Average q=     0.863   qsigma=     0.033 
 
Run with Costfactor =      2.250   cub=    63.148   qlb=     0.846 
Initial Values 
x0=    85.000     0.967     0.542     4.028    50.000   595.833     2.000     4.167 
f=    25.047   E=    20.086   cost=    62.695      q=     0.810A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.664       cost=    63.173      q=     0.800   Function evaluations=    10000   Blocks=    1559 
x=    86.327     0.945     0.737     3.117    51.930   595.164     2.408     3.014 
Average total time, Eavg=    16.730   Esigma=     0.331   Average q=     0.833   qsigma=     0.040 
 
Run with Costfactor =      2.300   cub=    64.552   qlb=     0.846 
Initial Values 
x0=    88.000     0.969     0.483     3.823    48.400   616.667     1.800     3.933 
f=    34.051   E=    19.754   cost=    66.851      q=     0.920A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.615       cost=    64.612      q=     0.810   Function evaluations=    10000   Blocks=    1522 
x=    94.376     0.971     1.942     3.173    54.769   618.622     2.197     3.064 
Average total time, Eavg=    16.787   Esigma=     0.310   Average q=     0.858   qsigma=     0.034 
 
Run with Costfactor =      2.350   cub=    65.955   qlb=     0.846 
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Initial Values 
x0=    91.000     0.972     0.425     3.617    46.800   637.500     1.600     3.700 
f=    35.316   E=    18.085   cost=    71.499      q=     0.840A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.573       cost=    65.923      q=     0.890   Function evaluations=    10000   Blocks=    1528 
x=    85.410     0.969     0.627     3.050    47.148   635.212     2.278     3.225 
Average total time, Eavg=    16.786   Esigma=     0.347   Average q=     0.858   qsigma=     0.035 
 
Run with Costfactor =      2.400   cub=    67.358   qlb=     0.846 
Initial Values 
x0=    94.000     0.975     0.367     3.411    45.200   658.333     1.400     3.467 
f=    46.281   E=    16.746   cost=    76.670      q=     0.830A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    17.330       cost=    67.238      q=     0.820   Function evaluations=    10000   Blocks=    1466 
x=    90.360     0.955     0.393     3.290    42.463   656.124     5.081     3.013 
Average total time, Eavg=    16.750   Esigma=     0.341   Average q=     0.849   qsigma=     0.035 
 
Run with Costfactor =      2.450   cub=    68.762   qlb=     0.846 
Initial Values 
x0=    97.000     0.977     0.308     3.206    43.600   679.167     1.200     3.233 
f=    59.280   E=    15.777   cost=    82.396      q=     0.820A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.558       cost=    68.115      q=     0.890   Function evaluations=    10000   Blocks=    1519 
x=    97.019     0.980     1.991     3.000    42.092   674.479     2.377     3.018 
Average total time, Eavg=    16.166   Esigma=     0.326   Average q=     0.871   qsigma=     0.036 
 
Run with Costfactor =      2.500   cub=    70.165   qlb=     0.846 
Initial Values 
x0=   100.000     0.980     0.250     3.000    42.000   700.000     1.000     3.000 
f=    75.675   E=    14.443   cost=    88.709      q=     0.790A=  50.000   alpha=   0.602    c=   0.020   a=  10.000 
Final Values 
Total time, E=    16.610       cost=    70.097      q=     0.830   Function evaluations=    10000   Blocks=    1496 
x=    97.207     0.973     0.500     3.341    42.846   699.810     6.281     3.000 
Average total time, Eavg=    16.593   Esigma=     0.415   Average q=     0.864   qsigma=     0.030 
 
 
Note:  Last 3 columns are from interpolating MOP values and feeding back into the simulation. 
 
cost 
factor 

cub Avg. E Cost Avg. 
Qfinal 

function 
evals. 

# Blocks Eavg 
(interp) 

Cost 
(interp) 

qavg 
(interp) 

S1 c.f 
.(interp) 

S2 c.f. 
(interp) 

     1.25  35.082  37.478  36.326   0.778    5000    1775  35.618  36.188   0.770   1.388   1.154 
     1.30  36.486  33.549  36.596   0.772    5000    1700  36.023  37.196   0.787   1.416   1.201 
     1.35  37.889  31.707  37.865   0.812    5000    1627  35.171  38.468   0.800   1.441   1.275 
     1.40  39.292  40.865  39.201   0.818    5000    1680  33.573  39.523   0.812   1.462   1.334 
     1.45  40.696  34.474  40.644   0.816    5000    1532  31.398  40.616   0.819   1.482   1.400 
     1.50  42.099  25.459  42.027   0.825    5000    1461  29.276  41.982   0.829   1.499   1.491 
     1.55  43.502  29.235  43.651   0.830    5000    1526  27.147  43.646   0.830   1.515   1.610 
     1.60  44.906  27.040  44.301   0.829    5000    1585  25.271  45.472   0.839   1.530   1.744 
     1.65  46.309  23.734  46.349   0.849    5000    1399  23.628  47.269   0.842   1.545   1.876 
     1.70  47.712  22.299  48.116   0.836    5000    1630  22.377  48.876   0.849   1.559   1.992 
     1.75  49.115  20.023  49.097   0.843    5000    1560  21.268  50.207   0.844   1.575   2.083 
     1.80  50.519  20.405  50.336   0.850    5000    1481  20.396  51.256   0.844   1.591   2.150 
     1.85  51.922  19.657  51.962   0.856    5000    1503  19.849  52.076   0.849   1.609   2.194 
     1.90  53.325  18.911  53.329   0.842    5000    1353  19.406  52.752   0.850   1.629   2.224 
     1.95  54.729  18.263  54.801   0.845    5000    1533  18.959  53.380   0.844   1.651   2.247 
     2.00  56.132  20.888  55.021   0.847    5000    1463  18.681  54.043   0.841   1.676   2.269 
     2.05  57.535  17.575  57.569   0.844    5000    1502  18.424  54.806   0.849   1.704   2.295 
     2.10  58.939  18.459  58.699   0.840    5000    1513  18.107  55.708   0.845   1.735   2.328 
     2.15  60.342  17.384  60.310   0.847    5000    1635  17.928  56.766   0.848   1.770   2.370 
     2.20  61.745  17.789  61.695   0.863    5000    1487  17.679  57.975   0.854   1.809   2.418 
     2.25  63.148  16.740  63.173   0.833    5000    1559  17.404  59.321   0.845   1.852   2.473 
     2.30  64.552  16.769  64.618   0.855    5000    1522  17.231  60.793   0.848   1.900   2.531 
     2.35  65.955  16.810  65.918   0.857    5000    1528  17.138  62.396   0.856   1.953   2.594 
     2.40  67.358  16.745  67.225   0.844    5000    1466  17.021  64.176   0.858   2.012   2.664 
     2.45  68.762  16.130  68.116   0.872    5000    1519  16.902  66.243   0.854   2.077   2.750 
     2.50  70.165  16.588  70.100   0.858    5000    1496  16.615  68.800   0.865   2.148   2.868 
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      Interpolated MOP values, x1-x8 
      1.25  32.382   0.953   1.763   3.779  85.656 178.329   6.855   8.155 
      1.30  35.572   0.959   1.691   3.706  82.681 201.225   6.663   9.602 
      1.35  38.699   0.964   1.626   3.639  79.896 223.780   6.476   9.895 
      1.40  41.766   0.968   1.565   3.576  77.288 246.016   6.292   9.463 
      1.45  44.774   0.971   1.510   3.520  74.847 267.953   6.113   8.630 
      1.50  47.724   0.972   1.460   3.468  72.562 289.613   5.939   7.630 
      1.55  50.616   0.974   1.414   3.420  70.421 311.016   5.768   6.624 
      1.60  53.453   0.974   1.372   3.378  68.412 332.183   5.602   5.714 
      1.65  56.235   0.974   1.334   3.340  66.525 353.136   5.441   4.953 
      1.70  58.963   0.973   1.300   3.306  64.748 373.896   5.283   4.362 
      1.75  61.639   0.972   1.268   3.276  63.071 394.483   5.130   3.935 
      1.80  64.263   0.971   1.240   3.251  61.481 414.919   4.981   3.648 
      1.85  66.837   0.970   1.214   3.229  59.967 435.224   4.836   3.472 
      1.90  69.362   0.968   1.190   3.210  58.519 455.420   4.696   3.372 
      1.95  71.839   0.966   1.167   3.195  57.124 475.528   4.560   3.318 
      2.00  74.270   0.965   1.146   3.184  55.772 495.568   4.429   3.283 
      2.05  76.654   0.964   1.126   3.175  54.451 515.562   4.301   3.249 
      2.10  78.994   0.962   1.107   3.169  53.150 535.530   4.178   3.209 
      2.15  81.291   0.962   1.089   3.166  51.857 555.494   4.060   3.161 
      2.20  83.546   0.961   1.070   3.166  50.563 575.475   3.945   3.112 
      2.25  85.759   0.962   1.051   3.167  49.254 595.494   3.835   3.073 
      2.30  87.932   0.963   1.031   3.172  47.920 615.571   3.729   3.054 
      2.35  90.066   0.964   1.011   3.178  46.549 635.728   3.628   3.056 
      2.40  92.163   0.967   0.989   3.186  45.131 655.986   3.530   3.071 
      2.45  94.223   0.970   0.966   3.195  43.654 676.366   3.438   3.066 
      2.50  96.248   0.975   0.940   3.206  42.106 696.889   3.349   2.979 
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