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This paper presents an algorithm to estimate unknown parameters of parachute mod-

els from flight test data.

The algorithm is based on the Simultaneous Perturbation

Stochastic Approximation (SPSA) method to minimize the prediction error (difference
between model output and test data). The algorithm requires only the model output
(analytical gradients are not necessary) and it is simple to code. The algorithm is used
to estimate aerodynamic and apparent mass coefficients for an existing parachute model.

Introduction

The contribution of this paper is a simple algorithm
for parameter estimation that can be used with non-
linear dynamic parachute models. Model parameters
are determined by minimizing the prediction error ob-
tained by comparing model output with test data.
Minimization is accomplished using the Simultaneous
Perturbation Stochastic Approximation (SPSA) algo-
rithm developed by Spall.2

The SPSA algorithm is an iterative method for
optimization, with randomized search direction, that
requires at most three function (model) evaluations
at each iteration. Hence, execution time per itera-
tion does not increase with the number of parameters.
The method can handle nonlinear dynamic models,
non-equilibrium transient test conditions, and data ob-
tained in closed loop. For this reason, this method
is suitable for the estimation of parameters in guided
parachute models.

The present paper has three main sections. The
first section describes the model whose parameters
are to be determined. The model is for a G-12
parachute and it was developed at the Naval Post-
graduate School (NPS).?4 The second section explains
the basic parameter estimation approach. This section
includes a simple description of the SPSA algorithm.
In section three we give the numerical results corre-
sponding to the determination of three aerodynamic
coefficients, four apparent mass coefficients, and the
initial states for the G-12 parachute model. Conclu-
sions and recommendations for further work are the
end of the paper.

Parachute Model
A six degrees of freedom (6DOF) model of a fully
deployed G-12 parachute was developed at NPS.%4
Figure 1 gives a schematic of the G-12 parachute. This
model assumes the following;:
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1. The parachute canopy and payload form one rigid
system.

2. The aerodynamic forces and moments of the pay-
load are negligible.

3. The aerodynamic forces act at the center of pres-
sure of the canopy, which is nothing but the cen-
troid of the air in the canopy.

4. The G-12 system is symmetrical about the axis
joining the canopy centroid to the payload cen-
troid.

5. The parachute is fully deployed.

Equations of Motion

Let m be the total mass of the parachute system.
Let u, v and w be the components of the ground ve-
locity of the parachute in the body coordinate system
(see Figs. 1 and 2). Let p, ¢ and r be the components
of the angular velocity of the parachute expressed in
body coordinates. Then, the equations of motion of
the parachute are as follows:®

EF, = (m+ Aj1)(@—or)+ (m+ Asz)qw +
(J1+ A15)(¢ +rp) (1a)
Fy, = (m+ An)(@+ur)— (m+ Ass)pw —
(J1+ Ass)(p — qr) (1b)
F, = (m+ As3)w — (m+ Ayp)(ug — vp) —
(J1+ Ai5)(0* +¢°) (Lc)
M, = (Izz+ As5)p— (J1+ A15)(0 — pw + ur) —
(Iyy + Ass — L. )qr + (Ass — Ann)vw  (2a)
M, = (Iyy+Ass)q+ (J1+ Ass)(@+ qw —1v) +
(Ipe + Ass — L)pr — (Ass — A11)uw  (2b)
M. = L7+ (Iyy — La)pg (2¢)
where

n
J1=" "mz (3)
=1
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Zmi =m (4)

and z; is the location of the mass center of each of
the component masses m; of the parachute system.
The terms Ay, Asz, A1 and Ass are the “apparent
mass” terms and are added to account for the accel-
eration of the fluid around the body. These terms
are significant in the case of parachutes because the
mass of the parachute is comparable to the mass of
the air displaced by it (unlike aircrafts). Expressions
for the apparent mass terms were taken from Doherr
and Saliaris® and are given by

A11 = ngz (5&)
Ais = 0241, /R2+ 62, (5b)
A33 = 2A11 (5(3)
Ass = 0.192R)Ay (5d)

where R, is the radius of the inflated canopy and £gy,
is the length of the suspension lines projected onto the
symmetry axis.

The following kinematic equations are used to de-
termine the attitude of the parachute:

¢ = p+gsingtanf+rcosptand  (6a)
6§ = gcos¢—rsing (6b)
¥ = gsecBHsing + rsechcos e (6¢)

Finally, the inertial position of the origin of the body
coordinates are obtained by integrating Eqn. 7:

X = wcost cosf + v(cos 1 sin fsin ¢ — sin ) cos @)
+w(cos P sin B cos ¢ + sin v sin @) (7a)
Y = wusintcosf + v(sin ) sin 6 sin ¢ + cos 1 cos ¢)
“+w(sin 1) sin @ cos ¢ — cos 1) sin @) (7b)
Z = —usinf + vcosfsing + wcosf cos ¢ (7¢c)

Thus the twelve states can be determined using
Eqns. 1-2 and 6-7. See the thesis of Junge? for further
details.

Forces and Moments

Before the expressions for the forces and moments
are given, certain definitions will be useful. The ve-
locity of the parachute relative to the air (airspeed)

is denoted by V,;- and has components gy, Vair and
Weir in the body coordinates given by

Ugir u Uwind
Vair = v - Vwind (8)
Wair w Wwind

where Uwind, Vwind and Wying are the components of
the wind velocity in body coordinates.

Figure 3 gives the various flight angles used in the
determination of force and moment coefficients. Note

that the =, y and z coordinates shown are the body
coordinates.
The total angle of attack is defined by (see Fig. 3)

Wair
Vuz, + vk, +w, > ©)
awr awr awr

The angle of attack is given by

QT = arccos (

a = arctan <M> (10)

Wair

The sideslip angle is given by

Vair
6 = arctan (ﬁ) (11)

air air

The net force on the G-12 parachute is due to the
aerodynamic force and gravity. The aerodynamic force
Faero i assumed to act at the centroid of the canopy,
and has components F;"?, F'" and F" along the
body axes. These components are given by the follow-
ing relation:

F;ero 1 5 5 5
F;ero = Ep (\/uair + Vg T wair) x
anero
Ugir
SrerCalar) {  Vair (12)
Wair

The density of air, p, is a function of the altitude and
a standard atmospheric model was used (see Fig. 4).

The drag coefficient Cy depends on the total angle
of attack ar and it is shown in Fig. 5. This curve was
obtained from the computations of Mosseev.5

The gravitational force, F-"g’"“”, acts along the iner-
tial Z direction and has the components FJ"*?, FJ"4?
and F¥7? in body coordinates given by

Fgrav —sinf
Fgrav 5 = ¢ cosflsing »mg (13)
Fgrav cos 6 cos ¢

The net force in the left hand side of Eqn. 1 is the sum
of forces in Eqns. 12 and 13.

The moments on the parachute are caused due to
the forces described earlier as well as the aerodynamic
moments. The aerodynamic moment, M7 has com-
ponents Mg, Mp¢™ and M2 in the body coordi-
nates given by

M:ero 1
%?ZZ:Z - §p (uiir + inr + wgi”‘) X
Cm(B)
Srefcrer § Cml(a) (14)
0
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where the variation of C), with angle of attack («) or
sideslip () is given in Fig. 6. This variation was also
obtained from the computations of Mosseev.5

As mentioned earlier, the moment due to the aero-
dynamic forces (assumed to act at the canopy centroid,
point C) and weight (acting at the mass center, point
D) also need to be accounted for in the final moment
that is to be applied to the EOMs. This moment, de-
noted M7 is given by

NI = Rop x £ 4+ fipg x Frar (15)

where the moment arm ﬁc B is the distance between
the canopy centroid (point C) and the origin of the
body frame (point B), and Rpp is the distance be-
tween the center of mass (point D) of the system and
the origin (see Fig. 1). For more details, the reader is
referred to the thesis of Junge.?

The objective of this paper is to improve the
parachute model using parameter estimation. In the
next section, the Cy and the C,, curves will be modi-
fied and the parameters that modify these curves will
be estimated. Also, the apparent mass terms in Eqn. 5
will be modified and parameters modifying these terms
will be estimated. Finally, the initial conditions of the
states will also be estimated.

Parameter Estimation

Once the model structure and the test data are
known, the next step is to estimate the parameters
of the system. This is done by assuming an initial
value of the parameters and then optimizing them so
as to minimize the error between the measurements
and the model predictions. In this work, a code us-
ing standard MATLAB commands, implementing the
SPSA algorithm® 7 for constrained optimization was
developed.

The model given in the previous section was modi-
fied to reduce the model errors. The modifications are
as follows. The aerodynamic force term is determined
by Eqn. 12, where the value of the drag coefficient
is determined using a lookup table corresponding to
Fig. 5. Let this function be denoted by C(-). Con-
sider the following modification to the drag coefficient:

Ca(-) =t +905(") (16)

where, 1 is an offset and ¥ is a scale factor which
need to be determined to reduce the model error.

Similarly, consider the moment term. The aero mo-
ment is given by Eqn. 14, where the value of the
moment coefficient is given by Fig. 6. Let this function
be denoted by C (). Consider the following modifi-
cation to the moment coefficient:

COm() = 93C5, () (17)

Note that the physics of the problem does not allow
for a nonzero C), at zero angle of attack which ex-

plains the absence of an offset term for the moment
coefficient.

Scale factors 4,95, 9¢ and 97 were incorporated in
the apparent mass terms in Eqn. 5 as well and this
resulted in

A11 = 194ng2 (183)
Az = 0'2195‘411”1%12’ +£?9L (18b)
A33 = 21961411 (].SC)
Ass = 0.1920;R2Ap (18d)

The initial conditions of the twelve states were also
estimated to get a better fit of the data to the model.
This gives an additional twelve unknowns, ¥g, - - - , 9.

Thus the vector of unknowns ¢ is given by

9= 19131927193 31945"'719751987"'51919 (19)
—_—— RN ~

~~ '

Aerodyn. params App. mass terms Initial conditions

Method of Parameter Estimation

The Prediction Error Method (PEM) was used to
estimate the parameters. PEM estimates parameters
by minimizing the difference between the experimental
data and the model output.

PEM works by minimizing a cost function. There
are many cost functions that can be chosen. Let the
measured output vector at time instant & be denoted
by y(k) and let the predicted output vector at time k
using parameters ¥ be denoted by §(k; ). Define the
prediction error as

e(k; ¥) = y(k) — 9(k; 9) (20)

A popular cost function is the quadratic function given
by

N
H©W) = e(k; )" Pe(k; V) (21)
k=1

where IV is the total number of time samples and P
is a weighting matrix. P was chosen to be diagonal
and the values of the diagonal elements were chosen so
that all the components of e(k; 1) were normalized and
nondimensionalized. This was achieved by choosing
the diagonal elements to be the inverse of the square
of the infinity-norm of the outputs, i.e.,

0, ifi#£j
ri={ " Hl] e
MG: (00T -/
where j;(1¥g) is the prediction of the i*h measurement

obtained from the model using the nominal values of
the parameter 9. Once this value of P is determined,
it can be adjusted to give different weights to different
output channels.
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Optimization
A vector of optimal parameters Y is obtained by
solving the following problem:

A~

¥ = argming H (V) (23)
subject to I < 9y < Pa®
ﬁgun S 192 S ﬂgnaz

,192’11“’1/ S 19’[1 S ,192’11(1.%

where the cost function H (1) is given in Eqn. 21 and
n gives the total number of parameters, in this case
n =19.

Most conventional tools used for optimization use
the gradient and possibly the Hessian information of
the cost function to arrive at a local minimum. How-
ever these methods are very time consuming if there
are many variables to be optimized or if the cost func-
tion evaluations are computationally expensive. If the
number of parameters increases, the number of func-
tion evaluations required to compute the gradient also
increases. Moreover, the chance of a solution converg-
ing to a local minimum also increases with the number
of parameters to be optimized. For the problem at
hand, which has 19 parameters, it was found that the
gradient based approach was not practical. For this
reason, the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) method was used to minimize the
cost function.

Simultaneous Perturbation Stochastic Approximation

The SPSA is a tool for optimization without the
use of costly gradient computations. This method is
extremely useful in cases where there are many pa-
rameters to be optimized. Spall':? describes the SPSA
algorithm and gives some examples where this method
proves to be very efficient. Spall® gives the theoretical
and numerical properties of the algorithm and proves
its convergence in a stochastic sense. Sadegh” and
Wang and Spall® describe how the SPSA can be used
for constrained optimization as well. The rest of this
section is devoted to a brief explanation of the SPSA
algorithm, which according to Spall® has the following
feature:

One properly chosen simultaneous ran-
dom change in all the variables in a problem
provides as much information for optimiza-
tion as a full set of one-at-a-time changes of
each variable.

Consider a cost function H dependent on parame-
ters ¥. The objective is to minimize H(¥#) subject to
some constraints on the values of 9. The SPSA al-
gorithm minimizes the cost function H () by using
an approximation to the gradient, say ¢i(d¥). The

subscript k indicates the iteration number. The ap-
proximate gradient is computed using a properly cho-
sen perturbation vector Ay which is used in a central
difference scheme around the current value of the vari-
ables ;. Since a central difference scheme is used, two
cost function evaluations are required per iterations to
compute the approximation to the gradient. Once the
approximate gradient is computed the parameters are
updated and a new value of 1 is computed. Spall®
recommends one more cost function evaluation at this
point to check if the cost function at this new value
of 9 is less that the cost function using ;. Thus
there are three cost function computations at each it-
eration. The number of cost function evaluations per
iteration does not depend on the number of variables,
which makes this method very attractive for optimiza-
tion problems with several variables. However, the
drawback of this method is that there are several pa-
rameters in the algorithm that have to be tuned. These
will be clear when the algorithm is explained later.
However, Spall' gives guidelines on how to choose ini-
tial values for these parameters.
The basic algorithm? is as follows:

1. Initialization and coefficient selection. Set
counter index k = 1. Pick initial guess for 9
and non-negative coefficients a,c, A, a, and v in
the SPSA gain sequences a; = a/(A + k)* and
¢, = ¢/kY. The choice of gain sequences (aj and
¢y is critical to the performance of SPSA.

2. Generation of the simultaneous perturbation vec-
tor. Generate by Monte-Carlo a n-dimensional
random perturbation vector A where each of the
n components of Ay, i.e. Ay; are independently
generated from a zero mean probability distribu-
tion with finite inverse moments E(|A,;'|) for all
k,i. A simple and theoretically valid choice is to
use a Bernoulli 1 distribution with probability
1/2 for each +1 outcome. Note that the uniform
and normal distributions do not satisfy these con-
ditions. The Bernoulli +1 distribution was used
in this paper.

3. Cost function evaluations. Obtain two measure-
ments of the cost function H(-) based on the si-

multaneous perturbation around the current 9y, :
H(9 + e Ag) and H (¥ — e, Ag) with the ¢ and
Ay, from Steps 1 and 2.

4. Gradient approximation. Generate the simultane-
ous perturbAation approximation to the unknown
gradient g(d). That is,

oo HO + ek Ay) — HOy — cpAy) k2
2Ck

4 oF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-2118



where Ayg; is the ith component of the Aj vec-
tor; note that the common numerator in all the
p components of gk(ék) reflects the simultaneous
perturbations of all components in U in contrast
to the component-by-component perturbations in
the standard finite-difference approximation.

5. Updating 9 estimate. Use
Dpsr = V5, — angu ()

to update 191@ to a new value 1§k+1. If @kﬂ falls
outside the range of allowable values for ¥, then
project the updated 1§k+1 to the nearest boundary
and reassign this projected value as ¥j41. Math-

ematically we have, for every i = 1,...,n:
) D O™ < Dppy s < 0o
Opgr = § 07" if dpyr s <O
Imer i Gpyq > 9T

Modifications to this step may be needed to en-
hance the convergence of the algorithm. In par-
ticular the update could be blocked if the cost
function actually worsens after the “basic” update
in this step.

6. Iteration or termination. Return to Step 2 with
k+1replacing k. Terminate the algorithm if there
is little change in several iterates or if the max-
imum number of allowable iterations have been
reached.

The choice of various parameters of the algorithm
play an important role in the convergence of the algo-
rithm. Spall® suggests that o = 0.602 and v = 0.101
are practically effective and theoretically valid choices.
Hence these values were used in this paper as well. The
value of A is chosen to be about 10% of the maximum
iterations allowed. The maximum number of iterations
was chosen to be 100 and hence A was chosen to be
10. Spall? recommends that if the measurements are
(almost) error free, ¢ can be chosen as a small pos-
itive number. In this case it was chosen to be 0.01.
Spall? explains that the value of a should be chosen
such that the a/(A + 1) times the magnitude of ele-
ments of gg (190) is approximately equal to the smallest
of the desired change magnitudes among the elements
of ¥ in early iterations. For the problem at hand a = 1
gave good results. This value of a was chosen to ensure
that the components of ¥ during the iterations would
remain within the allowed bounds, viz. 9¢ . to 9% ..

min

Results

This section gives the results of parameter esti-
mation where all twelve initial conditions and seven
model parameters are determined (see Eqn. 19). These
parameters are estimated using SPSA. Forty cases

were run to determine a simple statistics for the es-
timated parameters. In each case the initial guesses
for the aerodynamic and apparent mass parameters
Y1, -+ , U7 are different. The initial guesses of the un-
known parameters were chosen randomly from a uni-
form distribution between the maximum and minimum
values allowed for these parameters. The following
bounds were used for the nondimensional parameters:

04<9 <1 0<¥<15
05<93<2 0<04<3
0<¥;<3 0<d<3
0<9; <3

The wind input used is taken from Junge’s thesis®
and it is shown in Figs. 7-8. The test data used con-
sists of the inertial positions and velocity shown as the
solid lines in Figs. 10-15

After running SPSA forty cases are obtained. Fig-
ure 9 shows the histogram of the prediction error (the
cost function). Over 80% of the cases attained a cost
function value between 5 and 8. Only two cases (the
last two bins) have a much higher cost function value,
indicating that for these cases SPSA did not converge
to a global minimum. Those cases should be removed
from further consideration as they are “outliers” that
result from a local (and not global) optimization.

Table 1 gives the results of parameter estimation
for the aerodynamic and apparent mass parameters,
91, -+ ,97. Simple statistics, computed after remov-
ing the outliers, are shown for each parameter. The
parameter estimation algorithm is successful when it
reduces the initial uncertainty in the parameters; i.e.,
when the standard deviation (STD) is reduced by the
algorithm. This is the case with the Cy offset (1) and
Cy scale factor (92) where the standard deviation of
the SPSA estimates is smaller than that of the initial
guesses. On the other hand, the standard deviation
of the C,, coefficient and the apparent mass scale fac-
tors did not decrease. This could be because the cost
function did not take into account the states corre-
sponding to the rotational motion, viz. p, q,r, ¢,0 and
1 since these measurements were not available. That
is, the moment coefficient scale factor and the appar-
ent mass terms do not seem to be identifiable from the
available trajectory data.

A single model may now be constructed using the
median values of the estimated parameters from Ta-
ble 1. Figures 10-15 give the measured and simulated
position and velocity data of the system using the me-
dian parameter values given in Table 1. Figs. 16-17
give the trajectory of the parachute on the X — Y
(ground) plane and in 3D space respectively.

Figures 18-23 give the state estimation errors. The
position errors fall within two parachute lengths at
all times (one parachute length = 98.46ft). Finally,
Fig. 24 gives the correlation between the input X-
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Table 1

Results of Parameter Estimation.

Parameter Initial Guess Estimate (using SPSA)
Mean | Median | STD | Mean | Median | STD |
C, offset 0.7267 | 0.6916 | 0.1795 | 0.6249 | 0.6743 | 0.0893
Cy scale factor | 0.5718 | 0.5293 | 0.4373 | 0.0978 | 0.0270 | 0.1244
Cy, scale factor | 1.2745 | 1.2542 | 0.4214 | 1.2702 | 1.2548 | 0.4234
Ay scale factor | 1.5360 | 1.7042 | 0.7553 | 1.5047 | 1.4718 | 0.7943
Aj1s scale factor | 1.5910 | 1.6353 | 0.8996 | 1.5091 | 1.4677 | 0.8690
A3z scale factor | 1.5833 | 1.6369 | 0.6903 | 1.5871 | 1.5594 | 0.7169
Ass scale factor | 1.6331 | 1.8531 | 0.8751 | 1.6793 | 1.7241 | 0.9011
wind (see Fig. 7) and the output error (see Fig. 18). Acknowledgment

In this figure we observe the correlation between the
position error and the input wind velocity. This cor-
relation leads to the conclusion that there is scope for
improvement of the present model.

Conclusions

An algorithm was developed to estimate the param-
eters of parachute dynamic models. The algorithm
is based on the constrained SPSA method, which is
capable of optimizing any number of parameters in
reasonable time. This is because the number of cost
function evaluations needed to estimate the gradient
is independent of the number of parameters to be op-
timized.

The algorithm was applied to the model of a G-12
parachute developed at NPS.%** The match between
the estimated and measured position has been good
and the error was always less than two parachute
lengths. However, it is clear that the parameters asso-
ciated with rotational motion (e.g. C,) could not be
estimated. In principle, this could be due to a lack of
measurements of body rates or Euler angles.

The apparent mass coefficients are also not identifi-
able from the available test data. From the force and
moment equations, Eqns. 1 and 2, one may deduce
that the apparent mass coefficients would be identifi-
able only if the accelerations are high enough so that
the effect of the apparent mass is visible in the mea-
sured states. This was not the case in this particular
test.

Future parameter estimation work would require
rotational and attitude data to estimate moment co-
efficient and apparent mass. Also, the uncertainty in
apparent mass coefficients would be reduced if the ac-
celerations during the test are high. Test data with
relatively large and persistent variations of the angle
of attack (total and in longitudinal plane) and side-slip
angle would be useful to accurately characterize the
variations of the moment and force coefficients with
these angles. Finally, future work should make use of
refined (controlled) parachute models as recently ob-
tained by Dobrokhodov et al.*

The authors are grateful to Rick Howard, Isaac
Kaminer, J. Johnson, Christopher Junge, O. Yaki-
menko, and V. Dobrokhodov from NPS and to Scott
Dellicker from the US Army Yuma Proving Ground
for their help with questions about parachute dynamic
models and test data. This work was performed with
funding from Naval Postgraduate School under con-
tract Nos. N00244-00-P-3258 and N00244-01-P-2540.

R,=21.44 ft

Canopy

10.72 ft 18.04 ft

| = 46.49 ft 71.34ft
’ ,,,,,,,,,, -
PMA

Payload

Fig. 1 G-12 parachute dimensions (not to scale).

6 OoF 11

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 2003-2118



Fig. 2
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Fig. 11 Y-position.
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Fig. 14 Y-velocity.
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Error in Y-position
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Fig. 21 Error in X-velocity.
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Fig. 22 Error in Y-velocity.
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Fig. 23 Error in Z-velocity.
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