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A Diagonal Recurrent Neural Network-Based
Hybrid Direct Adaptive SPSA Control System

Xiao D. Ji and Babajide O. Familoni

Abstract—A direct adaptive simultaneous perturbation stochastic ap-
proximation (DA SPSA) control system with a diagonal recurrent neural
network (DRNN) controller is proposed. The DA SPSA control system
with DRNN has simpler architecture and parameter vector size that
is smaller than a feedforward neural network (FNN) controller. The
simulation results show that it has a faster convergence rate than FNN
controller. It results in a steady-state error and is sensitive to SPSA
coefficients and termination condition. For trajectory control purpose,
a hybrid control system scheme with a conventional PID controller is
proposed.

Index Terms—Diagonal recurrent neural network (DRNN), neural
network controller (NNC), simultaneous perturbation stochastic approx-
imation (SPSA).

I. INTRODUCTION

Nonlinear adaptive control system design is a challenge in nonlin-
ear control system theory. In general, one may use neural networks
(NN) to identify and/or control unknown and/or uncertain nonlinear
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Fig. 1. Block diagram of the DA SPSA neural network-based control system.

systems. To accomplish this, one needs to train (usually, offline)
an inverse neural network as a controller. This is generally difficult
since the system is unknown. An ideal scheme is a direct adaptive
(DA) neural network control system. Spall described a generalized
NN based on the simultaneous perturbation stochastic approximation
(SPSA) approach to estimate the gradient of the performance function
of an unknown nonlinear system [1]. Such a direct adaptive SPSA
approach does not require any prior knowledge of the unknown
system and does not need a separate training phase. An SPSA direct
adaptive control system will converge to an optimal neural network
parameter set, if it exists [3]. The NN-based SPSA approach as
discussed in [2] and [3] uses a forward neural network (FNN) as
the controller. The parameter vector size, in general, is large. For
example, a network which contains four layers, two inputs, one out-
put, with two hidden layers containing 20 and 10 nodes, respectively
(denoted as@42;20;10;1), has 280 elements in the parameter vector.
Other things being equal, its increased computational cost results in
a slow performance measurement period (i.e., sampling period), and
the performance measurement period is very important for a real-time
control application.

As is well known, a recurrent neural network (RNN) has some
advantages over FNN such as faster convergence, more accurate
mapping ability, etc., but it is difficult to apply the gradient-descent
method to update the neural network weights in RNN [4]. Kuet
al. [5], [6] proposed the DRNN scheme that captures the dynamic
behavior of a system and, since it is not fully connected, training
is expected to be much faster than RNN. DRNN with time delay
has RNN behavior but simple connections and is easy to use when
applying the gradient-descent method. Therefore, in this paper, a
diagonal recurrent neural network (DRNN) is employed in a DA
SPSA control system. Simulation results are compared with those of
the FNN SPSA scheme. These results also show that in general, after
the SPSA process, the fixed DA SPSA neural network-based control
results in a steady-state error because of the finite sample constraint
of the SPSA approach. To improve the control performance, a
conventional PID controller was employed to form a hybrid DA
SPSA scheme. The proposed hybrid DA SPSA control system was
examined by simulation and showed good performance.

II. SPSA BACKGROUND

Consider the problem of finding a root�� of the gradient equation

g(�) �
@L(�)

@�
= 0 (1)

for some differentiable cost functionL : Rp
! R1. There

are many methods for finding��. In the case whereL is
observed in the presence of noise, an SA algorithm of the generic

0018–9286/99$10.00 1999 IEEE



1470 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 7, JULY 1999

Fig. 2. System output as a function of output measurements using SPSA with a@
4
2;20;10;1 FNN as NNC. The solid line denotes the actual system

output yp, while the dotted line denotes the desired system output,yd.

Kiefer–Wolfowitz/Blum-type is appropriate [7], [8]. It is based on
finite difference methods that require2p (noisy) measurements ofL
at each iteration. The estimated̂� at the(k + 1)th iteration is

�̂k+1 = �̂k � akĝk(�̂k) (2)

whereĝk(�) is the estimated gradient at thekth iteration, and the gain
sequences are calculated byak = a(k + A)��, wherea; A, and�
are nonnegative coefficients [9].

In the SPSA method,̂gk(�) is estimated by the “simultaneous
perturbation” method as follows. Let�k 2 Rp be a vector ofp mu-
tually independent mean-zero random variablesf�k1;�k2; � � ��kpg

satisfying certain important conditions [1], [7]. Furthermore, let
f�kg be a mutually independent sequence with�k independent of
�̂0; �̂1; � � � �̂k. We make two measurements

y
(+)
k = L(�̂k + ck�k) + "

(+)
k (3a)

y
(�)
k = L(�̂k � ck�k) + "

(�)
k (3b)

where"(+)k and"(�)k represent measurement noise terms that satisfy

E "
(+)
k � "

(�)
k fk;�k = 0 a.s.8k

and wherefk � f�̂0; �̂1; � � � �̂kg. With a gain sequenceck =

c(k+1)� , wherec and are nonnegative coefficients, the estimation
of g(�) at thekth iteration is

ĝ(�̂k) =

y �y

2c �

� � �

� � �
y �y

2c �

: (4)

The members off�kg are chosen here with a Bernoulli�1 dis-
tribution with a probability of1=2 for each outcome. The name
“simultaneous perturbation” as applied to this method arises from the
fact that all elements of thê�k vector are being varied simultaneously.
If there is little change in several successive iterations, the algorithm

is terminated. The last iteratê�k is designated an estimate of the
optimum ��. Note that this estimate only needs two measurements
of L instead of2p in the usual finite difference approximation.

Reference [1] showed that under certain conditions the bias inĝk(�)

as an estimate ofg(�) goes to zero ask ! 1, and �̂k converges
almost surely (a.s.) to��. Reference [9] has already described the
basic steps for implementing SPSA. Pragmatic and theoretically valid
values for� and are 0.602 and 0.101, respectively. The value of
c can be set at a level approximately equal to the standard deviation
of the measurement noise iny(�). The value fora is typically found
by experimentation, usually starting at a value of one and decreasing
or increasing this value if, respectively, the algorithm seems to be
behaving erratically or too conservatively [9]. Adjustments toa and
c can be made by monitoring the first few iterations on the problem
of interest or by testing the algorithm on a similar (perhaps reduced
dimension) problem.

III. D IRECT ADAPTIVE SPSA CONTROL SYSTEM WITH DRNN

References [2] and [3] proposed two kinds of adaptive control
systems with SPSA algorithm: direct adaptive control and self-tuning
adaptive control. When virtually nothing is known about the plant, the
direct approximate or adaptive (DA) control approach is appropriate
but the self-tuning adaptive control (STA) requires that some prior
information exist about the plant. Fig. 1 shows block diagrams of the
DA scheme employed in our study.

An unknown nonlinear plant,y(k+1) = 0:8�sin(2y(k))+1:2�
u(k), previously employed by other authors, was used as the test
plant in this study [4], [10]. The desired plant output is a sinusoidal
wave. FNN and DRNN neural network controllers were employed
for comparison purposes. In both cases, thetanh(�) function was
employed as a sigmoidal function and each iteration involved two
measurements (samplings).

In the FNN case, the size of the parameter vector�̂ is p = 280
with biases in hidden layers only. The SPSA algorithm with FNN
needs 250 multiplication operations, 280 addition operations, and 30
sigmoidal function calculations for eachy measurement. Simulation
results show that the FNN with SPSA takes longer to simulate
each measurement and the plant output converges slower than the
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Fig. 3. System output as a function of output measurements using SPSA with a@
3

2;5;1 DRNN as NNC. The solid line denotes the actual system output
yp, while the dotted line denotes the desired system output,yd.

Fig. 4. A hybrid control scheme: DA SPSA neural network-based control system with PID compensator.

DRNN with SPSA does. In Fig. 2, the first 1000 measurements of
a simulation with the SPSA coefficients� = 0:602;  = 0:101;
a = 0:775; and c = 0:1 are shown. The termination condition was
k��k < 0:01 for 100 successive measurements.

In the DRNN case, using the same notation as the FNN case,
the NNC is @32;5;1, and the size of the parameter vector�̂ is
p = 25 with biases. The SPSA algorithm with DRNN needs 20
multiplication operations, 20 addition operations, and 5 sigmoidal
function calculations for each measurement. Different configurations
of DRNN (@32;7;1;@

3

2;9;1) were investigated and the results show no
significant difference. Therefore, we choose the simplest one as the
appropriate one in our study. We performed a simulation of the DRNN
case with the same termination condition as in the FNN case. After
1500th measurements, the system satisfied the requisite condition and
the SPSA was terminated. Since FNN and DRNN have different
net architectures with different parameters, it is difficult to compare
their convergence speeds directly, but the computational cost for each
measurement shows that the DRNN converges faster than the FNN.
Fig. 3 shows the final results of the DRNN system after the SPSA. As
pointed out in [11], there are steady-state errors in both cases, with
the DRNN system having a larger steady error than the FNN system.

IV. A H YBRID DIRECT ADAPTIVE SPSA CONTROL SYSTEM

As mentioned above, after the SPSA algorithm the direct adaptive
SPSA control system may have a steady-state error due to finite-
sample considerations and limitations of the NN structure. Thus, at
termination, the SPSA neural network-based controller has converged
nearly to the optimal equilibrium point in the parameter space, and

the system output is close to the desired system output. Therefore, at
this point a linear controller was employed to compensate for the
error. The hybrid control scheme shown in Fig. 4 was proposed.
For the trajectory control case, a conventional PID controller may
be connected to the fixed SPSA neural network-based controller in
parallel after the SPSA algorithm. The control force then becomes
u = un + uc whereun is the fixed SPSA neural network controller
output anduc is the PID compensator output. The conventional PID
algorithm isuc(k) = b0 � e(k) + b1 � e(k � 1) + b2 � e(k � 2)+
uc(k � 1), where e(k) is the error signal andb0; b1, and b3
are designed constants. In the presented case, we implemented the
proportional component of the PID by settingb0 = 0:19, and
b1 = b2 = 0.

Figs. 5 and 6 show the simulation results of this proposed hybrid
control scheme. The SPSA neural network-based controllers in both
cases have the same SPSA algorithm coefficients (� = 0:602;
 = 0:101; a = 0:775, andc = 0:1) but with different termination
conditions. Fig. 5 shows the simulation result of the proposed hybrid
control system with termination conditionk��k < 0:0005 for
100 successive measurements. The system satisfied the termination
condition after 8062 measurements with zero initial parameter vector.
Fig. 6 shows the simulation result of the proposed hybrid control
system with termination conditionk��k < 0:001 for 50 successive
measurements. The termination point number is the 1534 measure-
ments with zero initial parameter vector. These simulation results
show that with the proposed hybrid control scheme the termination
condition of the neural network-based SPSA DA control system may
be relaxed while reaching almost the same control performance.
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Fig. 5. System output of the hybrid DA SPSA control system after SPSA operation. SPSA operation met the termination condition(k��k < 0:0005
for 100 successive measurements) at 8062 measurements. The solid line denotes the actual system outputyp, while the dotted line denotes the desired
system output,yd for measurements 8062 to 8512.

Fig. 6. System output of the hybrid DA SPSA control system after SPSA operation. SPSA operation met the termination condition(k��k < 0:001
for 50 successive measurements) at 1534 measurements. The solid line denotes the actual system outputyp, while the dotted line denotes the desired
system output,yd for measurements 1534 to 1984.

V. CONCLUSION

This short study confirms that the SPSA approach is appropriate for
direct adaptive control scheme in the sense of statistical modeling and
control. It can be applied to an unknown nonlinear system without the
need to construct either a forward or an inverse model of the system.
The DA SPSA system is stable and converges to an optimal state
under certain conditions. The numerical experiments in this study
suggest that use of DRNN for SPSA controller has the advantages of
a simpler network architecture, reduced size of the parameter vector,
and faster convergence rate than FNN controller.

Our study showed that for the trajectory control problem, SPSA has
a steady-state error because of the finite iteration number. A good per-
formance after SPSA also depends on the termination condition. The

risk of reaching a local minimum is inherent in most realistic adaptive
estimation schemes and is not unique to SPSA. Although such local
minima may be good enough for certain practical applications, the
initial parameter vector must be close to the optimal parameter vector
if it is necessary to avoid being stuck in a local minimum. The
unknown global optimal parameter vector may be found using the
SPSA alone, but system performance may possibly be improved
by combining it with other methods (such as genetic algorithm, AI
control, knowledge-based, etc.) as upper level control components.

Although only a proportional controller was implemented in this
study, we suggest that the performance of this hybrid DA SPSA
control scheme may be improved with a conventional PID controller
as compensator. It should improve the control performance and relax
the SPSA termination condition [12].




