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Abstract 
The Fisher information matrix summarizes the amount of information in the data relative 

to the quantities of interest.  There are many applications of the information matrix in modeling, 
systems analysis, and estimation, including confidence region calculation, input design, 
prediction bounds, and “noninformative” priors for Bayesian analysis.  This paper reviews some 
basic principles associated with the information matrix, presents a resampling-based method for 
computing the information matrix together with some new theory related to efficient 
implementation, and presents some numerical results.  The resampling-based method relies on an 
efficient technique for estimating the Hessian matrix, introduced as part of the adaptive 
(“second-order”) form of the simultaneous perturbation stochastic approximation (SPSA) 
optimization algorithm.  
 
Key words: Monte Carlo simulation; Cramér-Rao bound; simultaneous perturbation (SP); 
Hessian matrix estimation; antithetic random numbers. 
 
 
1.   INTRODUCTION 

The Fisher information matrix plays a central role in the practice and theory of 

identification and estimation. This matrix provides a summary of the amount of information in 

the data relative to the quantities of interest.  Some of the specific applications of the information 

matrix include confidence region calculation for parameter estimates, the determination of inputs 

in experimental design, providing a bound on the best possible performance in an adaptive 

system based on unbiased parameter estimates (such as a control system), producing uncertainty 

bounds on predictions (such as with a neural network), and determining noninformative prior 
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distributions (Jeffreys’ prior) for Bayesian analysis.  Unfortunately, the analytical calculation of 

the information matrix is often difficult or impossible.  This is especially the case with nonlinear 

models such as neural networks.  This paper describes a Monte Carlo resampling-based method 

for computing the information matrix.  This method applies in problems of arbitrary difficulty 

and is relatively easy to implement.  

 Section 2 provides some formal background on the information matrix and summarizes 

two key properties that closely connect the information matrix to the covariance matrix of 

general parameter estimates.  This connection provides the prime rationale for applications of the 

information matrix in the areas of uncertainty regions for parameter estimation, experimental 

design, and predictive inference.  Section 3 describes the Monte Carlo resampling-based 

approach.  Section 4 presents some theory in support of the method, including a result that 

provides the basis for an optimal implementation of the Monte Carlo method.  Section 5 

discusses an implementation based on antithetic random numbers, which can sometimes result in 

variance reduction.  Section 6 describes some numerical results and Section 7 gives some 

concluding remarks. 

 

2. FISHER INFORMATION MATRIX: DEFINITION AND NOTATION 
 

Suppose that the ith measurement of a process is zi and that a stacked vector of n such 

measurement vectors is Zn ≡ .  Let us assume that the general form for the joint 

probability density or probability mass (or hybrid density/mass) function for Zn is known, but 

that this function depends on an unknown vector θ.  Let the probability density/mass function for 

Zn be pZ(ζ|θ) where ζ (“zeta”) is a dummy vector representing the possible outcomes for Zn (in 

pZ(ζ|θ), the index n on Zn is being suppressed for notational convenience).  The corresponding 

likelihood function, say l(θ|ζ), satisfies  

1 2, ,...,[ T T T T
nz z z ]

l(θ|ζ) = pZ(ζ|θ).                                                          (2.1) 

With the definition of the likelihood function in (2.1), we are now in a position to present the 

Fisher information matrix.  The expectations below are with respect to the data set Zn .  

 The p × p information matrix Fn(θ) for a differentiable log-likelihood function is given 

by    
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log log( )n TE ⎛ ⎞
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⎝ ⎠

A A∂ ∂
⎟θ θ

∂θ ∂θ
F .                                              (2.2) 

In the case where the underlying data {z1, z2, …, zn} are independent (and even in many cases 

where the data may be dependent), the magnitude of Fn(θ) will grow at a rate proportional to n 

since log l (· ) will represent a sum of n random terms.  Then, the bounded quantity ( )n nθF  is 

employed as an average information matrix over all measurements.   

 Except for relatively simple problems, however, the form in (2.2) is generally not useful 

in the practical calculation of the information matrix.  Computing the expectation of a product of 

multivariate nonlinear functions is usually a hopeless task.  A well-known equivalent form 

follows by assuming that log l (· ) is twice differentiable in θ.  That is, the Hessian matrix 

2 log ( )( ) || T
∂

≡
∂ ∂

A θ ζ
θ ζ

θ θ
H  

is assumed to exist.  Further, assume that the likelihood function is “regular” in the sense that 

standard conditions such as in Wilks (1962, pp. 408−411; pp. 418−419) or Bickel and Doksum 

(1977, pp. 126−127) hold.  One of these conditions is that the set {ζ: l(θ|ζ) > 0} does not depend 

on θ.  A fundamental implication of the regularity for the likelihood is that the necessary 

interchanges of differentiation and integration are valid.  Then, the information matrix is related 

to the Hessian matrix of log l (· ) through: 

[ ]( ) |( )n E n= −θ θF H Z θ .                                             (2.3) 

The form in (2.3) is usually more amenable to calculation than the product-based form in (2.2). 

  Note that in some applications, the observed information matrix at a particular data set Zn 

(i.e., −H(θ|Zn)) may be easier to compute and/or preferred from an inference point of view 

relative to the actual information matrix Fn(θ) in (2.3) (e.g., Efron and Hinckley, 1978).  

Although the method in this paper is described for the determination of Fn(θ), the efficient 

Hessian estimation described in Section 3 may also be used directly for the determination of 

H(θ|Zn) when it is not easy to calculate the Hessian directly.   
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3. RESAMPLING-BASED CALCULATION OF THE INFORMATION MATRIX 
 The calculation of Fn(θ) is often difficult or impossible in practical problems.  Obtaining 

the required first or second derivatives of the log-likelihood function may be a formidable task in 

some applications, and computing the required expectation of the generally nonlinear 

multivariate function is often impossible in problems of practical interest.  For example, in the 

context of dynamic models, Šimandl et al. (2001) illustrate the difficulty in nonlinear state 

estimation problems and Levy (1995) shows how the information matrix may be very complex in 

even relatively benign parameter estimation problems (i.e., for the estimation of parameters in a 

linear state-space model, the information matrix contains 35 distinct sub-blocks and fills up a 

full page). 

This section outlines a computer resampling approach to estimating Fn(θ) that is useful 

when analytical methods for computing Fn(θ) are infeasible.  The approach makes use of a 

computationally efficient and easy-to-implement method for Hessian estimation that was 

described in Spall (2000) in the context of optimization.  The computational efficiency follows 

by the low number of log-likelihood or gradient values needed to produce each Hessian estimate.  

While there is no optimization here per se, we use the same basic simultaneous perturbation (SP) 

formula for Hessian estimation (this is the same SP principle given earlier in Spall, 1992, for 

gradient estimation). However, the way in which the individual Hessian estimates are averaged 

differs from Spall (2000) because of the distinction between the problem of recursive 

optimization and the problem of estimation of Fn(θ).  

 The essence of the method is to produce a large number of SP estimates of the Hessian 

matrix of log l(⋅) and then average the negative of these estimates to obtain an approximation to 

Fn(θ).  This approach is directly motivated by the definition of Fn(θ) as the mean value of the 

negative Hessian matrix (eqn. (2.3)).  To produce the SP Hessian estimates, we generate 

pseudodata vectors in a Monte Carlo manner.  The pseudodata are generated according to a 

bootstrap resampling scheme treating the chosen θ as “truth.”  The pseudodata are generated 

according to the probability model pZ(ζ|θ) given in (2.1).  So, for example, if it is assumed that 

the real data Zn are jointly normally distributed, N(μ(θ), Σ(θ)), then the pseudodata are generated 

by Monte Carlo according to a normal distribution based on a mean μ and covariance matrix Σ 
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evaluated at the chosen θ.  Let the ith pseudodata vector be Zpseudo(i); the use of Zpseudo without 

the argument is a generic reference to a pseudodata vector.  This data vector represents a sample 

of size n (analogous to the real data Zn) from the assumed distribution for the set of data based on 

the unknown parameters taking on the chosen value of θ.  

Hence, the basis for the technique is to use computational horsepower in lieu of 

traditional detailed theoretical analysis to determine Fn(θ).  Two other notable Monte Carlo 

techniques are the bootstrap method for determining statistical distributions of estimates (e.g., 

Efron and Tibshirani, 1986; Lunneborg, 2000) and the Markov chain Monte Carlo method for 

producing pseudorandom numbers and related quantities (e.g., Gelfand and Smith, 1990).  Part 

of the appeal of the Monte Carlo method here for estimating Fn(θ) is that it can be implemented 

with only evaluations of the log-likelihood (typically much easier to obtain than the customary 

gradient or second derivative information).  Alternatively, if the gradient of the log-likelihood is 

available, that information can be used to enhance performance.    

 The approach below can work with either log l (θ | Zpseudo) values (alone) or with the 

gradient g(θ | Zpseudo) ≡ pseudolog ( )|∂ θ Zl ∂θ  if that is available. The former usually corresponds 

to cases where the likelihood function and associated nonlinear process are so complex that no 

gradients are available.  To highlight the fundamental commonality of approach, let G(θ|Zpseudo) 

represent either a gradient approximation (based on log l (θ | Zpseudo) values) or the exact gradient 

g(θ | Zpseudo).  Because of its efficiency, the SP gradient approximation is recommended in the 

case where only log l (θ | Zpseudo) values are available (see Spall, 2000).   

 We now present the Hessian estimate.  Let ˆ
kH  denote the kth estimate of the Hessian 

( )⋅H  in the Monte Carlo scheme.  The formula for estimating the Hessian is: 

1 1 1 1 1 1
1 2 1 2

ˆ 1 , , , , , ,2 2 2
− − − − − −⎧ ⎫δ δ⎛ ⎞⎪ ⎪⎡ ⎤ ⎡= Δ Δ Δ + Δ Δ Δ⎨ ⎬⎜ ⎟⎣ ⎦ ⎣⎝ ⎠⎪ ⎪⎩ ⎭

… …
T

k k
k k k kp k k kp

G GH ⎤⎦

k+θ Δ Z

,                  (3.1) 

where  ≡ G  kδG pseudo( | ) − pseudo( | )k θ − ΔG Z  and the perturbation vector Δk ≡ 

[Δk1, Δk2,…, Δkp]
T is a mean-zero random vector such that the {Δkj} are “small” symmetrically 

distributed random variables that are uniformly bounded and satisfy ( )1| kjE Δ |  < ∞ uniformly 

in k, j.  This latter condition excludes such commonly used Monte Carlo distributions as uniform 
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and Gaussian.  Assume that |Δkj| ≤ c for some small c > 0.  In most implementations, the {Δkj} 

are i.i.d. across k and j.  In implementations involving antithetic random numbers (see Section 5), 

Δk and Δk+1 may be dependent random vectors for some k, but at each k the {Δkj} are i.i.d. (across 

j).  Note that the user has full control over the choice of the Δkj distribution.  A valid (and simple) 

choice is the Bernoulli ± c distribution (it is not known at this time if this is the “best” 

distribution to choose for this application).   

 The prime rationale for (3.1) is that ˆ
kH  is a nearly unbiased estimator of the unknown H.  

Spall (2000) gives conditions such that the Hessian estimate has an O(c2) bias (the main such 

condition is smoothness of log l (θ | Zpseudo(i)), as reflected in the assumption that g(θ | Zpseudo(i)) is 

thrice continuously differentiable in θ). Proposition 1 in Section 4 below considers this further in 

the context of the resulting (small) bias in the estimate of the information matrix.   

 The symmetrizing operation in (3.1) (the multiple 1/2 and the indicated sum) is 

convenient to maintain a symmetric Hessian estimate.  To illustrate how the individual Hessian 

estimates may be quite poor, note that ˆ
kH  in (3.1) has (at most) rank two (and may not even be 

positive semi-definite).  This low quality, however, does not prevent the information matrix 

estimate of interest from being accurate since it is not the Hessian per se that is of interest.  The 

averaging process eliminates the inadequacies of the individual Hessian estimates.    

 The main source of efficiency for (3.1) is the fact that the estimate requires only a small 

(fixed) number of gradient or log-likelihood values for any dimension p.  When gradient 

estimates are available, only two evaluations are needed.  When only log-likelihood values are 

available, each of the gradient approximations pseudo( |k )+θ ΔG Z  and  

requires two evaluations of log l (· | Zpseudo).  Hence, one approximation 

pseudo( |k−θ ΔG Z )

ˆ
kH  uses four log-

likelihood values.  The gradient approximation at the two design levels is:  

1
1
1
2

pseudo pseudo
pseudo

1

log log .
2 .

.

( | ) ( | )
( | )

k

k

k k k k
k

kp

−

−

−

⎡ ⎤Δ
⎢ ⎥
⎢ ⎥Δ
⎢ ⎥± + − ± − ⎢± =
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥Δ⎢ ⎥⎣ ⎦

�

�
� �A A

�

Z Z
G Z

θ Δ Δ θ Δ Δ
θ Δ ⎥

⎥
,     (3.2) 
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with  generated in the same statistical manner as Δk , but independently 

of Δk . In particular, choosing  as independent Bernoulli ± c random variables is a valid—but 

not necessary—choice. (With small c > 0, note that in the Bernoulli case, (3.2) has an easy 

interpretation as an approximate directional derivative of log l in the direction of a given vector 

of ± 1 elements at the point θ + Δk or θ − Δk .)   

[ 1 2, ,...., T
k k k kp= Δ Δ Δ� � � �Δ ]

kiΔ�

 Given the form for the Hessian estimate in (3.1), it is now relatively straightforward to 

estimate Fn(θ).  Averaging Hessian estimates across many Zpseudo(i) yields an estimate of  

pseudo ( )( | )[ ]E iθH Z  = −Fn(θ) 

to within an O(c2) bias (the expectation in the left-hand side above is with respect to the 

pseudodata).  The resulting estimate can be made as accurate as desired through reducing c and 

increasing the number of ˆ
kH  values being averaged.  The averaging of the ˆ

kH  values may be 

done recursively to avoid having to store many matrices.  Of course, the interest is not in the 

Hessian per se; rather the interest is in the (negative) mean of the Hessian, according to (2.3) (so 

the averaging must reflect many different values of Zpseudo(i)). 

Let us now present a step-by-step summary of the above Monte Carlo resampling 

approach for estimating Fn(θ).  Let  represent the kth perturbation vector for the ith 

realization (i.e., for Zpseudo(i)).  Figure 1 is a schematic of the steps. 

( )i
kΔ

 

Monte Carlo Resampling Method for Estimating Fn(θ) 

Step 0.  (Initialization)  Determine θ, the sample size n, and the number of pseudodata vectors 

that will be generated (N).  Determine whether log-likelihood log l(⋅) or gradient 

information g(⋅) will be used to form the ˆ
kH  estimates.  Pick the small number c in the 

Bernoulli ± c distribution used to generate the perturbations ( )i
kjΔ ; c = 0.0001 has been 

effective in the author’s experience (non-Bernoulli distributions may also be used 

subject to the conditions mentioned below (3.1)).  Set i = 1. 

Step 1.  (Generating pseudodata)  Based on θ given in step 0, generate by Monte Carlo the ith 

pseudodata vector of n pseudo-measurements Zpseudo(i).  
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Step 2.  (Hessian estimation)  With the ith pseudodata vector in step 1, compute M ≥ 1 Hessian 

estimates according to the formula (3.1).  Let the sample mean of these M estimates be 
( )iH  = ( )

pseudo ( )( | )i iH Zθ .  (As discussed in Section 4, M = 1 has certain optimality 

properties, but M > 1 is preferred if the pseudodata vectors are expensive to generate 

relative to the Hessian estimates forming the sample mean ( )iH .)  Unless using 

antithetic random numbers (Section 4), the perturbation vectors { }( )i
kΔ  should be 

mutually independent across realizations i and along the realizations (along k).  (In the 

case where only log l (θ | Zpseudo) values are available and SP gradient approximations 

are being used to form the G(⋅) values, the perturbations forming the gradient 

approximations, say { }( )i
kΔ , should likewise be mutually independent.)  

Step 3.  (Averaging Hessian estimates)  Repeat steps 1 and 2 until N pseudodata vectors have 

been processed.  Take the negative of the average of the N Hessian estimates ( )iH  

produced in step 2; this is the estimate of Fn(θ).  (In both steps 2 and 3, it is usually 

convenient to form the required averages using the standard recursive representation of 

a sample mean in contrast to storing the matrices and averaging later.)  To avoid the 

possibility of having a non-positive semidefinite estimate, it may be desirable to take 

the symmetric square root of the square of the estimate (the sqrtm function in 

MATLAB is useful here).  Let , ( )M NF θ  represent the estimate of Fn(θ) based on M 

Hessian estimates in step 2 and N pseudodata vectors.  
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Figure 1.  Schematic of method for forming estimate , ( )M NF θ . 

 

4. THEORETICAL BASIS FOR IMPLEMENTATION 

 There are several theoretical issues arising in the steps above.  One is the question of 

whether to implement the Hessian estimate-based method from (3.1) rather than a 

straightforward averaging based on (2.2).  Another is the question of how much averaging to do 

in step 2 of the procedure in Section 3 (i.e., the choice of M).  We discuss these two questions, 

respectively, in Subsections 4.1 and 4.2.  A final question pertains to the choice of Hessian 

estimate, and whether there may be advantages to using a form other than the SP form above.  

This is discussed in Subsection 4.3.  To streamline the notation associated with individual 

components of the information matrix, we generally write F(θ) for Fn(θ).   

 

4.1 Lower Variability for Estimate Based on (3.1) 

 The defining expression for the information matrix in terms of the outer product of 

gradients (eqn. (2.2)) provides an alternative means of creating a Monte Carlo-based estimate.  In 

particular, at the θ of interest, one can simply average values of g(θ | Zpseudo(i))g(θ | Zpseudo(i))T for 

a large number of Zpseudo(i).  Let us discuss why the Hessian-based method based on the 
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alternative definition (2.3) is generally preferred.  First, in the case where only log l (⋅) values are 

available (i.e., no gradients g(⋅)), it is unclear how to create an unbiased (or nearly so) estimate of 

the integrand in (2.2).  In particular, using the log l (⋅) values to create a near-unbiased estimate of 

g(⋅) does not generally provide a means of creating an unbiased estimate of the integrand g(⋅)g(⋅)T 

(i.e., if X is an unbiased estimate of some quantity, X 

2 is not generally an unbiased estimate of 

the square of the quantity). 

Let us now consider the more subtle case where g(⋅) values are directly available. The 

argument below is a sketch of the reason that the form in (3.1) is preferred over a straightforward 

averaging of outer product values g(⋅)g(⋅)T (across Zpseudo(i)).  A more rigorous analysis of the 

type below would involve several applications of the Lebesgue dominated convergence theorem 

and some very messy expansions and higher moment calculations (we have not pursued this).  

The fundamental advantage of (3.1) arises because the variances of the elements in the 

information matrix estimate depend on second moments of the relevant quantities in the Monte 

Carlo average, while with averages of g(⋅)g(⋅)T the variances depend on fourth moments of the 

same quantities.  This leads to greater variability for a given number (N) of pseudodata.  To 

illustrate the advantage, consider the special case where the point of evaluation θ is close to a 

“true” value .  Further, let us suppose that both θ and ∗θ ∗θ  are close to the maximum likelihood 

estimate for θ at each data set Zpseudo(i), say  (i.e., n is large enough so that 

 ≈ ).  Note that  corresponds to a point where g(θ

pseudo
ˆ ( )(ML iZθ )

ML iZθ ∗θ )pseudo
ˆ ( )( ) pseudo

ˆ ( )(ML iZθ  | Zpseudo(i)) 

= 0.  Let us compare the variance of the diagonal elements of the estimate of the information 

matrix using the average of the Hessian estimates (3.1) and the average of outer products (it is 

not assumed that the analyst knows that the information matrix is diagonal; hence, the full matrix 

is estimated). 

 In determining the variance based on (3.1), suppose that M = 1.  The estimate , ( )M NF θ  is 

then formed from an average of N Hessian estimates of the form (3.1) (we see in Subsection 4.2 

that M = 1 is an optimal solution in a certain sense).  Hence, the variance of the jjth component 

of the estimate , ( )M NF θ  = 1, ( )N θF  is 

{ } (1, 1;
1 ˆvar ( ) varN jj H
N

=⎡ ⎤⎣ ⎦θF )jj                                            (4.1) 
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where  denotes the jjth element of 1;
ˆ

jjH 1Ĥ  = . Let O(⋅)(c2)  denote a random 

“big-O” term, where the subscript denotes the relevant randomness; for example,  

denotes a random “big-O” term dependent on Zpseudo(i) and Δ1 such that 

1 pseudo
ˆ ( )( | )iH Zθ

1
2

, ( )O cΔZ

1
2

, ( )O c cΔZ
2  is 

bounded almost surely (a.s.) as c → 0.  Then, by Spall (2000), the jjth element of  is   1Ĥ

1
21

1; ,
1

ˆ ( )jj jj j
jj

H H H O c
≠

Δ
= + +

Δ∑ A
A

A
ΔZ , 

where the pseudodata argument (and index i) and point of evaluation θ have been suppressed.  

Let us now invoke one of the assumptions above in order to avoid a hopelessly messy variance 

expression.  Namely, it is assumed that n is “large” and likewise that the points θ, , and 

 are close to one another, implying that the Hessian matrix is nearly a constant 

independent of Zpseudo(i) (i.e., log l (θ

∗θ

pseudo
ˆ ( )(ML iZθ )

 | Zpseudo(i)) is close to a quadratic function in the vicinity of 

θ); this is tantamount to assuming that n is large enough so that H(θ | Zpseudo(i)) ≈ − F(θ).  Hence, 

given the independence of the {Δ1j} and assuming the dominated convergence theorem applies to 

the  error term,  1
2

, ( )O cΔZ

( ) 2
1;

ˆvar ( )jj j
j

H F O
≠

≈ + 2c∑ A
A

                                               (4.2) 

where FjA denotes the jAth component of F(θ). 

Let us now analyze the form based on averages of g(⋅)g(⋅)T.  Analogous to (4.1), the 

variance of the jjth component of the estimate of the information matrix is 

( )21 var jg
N

,                                                            (4.3) 

where gj is the jth component of pseudo ( )( iθg Z ) .  From the mean value theorem, 

pseudo pseudo pseudo pseudo

pseudo

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ,

( ) ( ( ) ) (

( )

ML ML

ML

i i i

i

)i⎡ ⎤−⎣ ⎦

⎡ ⎤= − −⎣ ⎦

≈ −θ θ θ θ θ

θ θ θ

g Z g Z Z Z

Z

F

F
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where the approximation in the first line results from the assumption that H(θ | Zpseudo(i)) ≈ 

− F(θ).  Hence, in analyzing the variance of the jjth component of g(⋅)g(⋅)T according to (4.3), we 

have  

( ) ( )
2

2
,

1

ˆvar var
p

j j MLg F
=

⎧ ⎫⎡ ⎤⎪ ⎪≈ θ − θ⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭
∑ A A A
A

, 

where θA and ,
ˆ

MLθ A  are the Ath components of θ and .  From asymptotic 

distribution theory (assuming that the moments of  correspond to the moments 

from the asymptotic distribution), we have, 

pseudo
ˆ ( )(ML iθ Z )

)pseudo
ˆ ( )(ML iZθ

( )( )ˆ ˆ T
ML MLE ⎡ ⎤

⎣ ⎦− −θ θ θ θ  ≈ ; further, 1( )−∗θF

ˆ− MLθ θ  is (at least approximately) asymptotically normal with mean zero since θ ≈ .  Because 

E[g(⋅)g(⋅)T] = F(θ), the above implies 

∗θ

 
( ) ( ) ( )

( ) ( )

( )

2 22 2 2
, ,

1 1

2 22 2
, ,

1

44 2
,

1

2 2 2

1

4 2

1

ˆ ˆvar ( )

ˆ ˆ

ˆ ( )

( ) ( ) 2 ( )

3 ( )

[ ]

[ ]

p p

j j jm ML m ML m jj
m

p

j jm ML m ML m
m

p

j ML jj

p

j jm mm m
m
p

j

g F F E F

F F E

F E F

F F E E E

F E

= =

= ≠

=

= ≠

=

⎡ ⎤≈ θ − θ θ − θ −⎣ ⎦

⎡ ⎤= θ − θ θ − θ⎣ ⎦

⎡ ⎤+ θ − θ −⎣ ⎦

≈ +⎡ ⎤⎣ ⎦

+ −

∑ ∑

∑ ∑

∑

∑ ∑

∑

A A A
A

A A A
A A

A A A
A

A AA A
A A

A AA
A

θ

θ

θ θ θ

θ 2( ) ,[ ]jjF θ

2

 

 

 

(4.4)

where Ejm denotes the jmth component of F(θ)−1 and the last equality follows by a result in 

Mardia, et al. (1979, p. 95) (which is a generalization of the relationship that X ∼ N(0, σ2) implies 

E(X4) = 3σ4).   

Unfortunately, the general expression in (4.4) is unwieldy.  However, if we make the 

assumption that the off-diagonal elements in F(θ) are small in magnitude relative to the diagonal 

elements, then for substitution into (4.3), ( )2var jg  ≈ 22 jjF .  The corresponding expression for the 

(3.1)-based approach with substitution into (4.1) is ( )1;
ˆvar jjH  ≈ O(c2).  So, with small c, the 
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Hessian estimate-based method of (3.1) provides a more precise estimate for a given number (N) 

of pseudodata in the sense that variance of the jjth element of 1, ( )N θF  is 2( )O c N  while the 

corresponding variance of the jjth element of the method based on averages of g(⋅)g(⋅)T is 

approximately 22 jjF N .  (Note that each calculation of (3.1) requires two gradient values while 

each g(⋅)g(⋅)T uses only one gradient.  Equalizing the number of gradient values to 2N for each 

method reduces the g(⋅)g(⋅)T -based variance to 2
jjF N  at the expense of having the g(⋅)g(⋅)T -

based method take twice as many pseudodata as needed in 1, ( )N θF .)  

 

4.2 Optimal Choice of M 

It is mentioned in step 2 of the procedure in Section 3 that it may be desirable to average 

several Hessian estimates at each pseudodata vector Zpseudo.  We now show that this averaging is 

only recommended if the cost of generating the pseudodata vectors is high.  That is, if the 

computational “budget” allows for B Hessian estimates (irrespective of whether the estimates 

rely on new or reused pseudodata), the accuracy of the Fisher information matrix is maximized 

when each of the B estimates rely on a new pseudodata vector.  On the other hand, if the cost of 

generating each pseudodata vector Zpseudo is relatively high, there may be advantages to 

averaging the Hessian estimates at each Zpseudo (see step 2).  This must be considered on a case-

by-case basis.   

Note that B = MN represents the total number of Hessian estimates being produced (using 

(3.1)) to form , ( )M NF θ .  The two results below relate , ( )M NF θ  to the true matrix F(θ).  These 

results apply in both of the cases where G(θ | Zpseudo) in (3.1) represents a gradient approximation 

(based on log l (θ | Zpseudo) values) and where G(θ | Zpseudo) represents the exact gradient 

g(θ | Zpseudo).      

 

Proposition 1.  Suppose that g(θ | Zpseudo) is three times continuously differentiable in θ for 

almost all Zpseudo.  Then, based on the structure and assumptions of (3.1), , ( )M NE ⎡⎣ θF ⎤⎦  = F(θ) + 

O(c2). 
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Proof.  Spall (2000) shows that pseudo
ˆ( |kE H Z )  = pseudo( | )H Zθ  +  under the stated 

conditions on g(⋅) and Δk.  Because 

2( )O cZ

, ( )M NF θ  is simply a sample mean of ˆ
k−H  values, the result 

to be proved follows immediately.  Q.E.D. 

 

Proposition 2.  Suppose that the elements of { (1) (1)
1 ,..., ;MΔ Δ    

(2) (2)
1 ,..., ;....;MΔ Δ ( ) ( )

1 ,..., ;N N
MΔ Δ

}pseudo pseudo(1),..., ( )NZ Z  are mutually independent.  For a fixed B = MN, the variance of each 

element in , ( )M NF θ  is minimized when M = 1.  

Proof.  From step 2 in Section 3, ( )iH  = 1
1

ˆM
kkM −

=∑ H , where ˆ
kH  =  for all k.  

The hjth component of 

pseudo
ˆ ( )(k iH Z )

ˆ
kH  can be represented in generic form as ( )

pseudo, (( )i
hj k )f iZΔ , where 

 represents the p-dimensional perturbation vector used to form ( )i
kΔ ˆ

kH .  Note that   

( )
, pseudo

1 1 1

1 1 ˆ( ) ( )(
N N M

i
M N k

i i k
i

N MN= = =
= − = −∑ ∑∑F H H Zθ ) .                           (4.5) 

Let , ( )M N hj⎡⎣F θ ⎤⎦  denote the hjth element of , ( )M NF θ .  Because the { (1) (1)
1 ,..., ;MΔ Δ  

  

(2) (2)
1 ,..., ;....;MΔ Δ ( ) ( )

1 ,..., ;N N
MΔ Δ }pseudo pseudo(1),..., ( )NZ Z  are mutually independent, (4.5) 

implies that the variance of the hjth element is given by, 

 
{ } ( )

, pseudo2 2
1 1

( ) ( )
pseudo pseudo2 2

1 1

1var ( ) var , ( )

2 cov , ( ) , ( ) .

( )

( ), (

N M
i

M N hj khj
i k

N M
i i

hj hj mk
i m k m

f i
M N

)f i f i
M N

= =

= = <

⎡ ⎤=⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤+ ⎣ ⎦

∑∑

∑ ∑ ∑

θ Δ

Δ Δ

F Z

Z Z

 

 

(4.6)

Because the  are identically distributed and the Zpseudo(i) are identically distributed, the 

summands in the first multiple sum of (4.6) are identical and the summands in the second 

multiple sum are identical.  Further,   

( )i
kΔ
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{ }

( ) ( )
pseudo pseudo

( ) ( ) 2
pseudo pseudo

( ) ( ) 2
pseudo pseudo pseudo

( )
pseudo pseudo

cov , ( ) , ( )

, ( ) , ( )

, ( ) , ( ) ( )

, ( ) (

( ), ( )

( ) ( )

( ) ( )

( )

i i
hj hj mk

i i
hj hj m hjk

i i
hj hj m hjk

i
hj m

f i f i

E f i f i f

E E f i f i i

E E f i i

⎡ ⎤⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= −⎣ ⎦

=

Z Z

Z Z

Z Z Z

Z Z

Δ Δ

Δ Δ

Δ Δ

Δ

f

{ }( )2 2) ,hjf⎡ ⎤ −⎣ ⎦

 

 

 

 

 

(4.7)

where hjf  ≡ ( )
pseudo, (( i

hj k ))E f⎡⎣ ZΔ i ⎤⎦ .  Because E(X 
2) ≥ [E(X)]2 for any real-valued random 

variable X,  and because hjf  = { }( )
pseudo pseudo, ( ) (( )i

hj k )E E f i i⎡ ⎤⎣ ⎦Z ZΔ , the right-hand side of 

(4.7) is non-negative.  Hence, because MN is a constant (= B), the variance of , ( )M N hj⎡ ⎤⎣ ⎦F θ , as 

given in (4.6), is minimized when the second multiple sum on the right-hand side of (4.6) is zero.  

This happens when M = 1.  Q.E.D. 

 

4.3 Comparison of SP-Based Approach with Finite-Difference-Based Approach 

One issue related to the analysis above is whether other methods for Hessian estimation 

could be effectively used instead of the simultaneous perturbation method.  It is clearly not 

possible to answer this question for all possible existing or future methods for Hessian 

estimation, but it is possible to carry out some analysis relative to the standard finite-difference 

(FD)-based method.  The FD-based method is identical to the SP-based approach of Section 3 of 

the paper with the exception of using classical FD techniques for Hessian estimation; there is no 

need to consider M > 1 because all Hessian estimates along a realization at a given Zpseudo(i) 

would be identical.  For the analysis below, suppose that the variance of the hjth element of the 

deviation matrix, F(θ) − (− H(θ | Zpseudo)) = F(θ) +  H(θ | Zpseudo) (the difference between the 

information matrix and the negative Hessian), is 2
hjσ .  This analysis below represents a summary 

of the technical report, Spall (2005), available from the author upon request.   

If direct gradient values log∂ ∂θl  are available, the standard two-sided FD 

approximation requires two gradient values for each column of the Hessian; in contrast, the SP-

based approximation uses two gradient values for the full matrix.  In the case where only log l (· ) 

values are available, then the FD-based method uses O(p2) values in constructing one Hessian 
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estimate (a specific standard form based on double-differencing uses a total of 2p(p + 1) function 

values to approximate the ( 1)p p + 2  unique entries in the symmetric Hessian matrix; this 

contrasts with a total of four function values in the SP-based method).  Both of the FD- and SP-

based Hessian estimates will be biased to within an O(c2) error, where c is the width of the 

difference intervals or the maximum magnitude of the ( )i
kΔ A  perturbations.  Because c can be 

chosen arbitrarily small, we ignore this bias in the analysis below.   

First, suppose gradient values log∂ ∂θl  are available.  From Spall (2000 and 2003, p. 

199), it is fairly straightforward to show that the variance of an arbitrary element of an individual 

SP-based Hessian estimate is O(p) in general and O(1) in the special case where only O(p) of the 

elements in H(θ | Zpseudo) are non-zero (e.g., H is diagonal).  In the standard case of 2p gradient 

values for each FD approximation, we know that an SP-based estimate of F(θ) with M = 1 and N 

= N ′p uses the same number of log∂ ∂θl  values as the FD-based estimate.  Hence, when the 

same number of log∂ θl ∂  values are used in both estimates, the ratio of variance for an 

arbitrary SP-based element over the corresponding variance for FD-based element is O(1) in the 

general Hessian case or 1(O p)  in the special case where only O(p) of the elements in 

H(θ | Zpseudo) are non-zero.  Similar analysis applies when only log-likelihood values (no 

gradients) are available, likewise leading to an O(1) ratio in the general Hessian case or 1( )O p  

in the special case.  

Analysis of the O(1) ratio of variances in the general Hessian case shows that the SP-

based variance will be lower than the FD-based variance when 2
hjσ  is relatively large, M is small, 

and p is large.  Stronger results apply in the 1(O p)  special case; these results indicate that the 

SP-based variance is guaranteed to be lower than the FD-based variance for any  > 0 when M 

is small and p is sufficiently large.  Further, because each 

2
hjσ

2
hjσ  reflects the difference between the 

hjth element of an estimate (−H(θ | Z(n))) and truth (F(θ)), it is conjectured that the “typical” 2
hjσ  

will grow with increasing dimension.  To the extent that this conjecture is true, the efficiency of 

the SP-based method relative to the FD-based method becomes greater.  That is, the SP-based 

variance is guaranteed to be lower than the FD-based variance when M is small and p is 

sufficiently large for the general Hessian case.  
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5.  IMPLEMENTATION WITH ANTITHETIC RANDOM NUMBERS 

 Antithetic random numbers (ARNs) may sometimes be used in simulation to reduce the 

variance of sums of random variables.  ARNs represent Monte Carlo-generated random numbers 

such that various pairs of random numbers are negatively correlated.  Recall the basic formula 

for the variance of the sum of two random variables: var(X + Y) = var(X) + var(Y) + 2cov(X, Y).  

It is apparent that the variance of the sum can be reduced over that in the independent X, Y case if 

the correlation between the two variables can be made negative.  In the case of interest here, the 

sums will represent averages of Hessian estimates.  Because ARNs are based on pairs of random 

variables, it is sufficient to consider M = 2 (although it is possible to implement ARNs based on 

multiple pairs, i.e., M being some multiple of two).  ARNs are complementary to common 

random numbers, a standard tool in simulation for reducing variances associated with differences 

of random variables (e.g., Spall, 2003, Sect. 14.4). 

Unfortunately, ARNs cannot be implemented blindly in the hope of improving the 

estimate; it is often difficult to know a priori if ARNs will lead to improved estimates.  The 

practical implementation of ARNs often involves as much art as science.  As noted in Law and 

Kelton (2000, p. 599), it is generally useful to conduct a small-scale pilot study to determine the 

value (if any) in a specific application.  When ARNs are effective, they provide a “free” method 

of improving the estimates (e.g. Frigessi, et al., 2000, use them effectively to reduce the variance 

of Markov chain Monte Carlo schemes).  Let us sketch below how ARNs may be used towards 

reducing the variance of the information matrix estimate when g(⋅) values are directly available.  

As shown in Proposition 2 of Section 4, the variance of each element in , ( )M NF θ  is 

minimized when M = 1 given a fixed “budget” of B = MN Hessian estimates being produced 

(i.e., there is no averaging of Hessian estimates at each Zpseudo(i)).  This result depends on the 

perturbation vectors  being i.i.d.  Suppose now that for a given i, we consider M = 2 and 

allow dependence between the perturbation vectors at k = 1 and k = M = 2, but otherwise retain 

all statistical properties for the perturbations mentioned below (3.1) (e.g., mean zero, 

symmetrically distributed, finite inverse moments, etc.).   

( )i
kΔ

 To emphasize that we are considering dependent random perturbation vectors for k = 1 

and 2 and to simplify the subscript and superscript notation below, let us use the notation r and s 
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to denote the two successive perturbation vectors and suppress the pseudodata index i in most of 

the discussion below (i.e., r is analogous to ( )
1
iΔ  and s is analogous to ( )

2
iΔ  at a given i).  Let the 

hjth component of  be given by Hhj (recall Hhj = Hjh).  Then, by Spall (2000 and 

2003, p. 199), the hjth component of the estimate 

pseudo( | )θH Z

1Ĥ  =  when using direct 

gradient evaluations is   

1 pseudo
ˆ ( | )H Zθ

2
1; ,

1 1
2 2

ˆ ( )hj hj h j
j hj h

r rH H H H O c
r r≠ ≠

= + + +∑ ∑A A
A A

A A
Z r ,                               (5.1) 

where the pseudodata argument (and index i) has been suppressed in the Hessian terms and 

(analogous to Section 4) OZ,r(c2) denotes a random term dependent on Zpseudo and r.  The 

obvious analogue holds for k = 2 (i.e., for the element ) with elements of s replacing 

elements of r.  Hence, from (5.1), the average of the two elements needed in forming the hj 

element of 

2;
ˆ

hjH

H  = ( )iH  (step 2 of the algorithm in Section 3) is 

1; 2; 2
, ,

1 1
2 2

ˆ ˆ

2
( )hj hj

hj hj h j
j j h hj h

H H r s r sH   H H H O c
r s r s≠ ≠

+ ⎛ ⎞⎛ ⎞= = + + + + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠∑ ∑A A A A
A A

A A
Z r s       (5.2) 

(suppressing the pseudodata argument, once again).   

Given that the OZ,r,s(c2) term is negligible (recall that c is “small”), it is apparent from 

(5.2) that the variance of hjH  is driven by the middle two summation terms.  In particular, using 

the fact that r and s have the same moment and inverse moment distributional properties as Δk , 

the arguments in Spall (2000, p. 1851) show that if log l (· ) has bounded third derivatives in the 

vicinity of θ, then ( )pseudohjE H Z  =  (i.e., the dominated convergence 

theorem applies to the r and s contributions in the OZ,r,s(c2) term); the OZ(c2) error also holds for 

second moments of 

2
pseudo( | ) ( )hjH + ZZθ O c

hjH .  Hence,  

( ) 2
pseudo pseudo

1
4var var ( )hj h j

j j h hj h

r s r sH H H
r s r s≠ ≠

⎡ ⎤⎛ ⎞⎛ ⎞= + + + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑A A A A

A A
A A

ZZ Z O c .  (5.3) 

Unfortunately, it is generally impossible to make the non-OZ(c2) expression on the right-hand 

side of (5.3) small for all hj.  One reason is that the HhA terms are usually unknown (that is one of 
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the reasons for use of the Monte Carlo scheme!).  Another reason is that a choice of r and s that 

makes ( )pseudovar hjH Z  small for one combination of hj may have a contrasting effect for 

another hj.  For these reasons, some of the “art” associated with practical implementation of 

ARNs must be applied. 

 For motivation, note that in one special case ARNs provide near-perfect variance 

reduction (with only an inherent order c2 bias remaining).  In particular, consider p = 2.  If s1 = 

−r1 and s2 = r2, then     

( ) 2
11 pseudo 1 1 pseudo

1 1 1 11 1

22 2
12 pseudo

1 1
2

1
4

1
2

var var

var

,

( )

( )

( )

r s r sH H H
r s r s

r rH O c
r r

O c

≠ ≠

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

=

∑ ∑A A A A
A A

A A
Z

Z

Z

Z Z

Z

O c

 

( ) 2 21 1
22 pseudo 21 pseudo

2 2

1
2var var ( ) ( )r rH H O c O c

r r
⎡ ⎤⎛ ⎞= − + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Z ZZ Z , 

where the calculation for ( 22 pseudovar H Z )  follows in a manner analogous to the calculation of 

( )11 pseudovar H Z , and 

( ) 2
12 pseudo 1 2 pseudo

2 2 1 12 1

21 1 2 2
11 22 pseudo

2 2 1 1
2

1
4

1
4

var var

var

.

( )

( )

( )

r s r sH H H
r s r s

r r r rH H O c
r r r r

O c

≠ ≠

⎡ ⎤⎛ ⎞ ⎛ ⎞= + + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞= − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

=

∑ ∑A A A A
A A

A A
Z

Z

Z

Z Z

Z

O c

 

Hence, from the above, one can construct “perfect” (to within OZ(c2)) estimates of 

 in the p = 2 case through use of ARNs.  This result is consistent with the standard 

finite-difference method of estimating a Hessian matrix to within O(c2) (c governing the width of 

the difference interval in a deterministic method) by 2p gradient measurements (two for each 

column in the Hessian).  For p = 2, both the ARN and deterministic methods take four gradient 

measurements.  Of course, the primary advantage of SP-based methods arises with larger p, 

where ARNs provide the possibility of variance reduction in Hessian estimates taking far less 

than the standard 2p gradient approximations. 

pseudo( | )θH Z
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 In the p ≥ 3 case, the situation is not as easy or clean as the above for the reasons 

discussed below (5.3).  However, variance reduction is possible under some conditions.  Let us 

illustrate the approach when one is most interested in the accuracy of the diagonal elements of 

the information matrix and when it is known that the off-diagonal elements of the Hessian 

matrices have approximately similar (although unknown) magnitudes for varying Zpseudo .  Let 

this unknown magnitude be H  (i.e., H  ≈ jH A  for all j ≠ A).  This latter assumption is one of 

the ways to avoid having to know the values of the HjA terms in practice.  The general reasoning 

in the sketch below may be followed if there is interest in other aspects of the information matrix 

and/or there are other assumptions on the HjA terms.  From (5.3), 

 
( ) 2

pseudo pseudo

2
2

2
2

1
2var var

var
2

var
2

( )

( )

( ) ,

jj j
j jj

j jj

j jj

r sH H
r s

r s O c
r s

r s O c
r s

H

H

≠

≠

≠

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

≈

∑

∑

∑

A A
A

A

A A

A

A A

A

Z

Z

Z

Z Z O c

 

(5.4)

where the second line of (5.4) follows by the independence of r and s from Zpseudo and the last 

line follows by the uncorrelatedness of the summands in the second line (the ≈ in the second line 

follows by H  ≈ jH A  for all j ≠ A). 

 Let us consider the use of ARNs to minimize the sum of the variances of all or some of 

the diagonal elements to within the OZ(c2) error (i.e., minimize ( )pseudovar jjj H∑ Z , where the 

sum is over p or fewer elements).  Let {1, 2,…, q} for q ≤ p represent the set of indices for the 

diagonal elements of interest.  That is, without loss of generality, the relevant indices are the first 

q.  If this is not the case, then the elements θ should be reordered so that the first q indices 

correspond to the elements for which ARNs will be applied.  Hence, given a perturbation 

distribution for the components of r (e.g., i.i.d. Bernoulli), we aim from (5.4) to pick s such that 

1
var

q

j jj j

r s
r s= ≠

⎛ +⎜
⎝ ⎠∑ ∑ A A

A

⎞
⎟                                                       (5.5) 
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is minimized.  (Alternatively, a more general functional optimization problem may be posed 

where the distributions of both r and s are simultaneously chosen to minimize the expression 

above subject to meeting the basic requirements discussed below (3.1); it is, however, unclear 

how this problem would be solved in practice.)   

One means of creating a solvable parametric optimization problem for the general case is 

to build on the pattern suggested by the p = 2 setting above.  In particular, it is apparent that each 

of the summands in (5.5) has one of four possible forms: odd numerator/odd denominator, 

odd/even, even/odd, and even/even, where “odd” or “even” refers to the subscript of the 

numerator or denominator terms.  Hence, for example, at A = 6 and j = 3 in (5.5), we have an 

even/odd contribution.  Given the value of r, the even-indexed elements of s may be determined 

according to sj = γeven rj + (1 − γeven)δj , where δj is an independent random variable having the 

same distribution as rj and 0 ≤ γeven ≤ 1.  Analogously, for the odd-indexed elements of s, we 

have sj = −γodd rj + (1 − γodd)δj , where 0 ≤ γodd ≤ 1.  So, each of the even-indexed elements of s is a 

convex combination of an independent random variable and the corresponding element of r; each 

of the odd-indexed elements is a convex combination of an independent random variable and the 

negative of the corresponding element of r.  (This division between odd and even elements is 

arbitrary and could equivalently be reversed.)  There is now enough structure to formulate a two-

variable optimization problem from (5.5) (i.e., optimize  γeven and γodd).  

 Suppose that the δj and the elements of r are i.i.d. Bernoulli ± c.  It is then straightforward 

to determine the four possible variance expressions appearing in (5.5).  Because ( )jE r rA  = 

( )jE s sA  = 0 in (5.5), the variance terms follow according to the formula 

2 2

2var 2
j j j j

2
j j

r s r r s sE
r s r sr s

⎛⎛ ⎞+ = + +⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
A A A A A A ⎞

⎟ .                                        (5.6) 

Following some algebra, we have from (5.6) the following four possible expressions in (5.5) for 

( )var j jr r s s+A A : 
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Odd A, odd j 

22 22
odd oddodd

22 2odd odd odd

(1 )
1 2

2 1 (1 )

⎡ ⎤γ + − γγ ⎣ ⎦+ +
γ − ⎡ ⎤γ − − γ⎣ ⎦

.                                    (5.7a) 

Odd A, even j 

2 2 2
odd odd even evenodd even

22 2even even even

(1 ) (1 )
1 2

2 1 (1 )

2⎡ ⎤ ⎡ ⎤γ + − γ γ + − γγ γ ⎣ ⎦ ⎣ ⎦− +
γ − ⎡ ⎤γ − − γ⎣ ⎦

 .                   (5.7b) 

Even A, odd j 

2 2 2
odd odd even evenodd even

22 2odd odd odd

(1 ) (1 )
1 2

2 1 (1 )

2⎡ ⎤ ⎡ ⎤γ + − γ γ + − γγ γ ⎣ ⎦ ⎣ ⎦− +
γ − ⎡ ⎤γ − − γ⎣ ⎦

.                     (5.7c) 

Even A, even j 

22 22
even eveneven

22 2even even even

(1 )
1 2

2 1 (1 )

⎡ ⎤γ + − γγ ⎣ ⎦+ +
γ − ⎡ ⎤γ − − γ⎣ ⎦

.                                     (5.7d) 

  

 Hence, the criterion in (5.5) is minimized by choosing γeven and γodd such that the 

appropriately weighted linear combination of terms in (5.7a, b, c, d) is minimized.  The 

weighting is based on the value of q.  For example, at q = 4, we have from (5.5) the weightings 

odd/odd: 1/6; odd/even: 1/3; even/odd: 1/3, and even/even: 1/6.  The author uses a simple 

MATLAB code to carry out the optimization.   

While the above discussion of ARNs is for a special case, it is clear that basic ideas may 

be used in other cases (e.g., where certain off-diagonal elements of the Hessian have magnitudes 

that are approximately a known factor times larger than other elements and/or where the prime 

interest is in improving accuracy for certain off-diagonal elements of the information matrix).  

Nevertheless, it is inevitable that any practical application of ARNs will involve some 

specialized treatment, as illustrated above and in the simulation literature.  
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6.   NUMERICAL EXAMPLE 

 Suppose that the data zi are independently distributed N(μ, Σ + Pi) for all i, where μ and Σ 

are to be estimated and the Pi are known.  This corresponds to a signal-plus-noise setting where 

the N(μ, Σ)-distributed signal is observed in the presence of independent N(0, Pi)-distributed 

noise.  The varying covariance matrix for the noise may reflect different quality measurements of 

the signal.  Among other areas, this setting arises in estimating the initial mean vector and 

covariance matrix in a state-space model from a cross-section of realizations (Shumway, et al., 

1981), in estimating parameters for random-coefficient linear models (Sun, 1982), or in small 

area estimation in survey sampling (Ghosh and Rao, 1994).   

 Let us consider the following scenario: dim(zi) = 4, n = 30, and Pi = Ti U U , where U is 

generated according to a 4 × 4 matrix of uniform (0, 1) random variables (so the Pi are identical 

except for the scale factor i ).  Let θ represent the unique elements in μ and Σ; hence, p = 4 + 

4(4 1) 2+   = 14.  So, there are 14(14 1) 2+  = 105 unique terms in Fn(θ) that are to be estimated 

via the Monte Carlo scheme in Section 3.  This is a problem where the analytical form of the 

information matrix is available (see Shumway, et al., 1981).  Hence, the Monte Carlo 

resampling-based results can be compared with the analytical results.  The value of θ used to 

generate the data is also used here as the value of interest in evaluating Fn(θ).  This value 

corresponds to μ = 0 and Σ being a matrix with 1’s on the diagonal and 0.5’s on the off-

diagonals. 

 This study illustrates three aspects of the resampling method.  Table 1 presents results 

related to the optimality of M = 1 when independent perturbations are used in the Hessian 

estimates (Subsection 4.2).  This study is carried out using only log-likelihood values to 

construct the Hessian estimates (via using the SP gradient estimate in (3.2)).  The second aspect 

pertains to the value of gradient information (when available) relative to using only log-

likelihood values.  Table 2 considers the third aspect, illustrating the value of ARNs (Section 5).  

All studies here are carried out in MATLAB (version 6) using the default random number 

generators (rand and randn).  Note that there are many ways of comparing matrices.  We use 

two convenient methods in both Tables 1 and 2; a third method is used in Table 1 alone.  The 

first two methods are based on the maximum eigenvalue and on the norm of the difference.  For 

the maximum eigenvalue, the two candidate estimates of the information matrix are compared 
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based on the sample means of the quantity max max maxλ̂ − λ λ , where  and  denote 

the maximum eigenvalues of the estimated and true information matrices, respectively.  For the 

norm, the two matrices are compared based on the sample means of the standardized spectral 

norm of the deviations from the true (known) information matrix 

maxλ̂ maxλ

, ( ) ( ) ( )M N n n−F F Fθ θ θ  

(the spectral norm of a square matrix A is A  = ; this appears to 

be the most commonly used form of matrix norm because of its compatibility with the standard 

Euclidean vector norm).   

1/2largest eigenvalue of[ ]TA A

The third way we compare the solutions—as shown in Table 1—is via a simulated chi-

squared test statistic xTFx, where F represents either , ( )M NF θ  or Fn(θ), as appropriate.  Such 

test statistics are standard in multivariate problems where x represents the difference between an 

estimated quantity and some nominal mean value of the quantity (i.e., estimated θ − nominal θ) 

and F represents the inverse of the covariance matrix for x.  The points x such that xTFx ≤ 

constant define a p-dimensional confidence ellipse centered about 0.  The values “Test statistic” 

in Table 1 represent the sample mean of 50 values of the normalized deviation 
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∑

x F F

x F x

θ θ

θ

x
                                              (6.1)  

for a set of xi generated according to a N(0, I) distribution.  The same 20 values of xi are used in 

all runs entering the sample means of Table 1.  

 Table 1 shows that there is statistical evidence consistent with Proposition 2.  All 

statistical comparisons are based on 50 independent calculations of , ( )M NF θ .  In the 

comparisons of 1,40000F  with 20,2000F  (column (a) versus (b)), the P-values (probability values) 

computed from a standard matched-pairs t-test are 0.002, 0.0009, and 0.0106 for the maximum 

eigenvalue, norm, and test statistic comparisons, respectively.  Hence, there is strong evidence to 

reject the null hypothesis that 1,40000F  and 20,2000F  are equally good in approximating Fn(θ); the 

evidence is in favor of 1,40000F  being a better approximation.  (Note that computer run times for 

1,40000F  are about 15 percent greater than for 20,2000F , reflecting the additional cost of 

generating the greater number of pseudodata.  This supports the comment in Section 4 that a 
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small amount of averaging [M > 1] may be desirable in practice even though M = 1 is the optimal 

solution under the constraint of a fixed B = MN.  Unfortunately, due to the problem-specific 

nature of the extra cost associated with generating pseudodata, it is not possible in general to 

determine a priori the optimal amount of averaging under the constraint of equalized run times.)  

At M = 1 and N = 40,000, columns (a) and (c) of Table 1 also illustrate the value of gradient 

information, with all three P-values being very small, indicating strong rejection of the null 

hypothesis of equality in the accuracy of the approximations.  It is seen from the values in the 

table that the sample mean estimation error ranges from 0.5 to 1.5 percent for the maximum 

eigenvalue, 1.8 to 5.3 percent for the norm, and 0.2 to 1.3 percent for the test statistic. 

 
Table 1. Numerical assessment of Proposition 2 (column (a) vs. column (b)) and of value of gradient 
information (column (a) vs. column (c)).  Comparisons via mean absolute deviations from maximum 
eigenvalues, mean spectral norm of difference as a fraction of true values, and mean absolute deviation of 
chi-squared test statistics as given in (6.1) (columns (a), (b), and (c)).  Budget of SP Hessian estimates is 
constant (B = MN). P-values based on two-sided t-test using 50 independent runs.   

 M = 1 
N = 40,000 
Likelihood 

values 
(a) 

M = 20 
N = 2000 

Likelihood 
values 

(b) 

M = 1 
N = 40,000
Gradient 
values 

(c) 

P-value 
(Prop. 2) 
(a) vs. (b) 

P-value 
(gradient 

info.) 
(a) vs. (c) 

Maximum 
eigenvalue 0.0103 0.0150 0.0051 0.002 0.0002 

Norm 0.0502 0.0532 0.0183 0.0009 < 10−10 

Test 
statistic 0.0097 0.0128 0.0021 0.0106 7.9 × 10−9 

 

Table 2 contains the results for the study of ARNs.  In this study, ARNs are implemented 

for the first three (of four) elements for the μ vector; the remaining element of μ and all elements 

of Σ used the conventional independent sampling.  The basis for this choice is prior information 

that the off-diagonal elements in the Hessian matrices for the first three elements are similar in 

magnitude (as in the discussion of (5.4)).  As in Table 1, we use the difference in maximum 

eigenvalues and the normed matrix deviation as the basis for comparison (both normalized by 

their true values).  Because ARNs are implemented on only a subset of the μ parameters, this 

study is restricted to the eigenvalues and norms of only the μ portion of the information matrix (a 

4×4 block of the 14×14 information matrix).  Direct gradient evaluations are used in forming the 
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Hessian estimates (3.1).  Based on 100 independent experiments, we see relatively low P-values 

for both criteria, indicating that ARNs offer statistically significant improvement.  However, this 

improvement is more restrictive than the overall improvement associated with Proposition 2 

because it only applies to a subset of elements in θ.  Unsurprisingly, there is no statistical 

evidence of improved estimates for the Σ part of the information matrix.  Of course, different 

implementations on this problem (i.e., to include some or all components of Σ in the modified 

generation of the perturbation vector) or implementations on other problems may yield broader 

improvement subject to conditions discussed in Section 5.   

      

Table 2.  Numerical assessment of ARNs.  Comparisons via mean absolute deviations from maximum 
eigenvalue of μ block of Fn(θ) (n = 30) as a fraction of true value and mean spectral norm on μ block as a 
fraction of true value.  P-values based on two-sided t-test.   

 M = 1 
N = 40,000
No ARNs 

M = 2 
N = 20000 

ARNs 
P-value 

Maximum 
eigenvalue 0.0037 0.0024 0.001 

Norm 0.0084 0.0071 0.018 

 

7.  CONCLUDING REMARKS  

In many realistic processes, analytical evaluation of the Fisher information matrix is 

difficult or impossible.  This paper has presented a relatively simple Monte Carlo means of 

obtaining the Fisher information matrix for use in complex estimation settings.  In contrast to the 

conventional approach, there is no need to analytically compute the expected value of Hessian 

matrices or outer products of loss function gradients.  The Monte Carlo approach can work with 

either evaluations of the log-likelihood function or the gradient, depending on what information 

is available.  The required expected value in the definition of the information matrix is estimated 

via a Monte Carlo averaging combined with a simulation-based generation of “artificial” data.  

The averaging and generation of artificial data are similar to resampling in standard bootstrap 

methods in statistics.  We also presented some theory that is useful in reducing the variability of 

the estimate through optimal forms of the required averaging and through the use of antithetic 

random numbers.  
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There are several issues remaining that would enhance the applicability of the approach.  

In practice, there may be instances when some blocks of Fn(θ) are known while other blocks are 

unknown.  In the author’s work related to parameter estimation for state-space models, for 

example, certain blocks along the diagonal are sometimes known, while other off-diagonal 

blocks are unknown (and need to be estimated).  The issue yet to be examined is whether there is 

a way of focusing the averaging process on the blocks of interest that is more effective than 

simply extracting the estimate for those blocks from the full estimate of the matrix.  Another 

issue pertains to the choice of distribution for the elements of the perturbation vector (Δk).  While 

Bernoulli is used in the numerical examples, other distributions meet the regularity conditions 

and may be more effective in certain instances.  When accounting for the cost of pseudodata 

generation, the optimal choice of averaging (M and N) is likely to be highly problem dependent, 

but it would be useful to have some general method for determining the tradeoff (the optimal M 

= 1 solution in Subsection 4.2 ignores the cost of pseudodata generation).  It would also be useful 

to formally analyze the conjecture in Subsection 4.3 pertaining to the potential dependence of 

 on p (reflecting the hjth element of the difference between the information matrix and the 

negative Hessian).  Recall that the conjecture is that the 

2
hjσ

2
hjσ , on average, will tend to increase 

with p subject to the underlying number of data points being constant.  To the extent that this 

conjecture is true, the efficiency of the simultaneous perturbation-based method relative to the 

standard finite difference-based method becomes greater.  Finally, although the use of antithetic 

random numbers was described in this paper, more work could be done to make the concept 

more readily applicable through the use of appropriate approximations to the infeasible optimal 

perturbation distributions.  Nevertheless, despite the open issues above, the method as currently 

available provides a relatively easy Monte Carlo method for determining the information matrix 

in general problems.    
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