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ABSTRACT

We consider the problem of optimizing a transit net-
work with respect to customer service, when simula-
tion of the network is necessary to accurately char-
acterize performance. In particular, we consider the
transfer optimization problem, where the goal is to
minimize the total expected waiting time of riders by
coordinating transfers in the network. We apply the
technique of simultaneous perturbation stochastic ap-
proximation to optimize system performance. For a
simple test case, we provide simulation results and
discuss difficulties in applying the technique to this
problem, specifically with regard to the smoothness
of the objective function.

1 INTRODUCTION

If we wish to optimize some performance measure of
a discrete event system (see, e.g., Cassandras 1993
or Fu 1994), then under suitable conditions, this
problem reduces to finding the zero of the perfor-
mance measure gradient, so that gradient-based tech-
niques based on stochastic approximation can be ap-
plied. Techniques such as perturbation analysis or
likelihood ratio provide efficient means for estimating
the performance measure gradient, but these tech-
niques are not universally applicable. This paper
considers a technique called simultaneous perturba-
tion stochastic approximation (SPSA) which requires
minimal assumptions on the system of interest (Spall
1992). SPSA uses the simultaneous perturbation
(SP) method to estimate the gradient with only es-
timates of the performance measure itself. Further-
more, in each update step, SPSA requires only two
sample estimates of the performance measure to cal-
culate a gradient estimate, regardless of the dimen-
sion of the vector of parameters. This sharply con-
trasts with the method of finite differences which
grows linearly with the dimension. Thus, SPSA re-
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quires substantially less data -— in our application,
meaning significantly fewer simulations — than fi-
nite differences for estimating gradients in high di-
mensions.

To be more specific, let § € @ C RP denote a
vector of controllable (adjustable) parameters and w
the stochastic effects. Let L(6,w) denote the sample
path performance of interest and J(6) = E[L(6,w)]
expected system performance. The problem is to find
argmin{J(6) : § € ©}. The stochastic approximation
algorithm for solving V.J = 0 is given by the following
iterative scheme:

0(n+1) = g(n) - an.zl\n) (1)

where () represents the nth iterate, g, represents
an estimate of the gradient VJ at 6y, and {a,} is a
positive sequence of numbers converging to 0.

2 SIMULTANEOUS PERTURBATIONS

Let e; denote the unit vector in the ith direction, and
t, the simulation length of the nth iteration. Let
{Ay,...,Ap} be a set of i.i.d. perturbations satisfying
the conditions given in Spall (1992), and define the
vector A = [A;...A,]. Let (g,); denote the ith com-
ponent of g, and let J; (6,w) denote the observed
(sample) system performance at § on sample path w
for duration t,,. Then, the SP estimator is given by

Jt—J-

(Gn) = m: (2)
where 3
Jt = J,n((}(,,) +CnA,w:),
J- =

']tn(g(ﬂ) - ana w;))

where J* and J~ are performance estimates at the
parameter value 6(,) simultaneously perturbed in all
directions.
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Compare this estimator with the usual symmetric
difference (SD) estimator:

Jt, ((n) + cnei, wit) = 1, (6n) — cnei,wi”)

2¢,

(4)
The SD estimator requires a different pair of esti-
mates in the numerator for each parameter, thus re-
quiring 2p simulations, whereas in SPSA, the same
pair is used in the numerator for all parameters,
and instead the denominator changes; thus, only
two discrete-event simulations are required at each
iteration. For common random numbers, we take
w}l = w; = w, (or as close as possible in the sim-
ulation implementation).

(@) =

3 TRANSPORTATION APPLICATION

In Hill and Fu (1994a,b), SPSA was applied to sim-
ple single-server queues and open queueing networks
with general routes. Here, we consider a transporta-
tion application. The model we consider is a transit
network with bus lines traveling in four directions on
a grid: east, west, north, and south. Transfers oc-
cur, for instance, from a west-bound line to a north-
bound line, and multiple transfers are possible. Un-
desirable delays occur for passengers due to waiting
for a transfer. As summarized in Bookbinder and
Désilets (1992), there are two basic approaches to
this problem: timed transfer and transfer optimiza-
tion. The former focuses on coordinating the trans-
fer points, and is more applicable for networks where
transfers constitute a relatively smalier proportion of
overall traffic, e.g., intercity trains and planes. This
approach would not be appropriate for a large transit
network, such as is found in a downtown bus net-
work, where transfers are decentralized. In this case,
transfer optimization is usually employed, whereby
the decisions to be made have to do with the depar-
ture times of the first bus on a line, and also possibly
the headways.

In transfer optimization, the following are usually
assumed to be given: the network, i.e., no re-routing
is allowed; the headways, defined as the times be-
tween adjacent buses on the same line (assumed to
be constant and equal); the transfer points; the pas-
senger traffic and transfers. Traffic on a route can be
given either as a point-to-point total or equivalently
as a Markovian routing matrix at each stop. Stochas-
tic elements of the network — incorporated indirectly
in Bookbinder and Désilets (1992) — include the ar-
rival process of passengers at each stop, both timing
and number; and the travel times of buses.

Let N be the number of transit lines, M be the

- subject to Z i =1,1=1,.., N,

number of transfer points, H; be the headway for
transit line ¢, i = 1,..., N, ©; be the set of allowable
offset times for transit line i, i =1,...,N, 8 = {6;},
be the timetable for the transit network, © = {©;}¥
be the allowable timetables for the transit network.
Note that a transfer point in the network model is
quite different from a stop in the physical real world.
In particular, if a given “single” stop occurs at an in-
tersection of two bi-directional routes and allows all
possible transfers, then this would generate eight sep-
arate transfer points in the network model.

We wish to minimize the total expected waiting
time for transfers in the network. This problem is
usually formulated as a mathematical program, which
requires the assumption that the sets ©;,i =1,..., N
be discrete and finite, and yields the integer pro-
gram:

N N
gréiélZZCije,voj, (5)

i=1j=1

where n; is the transfer flow at transfer connection k,

=1,.., M, C,‘j,.s = ZkEA.,‘ nka(r,s), re @i,s €
©;, A;j = {k: connection k goes from line i to line
7}, Wi(r, s) is the mean waiting time at connection
k, for offset times r € ©; and s € ©;, for lines i and j,
respectively. The key elements are the waiting times,
which must somehow be estimated. This problem is
equivalent to the 0-1 quadratic optimization problem:

N N
ming é E E CijrsTirZjs,

i=1j=1r€0®,; SEQ;

Zir € {0, 1}.
reo;

The 0-1 variables z;, take the value 1 if and only
if offset time s is chosen for link i, and the equal-
ity constraints insure that exactly one of the allow-
able offset times is chosen for each line. This for-
mulation is equivalent to the well-known quadratic
assignment problem (QAP) in facilities layout plan-
ning, and hence is N'P-complete.

A more realistic model includes the following fea-
tures: the feasible set of offset times is continuous;
headways need not be constant nor deterministic,
e.g., they could be closer during rush hours; travel
times need not be constant nor deterministic, i.e.,
they are likely to be random and higher during rush
hours; the passenger arrival process need not be de-
terministic. However, incorporating such factors into
a model leads to analytical intractability in deter-
mining the mean waiting times, in which case the
best approach is a stochastic discrete-event simula-
tion model. Thus, we incorporated these more real-
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istic features into a simulation model, and then ad-
dressed the optimization problem (5) by allowing ©;
to be continuous, in particular, corresponding to in-
tervals [0, K;], where K; is the maximum allowable
offset time on transit line i. Qur assumption is that
the optimum (at least local) is found at a zero gradi-
ent point of the objective function in (5), so that the
method of SPSA is applicable.

4 EXPERIMENTAL RESULTS

We considered a four-line transit network model,
which comprises transit lines traveling in four direc-
tions on a grid: east, west, north, and south. These
four lines are represented by the two bi-directional
routes in Figure 1: an east-west route and a north-
south route. There are just three stops on each line:
an origin point, a potential transfer point which we
will call the center point, and a destination point.
Bus travel between stops is represented by eight dif-
ferent traffic “links” labeled in Figure 1 on the four
bi-directional segments. Henceforth, we will refer to
the transit vehicles as “buses” and the transit lines
as “bus lines.”

31| |42
11 12

22 21
32| |41

Figure 1: Schematic of Four-Line Traffic Network

In the implementation of SPSA, two positive se-
quences converging to zero at the appropriate rate
are required:

e the step size multiplier sequence {a,}, and
e the gradient estimate difference sequence {c,}.

In our experiments, we took a, = a/n* and ¢, =
c/n?, where o, B, a and c are constants to be selected.
Also, we took the A;’s to be symmetric Bernoulli in
all of our simulation experiments.

We built a simulation program of the transit net-
work using the SIMAN simulation language, and then

attached the SPSA optimization shell to it. The de-
tails, including excerpts of code, are given in Ap-
pendix A.

We began by considering a very simple experiment
where only four customers rode in the entire day, one
at each of the origin points, with routes chosen ran-
domly. We chose a fixed headway of 10, uniformly
distributed bus travel times, and considered various
arrival time distributions. We began with determin-
istic arrivals, with all four customers arriving exactly
at time 10. However, the optimization scheme failed
in this case, because the objective function was insuf-
ficiently smooth.

4.1 OBJECTIVE FUNCTION BEHAVIOR

The smoothness difficulty is intuitively clear to most
transit (or even airline) riders: if you just miss a con-
nection — whether transfer or origination — your wait
jumps from small to large, as you must wait for the
next vehicle. We can easily see this analytically by
considering just a single isolated rider in the system,
for whom we will define the following:

wait time,

arrival time,

= headway of vehicles = 10,

= offset of first vehicle € [1,19].

o = I
|

Let us consider various distributions for X, and con-
sider just the initial wait time (before transfers).

Deterministic. For X = 8, it is obvious that

Wl 10-6 0<6<10
1 20-6 10<6<20

As shown in Figure 2, this function is discontinuous
and has a constant slope, so stochastic approximation
techniques are not applicable.

w
10

10 20

Figure 2: Discontinuous Objective Function



Uniform. For X ~ U(6 — 0.5,6 + 0.5), it can be
easily verified that

10-6 1<6<10
EW]l=05+< 9(0-10) 10<6<11
20— 9 11<6<20

In this case, shown in Figure 3, the objective function
is continuous, but the derivative is still discontinuous,
and the minimum does not occur at a zero gradient
point (no such point exists).

E[W]
9.5

0.5
0

—_

10 11 20

Figure 3: Discontinuous Derivative

Triangular. For X ~ TR(0—0.5,6,0+40.5), we have

10— 8 1<0<9
) 10-60+5(-9)2 9<6<10
EWI=14 90_6-5(9—11? 10<6<11 "
20— 0 11<6<19

which has continuous derivatives, but discontinuous
second derivatives at the points § = 9,10, 11 (i.e., at
these 3 points modulo 10). This function does possess
a zero gradient point (9.1 mod 10), but as can be seen
in Figure 4, the function is not very well behaved,
having very steep approaches to the minimum.

' E[W)
9
5
1
4
1 9 10 11 19

Figure 4: Discontinuous Second Derivative

4.2 EXAMPLE 1

We conducted simulation experiments using the tri-
angular distribution for the parameter values shown
in Table 1. Three different step sizes, two different
starting points, and two different values for the expo-
nent of the finite difference step size were considered.
The results are given in Tables 2 and 3, where the esti-
mated values of the objective function are given with
95% confidence half-widths. At 6y = (9,9,9,9),
the average wait is approximately 6.73+0.32. At
00y = (9,7,13,11), the average wait is approximately
5.6240.05. Based on the analysis of the last section,
which was not complete, as it did not consider the
transfers, the optimum was guessed to be at . =
(10.9,10.9,10.9,10.9), which yielded an estimated av-
erage wailt of approximately 2.1940.29. The best re-
sults for the parameter values occur at a = ¢ = 1.0,
with o = 0.751, yielding estimates of the average wait
which have lower means than the estimate for the op-
timum; however, the confidence intervals overlap, so
the experiments were not statistically conclusive.

Table 1: Example 1 Parameter Values
(36 cases total)

© | (0,19)

80y | (9,9,9,9) (9,7,13,11)

o 1.0 0.751

8 0.25

a 1.0 3.0 10.0
c 1.0 0.5 0.1

Table 2: Example 1 Results
00y = (9,9,9,9); E(W] = 6.73 +£0.32;
6. =(10.9,10.9,10.9,10.9); E[W] = 2.19 £ 0.29;

8 =025
E[W] a
1.0 3.0 10.0

1.0 | 3.01+0.19 3.03+£0.16 4.21+0.06
c 0.5 | 2.104£0.20 2.174+0.20 4.9110.07
a=1.0 [0.1}2.32+0.16 2.73+0.24 3.87+0.07
1.0 | 2.04+0.15 4.10+£0.19 5.45+0.05
c 0.5 | 2.43+£0.07 2.98+0.13 5.36+0.04
a=0.751 { 0.1 | 3.41+0.33 4.4840.07 5.78+0.05

4.3 EXAMPLE 2

This differs from Example 1 only in the number of
customers simulated, which was increased from 4 to

80 (20 on each line).

We fixed a =

1.0 for all

the runs, and just considered the first starting point
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Table 3: Example 1 Results
b0y = (9,7, 13,11); E[W] = 5.62 £ 0.05;
6. =(10.9,10.9,10.9,10.9); E[W] = 2.19 £ 0.29;

8 =025
E[W] a
1.0 3.0 10.0
1.0 | 3.04+0.21 2.9740.04 4.75%0.07
c 0.5 4.04+0.20 3.49+0.05 4.9640.05
a=1.0 [0.1]3.25640.16 5.23+0.33 3.65+0.05
1.0 { 2.10£0.18 3.31+0.21 4.2540.15
c 0.5 | 3.4240.16 3.9640.05 3.82+0.11
a=0.751 | 0.1 | 3.84+£0.08 3.9640.05 4.444+0.04

6oy = (9,9,9,9); otherwise, we again used the pa-
rameter values shown in Table 1. The results are
given in Tables 4 and 5, where the estimated val-
ues of the objective- function are given with 95%
confidence half-widths. At oy = (9,9,9,9), the av-
erage wait is approximately 5.804+0.18. The only
difference between the two tables is that a differ-
ent seed set was used. It can be seen that the al-
gorithm exhibits a lot of randomness, as the sec-
ond seed set performed much better than the first.
The final values for the offsets in the two best re-
sults in Table 5 (o = 1.0 with ¢ = 1.0 and ¢ = 0.5)
were 500y = (11.60,10.86,11.56,10.94) and (500) =
(11.34,10.64,11.52,10.78), which are quite close to the
guessed optimal of . = (10.9,10.9,10.9,10.9). In fact,
in these two cases, the estimated performance was
better than the guessed optimal, and quite an im-
provement over that at f(o).

Table 4: Example 2 Results (seed set 1)
f0) = (9,9,9,9); E[W] = 5.80 £ 0.18;
6. =(10.9,10.9,10.9,10.9); E[W] = 2.46 + 0.16;
£ =025a=1.0

E[W] ¢
1.0 0.5 0.1
a=10 | 299+0.12 3.03+0.10 4.34%+0.05
o =0.751 | 3.53+£0.07 3.45+0.07 5.07+0.13

Table 5: Example 2 Results (seed set 2)
f0) = (9,9,9,9); E[W] = 5.80£0.18;
8, = (10.9,10.9,10.9,10.9); E[W] = 2.46 + 0.16;
£=025,a=1.0

E[W] c
1.0 0.5 0.1
a=10 | 2.03+0.10 2.074+0.13 4.01+0.05
a=0.751 | 4.10+0.07 3.25+0.07 3.75+£0.13

5 CONCLUSIONS

We have applied the technique of SPSA to the trans-
fer optimization problem of minimizing average wait-
ing time in the system with respect to the scheduled
offset times of the transit vehicles. Naive applica-
tion revealed discontinuities in the objective func-
tion, leading to the inapplicability of gradient-based
stochastic approximation methods. In particular, we
found that the interarrival time densities must be con-
tinuous, which implies that the performance measure
is twice differentiable. However, even in this case, the
objective function does not satisfy the sufficient con-
ditions of Spall (1992), which requires a continuous
third derivative. We conducted preliminary stmula-
tion experiments for a triangular distribution, which
demonstrated the sensitivity to the various parame-
ters of the algorithm, such as the step size and finite
difference step. However, at certain settings of these
parameters, the algorithm performed very well, im-
proving upon the initial schedule significantly. Fur-
ther experiments are currently underway.

APPENDIX A: SIMAN CODE

In Figures 5 and 6, we list portions of the SIMAN pro-
gram for the transfer network, for the MODEL code
only. There are the two main parts of the code: the
network simulation itself, and the SPSA optimization
shell.

As delineated in Figure 5, the network simulation
consists of three portions: rider arrivals, bus travel,
and rider travel and transfers. For each of these, there
is a corresponding general form, which is duplicated
for the different lines. To save space, we just included
one portion of each to illustrate the main constructs
used in simulating the network.

Passengers are created for each line, and randomly
assigned a route upon arrival. These routes are spec-
ified in the SEQUENCES element in the experiment
(EXP) file.

Buses travel along the links of each line. Line i
(i=1,...,4) consists of LINKil and LINKi2. The time
interval between bus departures equals headway(i),
with the first bus departing at t=offset(i). Travel
time along LINKij takes TravTime(i,j) time units,
randomly distributed. When a bus completes travel
along a link, it signals riders that that portion of its
trip is complete. For SPSA implementation, the ep-
silon term is needed to READ in new values of the
parameters th(i) before a bus is scheduled; otherwise
a delay of th(i) is identical to CREATE offset of th(i).

Passengers flow through the network by moving
from link to link, according to their preassigned
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;*********************************************************************

; GENERATE RIDER ARRIVALS TO EACH LINE,
;ASSIGN ROUTES & SEND TO ORIGINATION

CREATE, BatchSize,TR(InterArrvi,1):TR(InterArrvi,1),
maxnum;

ASSIGN: NS = DP(Typel,2); Assign route

COUNT: No. Riders Line #1;

ROUTE: ;

3 koK o ook ke ook s ok ook o sk ok sk sk ok ok i ok oo Sk ok ok ok o sk ok ak ok s s ok ke oo ok ok o s sk ke oo s ke sk o sk ok ok oo sk ok ok ok o sk ok o ok o ok
; SIMULATE BUS RUNS ALONG EACH LINE

CREATE, ;epsilon:headway(1),maxbus:MARK(TimeIn);
DELAY: th(1);

ASSIGN: TravTime(1,1)=TR(rangel1,3);

SIGNAL: 11,BusCap;

DELAY: TravTime(1,1)+slack(1,1);

ASSIGN: TravTime(1,2)=TR(range12,3);

SIGNAL: 12,BusCap;

DELAY: TravTime(1,2) :DISPOSE;

3 Aok ek ook o ok s ok ok o ok o s ook o ok ek ok s sk sk o oo Kook ok o ok ok ok s s o sk o ok K ok ok ook o o ok ok ok ok ok ok K
;DEFINE STATIONS STOPS/LINKS, WAITING QUEUES & SIMULATE PASSENGER FLOW

STATION, Link11;

QUEUE, Transit11:MARK(XferTime);
WAIT: 11,BusCap;

TALLY: Waits,TNOW-XferTime;
ROUTE: TravTime(1,1)-epsilon;

;*********************************************************************

Figure 5: The Three Main Modules of the Network Simulation Model
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CREATE; lcreate single entity for initialization
READ, Offsets,,1: !read in parameter values
offset(1),offset(2),offset(3),0ffset(4);
CLOSE, Offsets;
ASSIGN: iter=AINT((NREP+1)/2):
cn=cmult/SQRT(SQRT(iter));

Continu0 BRANCH, 1:IF, NREP/2 .EQ. ANINT(NREP/2), NegRun:
ELSE, PosRun;
siissssscaleulate J455 5 55535505355355355335355333335333333333553435
PosRun  ASSIGN: run=1: i=1;

LoopBern

ASSIGN: pert(i)=DP(Bernoulli,4):
th(i)=offset(i)+cn*pert(i): i=i+1;
BRANCH, 1:IF, i .LE. numpar, LoopBern: ELSE, WaitEnd;

siiiissscaleulate T 55555533555335553533305350533355553350553550s

NegRun ASSIGN: run=2: i=1;

Loop2 ASSIGN: th(i)= offset(i)-cn*pert(i): i=i+i1;

. BRANCH, 1:IF, i .LE. numpar, Loop2: ELSE, WaitEnd;
sirsiii updates; s sisiiiiiiiiiiiiiisaiiiiasaiiisariiiiiiisiiisiiiiiii

WaitEnd DELAY: endarrv;

ASSIGN: maxnum=0; turn off arrival of riders
DELAY: endday; end day shortly afterwards
ASSIGN: pm(run)=TAVG(Waits): i=1;
BRANCH, 1:IF, run .EQ. 2, Loop3: !update parameters
ELSE, EndRep; tnext rep
Loop3 ASSIGN:  dpm(i)=(pm(1)-pm(2))/(cn*pert(i)): i=i+i;
BRANCH, 1:IF, i .LE. numpar, Loop3: ELSE, Continul;

Continul ASSIGN: i=1;

LoopSPSA ASSIGN:  thOld(i)=offset(i):
offset(i)=offset(i)-dpm(i)*mult/iter:
temp=(offset(i) .GT. minoff .AND.

offset(i) .LT. maxoff)+
(offset(i) .LE. minoff)*(minoff-th01d(i))/
(offset(i)-th0ld(i)-epsilon)+
(offset(i) .GE. maxoff)*(maxoff-th01d(i))/
(offset(i)-th01d(i)+epsilon):
proj=temp*(temp .LT. proj) +
proj*(temp. GE. proj);
ASSIGN: i=i+i;
BRANCH, 1:IF, i .LE. numpar, LoopSPSA:
IF, proj .EQ. 1, Continu2:
ELSE, Projectn;
Projectn ASSIGN:  i=1; projection;;;;iisiisisisssarsirrssss
Loop4 ASSIGN: offset(i)=th0ld(i)+
0.9*proj*(offset(i)-th01d(i)): i=i+i;
BRANCH, 1:IF, i .LE. numpar, Loop4: ELSE, Continu2;
Continu2 ASSIGN: proj=1;
EndRep WRITE, Offsets,"(6F6.2,4F4.0)":

offset(1),offset(2),offset(3),0ffset(4);
CLOSE, Offsets;
ASSIGN: TFIN=TNOW:DISPOSE; tend replication now

Figure 6: SPSA Optimization Shell
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routes. To simulate movement through the network,
the riders wait in queue until their bus departs for
travel along a link. At the time of departure, the bus
transmits a signal to its riders. When riders receive
receive this signal, they travel to the next link of their
trip and wait for the next departure along the link.
Riders continue in this fashion until they reach their
destination.

The optimization shell is built by making a repli-
cation correspond to an iteration, where an outside
file is used to alter the values of the parameters be-
tween replications by reading at the beginning and
then writing at the end. In this way, common ran-
dom numbers can easily be employed to reduce the
variance of the SP estimates. A “dummy” entity is
created each iteration in order to execute the opti-
mization shell. This entity first initializes the itera-
tion, and then waits until the end of the simulation,
when it does the updating and finally terminates the
replication/iteration.
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