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Abstract

[t is shown that non-sinooth optimization problems
can be solved by a suitable extension of the siimulta-
neous perturbation stochastic approximation or SPSA
method (¢f. [6]). The new optimization method has
been tested in a min-max classification problem using
botl simulated and real data. The latter are ECG sig-
nals which were collected for the detection of so-called
late potentials,

1 Introduction

The motivation of this research is to develop a fast,
real-time classification method using a min-max class-
distortion measure. The intended application arca is
real-time ECG analysis. For this purpose we are go-
ing to generate tvpical signals, which is performed by
solving a min-max problem.

The solution of the min-max problem is non-trivial
for large data-sets (¢f. [5]). The specification for the
present application is high speed and relatively low
accuracy.  This purpose is met by some randomiza-
tion algorithm. We propose to nse stmultancous per-
turbation stochastic approximation or SPSA method
due to J.C. Spall (¢f. [6]). The convergence prop-
crties of this function minimization algorithm is well-
understood, (¢f. also [3]), The standard SPSA proce-
dure is applicable only to functions which are three-
times continuously differentiable. The major result of
the paper is the extension of SPSA to uon-smooth prob-
lems. The new method gives a suboptimal solution.
We have carried out munerical experiments for the so-
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Iution of the min-max problem on both simulated and
real data.

2 Non-smooth optimization via SPSA

Let L(8),0¢R” be a cost-function, which is Lipschitz-
continuous with Lipschitz-constant, say L, but not dif-
ferentiable. On the contrary, we asswine that L(#) has
a local, strictly non-smooth minimurn at 6* in the sense
that for some 8,¢ > 0, |8 — 0*| < & implices

L(#) - L(8") > ¢|6 - 6. (1)
A typical example is generated by defining

L() = max g;(f),

i=1,....m

where ¢;(#) themselves are Lipschitz-continuous, con-
vex functions (¢f. (2.2) of [5]).

For the minimization of L(#) a number of methods are
available in the theory of non-smooth optimization (cf.
[5])). However their efficiency depends considerably on
the complexity of the function L(8) itsclf.

Our method is based on a randomization technique.
First we generate a sufficiently smooth approximation
L(0) of L(#) by locally averaging it. Let h(#) be a sutfi-
ciently stuooth density funetion with bounded support,
say h(#) = 0 for |0;| > 6y, for all @ = 1,...,p, with some
dm > 0. Then the approximation of L(8) will be de-
fined as

o) = / | L(B + 50)h(50)d50. (2)



Sinee the mass distribntion defined by A(0) is concen-
Lrated aronnd zero, L) will be a good approximation
of L(0). Ou the other haud, since L(0) has a strictly
nonstuooth minitmum at 0% it follows that the approx-
imating fmction L(0) has a local minimum inside the
sphere of radins 8g around 0* for any g, if é,, is sutfi-
ciently small.

The function L(#) is not computable explicitly, how-
ever, for the purpose of iterative minimization we can
castly generate a Morte-Carlo estimate L,,(()) of f(ﬂ)
l'or any ftixed 0 at any tiime n generate a random per-
turbation 40, with density funection A(0) and set

Ln(0) = L(0 + 66,,). (3)

Thus Ly,(#) is an unbiased estimation of L(A). Note,
however, that the "measurement crror” defined as

n = La(0) = T(0) = L0+ 80,) = T(8)  (4)

depends on 4, i.e. we have a state-dependent noise.

Siuce there is no direct way to estimate the gradient of
T(0). Thus we have to resort to numerical differenti-
ation using the noise-corrupted function values Ly, (8).
This can be done in a very effective manner, using a
simultancous random perturbation of the paramcters

(cf. {6]).

The basic ingredients of the SPSA mcthod are given in
(6] in which the almost sure convergence and asvinp-
totic normality of the estiinator sequence has been es-
tablished. In {2] an almost sure convergence rate has
been given for a modified, truncated version of the
SPSA algorithin (Theorem 3 in [2]). A further mod-
ification of the SPSA algorithm was developed in [3],
where the assumed boundedness condition of [6] is re-
placed by a resetting mechanism, enforcing the estima-
tor sequence to stay in a bounded domain. In the cited
papers a rate of convergence result is derived for the
motnents of the estimation crror.

A major technical condition in all the cited works is
that it is assumed that the measurement noise is state-
independent. This condition is violated by the measure-
ment noise g, detined by (4), and thus previous results
are not directly applicable. However, it can be shown
that the methods can be extended to cover the state-
dependent case, and thus the application of SPSA for
the present problem is justified (cf. [4]).

3 Computational experiments

We have tested the non-smooth SPSA-method on both

sitmulated and real data. In the case of simulated data
. . n

we considered the function f(x) = 577, il Ina typ-

ical experiment the dimension was 100, and the coordi-

nates of the starting point were chiosen as independent
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ratclom variables, with standard Ganssian distribution.
The smoothing paratneter in the randomization step
was & = 0.001. We have obtained a reasonably acen-
rate result in 100 steps,

[n the case of real data we considered three ECG
records, taken from two healthy subjects and a pa-
ticut, with frequent ectopic beats. The length of the
records were 2.5 min, and from all the technical aspects
the measurements were conform with the recommenda-
tions formulated in [1] by an international task force.
[n all cases data were recorded on three leads for the
sawe heart cycele, which is represented by 33 munbers;
the middle point represeuting the fiducial point of the
cycle. Thus our data sets consisted of points in 99 di-
mension. We identified one outlier that is obviously
due to measuramnent crror.,
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