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We investigate the use of simultaneous perturbation stochastic approximation for the optimization of discrete-event systems via
simulation. Application of stochastic approximation to simulation optimization is basically a gradient-based method, so much
recent research has focused on obtaining direct gradients. However, such procedures are still not as universally applicable as finite-
difference methods. On the other hand, traditional finite-difference-based stochastic approximation schemes require a large number
of simulation replications when the number of parameters of interest is large, whereas the simultaneous perturbation method is a
finite-difference-like method that requires only fwo simulations per gradient estimate, regardless of the number of parameters of
interest. This can result in substantial computational savings for large-dimensional systems. We report simulation experiments
conducted on a variety of discrete-event systems: a single-server queue, a queueing network, and a bus transit network. For the
single-server queue, we also compare our work with algorithms based on finite differences and perturbation analysis.

1. Introduction

We consider the problem of optimizing a stochastic dis-
crete event system under the overriding assumption that
the system cannot be adequately modeled using analytical
means, €.g., optimizing the operations of a complex
manufacturing system. For such systems, simulation is
often used to estimate performance. Under suitable con-
ditions, the resulting optimization problem reduces to
finding the zero of the objective function gradient, so that
gradient-based techniques based on stochastic approxi-
mation can be applied. Such optimization techniques at-
tempt to mimic steepest-descent algorithms from the
deterministic domain of non-linear programming, with
two major complications: only noisy estimates of system
performance are available, and gradients are not auto-
matically available. Techniques such as perturbation
analysis (PA) or the likelihood ratio method (cf. [1])
provide efficient means for estimating gradients based on
simulation sample paths, but these techniques are not
universally applicable, in which case gradient estimates
based on finite differences of system performance esti-
mates are employed. However, the computational re-
quirements of finite-difference methods grow linearly with
the dimension of the controllable parameter vector,
making it burdensome for high-dimensional problems.
This paper considers a technique called simultaneous
perturbation stochastic approximation (SPSA) that re-
quires minimal assumptions on the system of interest [2].
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Like finite-difference-based stochastic approximation
procedures, SPSA uses only estimates of the objective
function itself, so it does not require detailed knowledge
of system dynamics and input distributions; hence, it is
applicable to any system that can be simulated. More-
over, SPSA requires only rwo sample estimates to cal-
culate a gradient estimate, regardless of the dimension of
the parameter vector, and therefore requires significantly
fewer simulations than finite differences for estimating
gradients in high dimensions.

To be more specific, let 6 = ((0);,...,(b),) € @ C #°
denote a p-dimensional vector of controllable (adjustable)
parameters and w the stochastic effects (e.g., the random
numbers in a simulation), where @ is a compact set. Let
L(0, ) denote the sample path performance measure of
interest, with expectation E[L(6, w)], and define the ob-
jective function

J(6) = E[L(6, )] + C(0), (1)

where C is an analytically available function, usually
representing some cost on the parameter. The problem is
to find

o £ argmin{J(0) : 6 € O}.

For example, in one problem that we consider — the
minimization of mean system time in a queueing network
— the ith component of 6 is the mean service time at the
ith station. The stochastic approximation (SA) algorithm
for solving VJ = 0, where ‘V’ indicates the gradient op-
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erator, is given by the following iterative scheme that is
basically the stochastic version of a steepest descent al-
gorithm:

0n+1 = H@(9 - angn)» (2)

where 0, = ((0,),,- .- ) represents the nth iterate, g,
represents an estimate of tf\e gradient VJ at 0,, {a,} is a
positive sequence of numbers converging to 0, and ITg
denotes a projection on @.

Aside from the earlier finite-difference-based work of
Azadivar and Talavage [3], the application of SA to the
optimization of stochastic discrete-event systems has been
a fairly recent development, and has been coupled closely
with the emergence of an entire research area devoted to
simulation-based direct gradient estimation techniques
(see [1]). It is well known that these direct gradient esti-
mates yield the best convergence rate (cf. [4] and refer-
ences therein), and this is borne out in simulation
experiments as well. For example, following the earlier
empirical work of Suri and Zazanis [5] and Suri and
Leung [6], L’Ecuyer et al. [7] compared a large number of
different SA algorithms on a single-server queue problem
(with a scalar parameter), and found that the method
utilizing an infinitesimal perturbation analysis gradient
estimator (cf. [8]) outperformed all the others. Other
related work includes Fu [9], Andradoéttir [10], and
Wardi [11]. However, for many problems direct gradient
estimates may not be readily available, in which case
gradient estimates based on (noisy) measurements of the
performance measure itself are the only recourse. When
the dimension, p, of the parameter is large, traditional
finite-difference methods can become prohibitively ex-
pensive, whereas the method of simultaneous perturba-
tions allows the gradient to be estimated with two
simulations using only estimates of the performance
measure itself. In sum, the SPSA method exhibits three
desirable characteristics:

(1) generality — its advantage over direct estimation
methods such as PA and the likelihood ratio method is its
applicability to any system that can be simulated;

(2) efficiency — its advantage over usual finite-difference
methods is its practicality for high-dimensional problems;

(3) ease of use — it is as easy to apply as finite-difference
methods.

SPSA has been applied successfully to nonlinear control
problems using neural networks [12]. In this paper, we
investigate the application of SPSA to simulation opti-
mization of stochastic discrete-event systems by con-
ducting simulation experiments on three different
optimization problems: a single-server queueing problem,
a queueing network problem, and a transportation
problem. Preliminary experimental results were reported
in Hill and Fu [13,14]. In the first example we compare the
performance of SPSA with SA algorithms based on fi-
nite-difference estimates and on infinitesimal perturbation
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analysis estimates. The purpose is not to make definitive
conclusions as to superiority, but simply to demonstrate
reasonably comparable performance on the smallest
multi-dimensional problem possible (two dimensions).
The second example was chosen to test SPSA on a higher-
dimensional problem, and the third example attempted to
test it on a more ‘practical’ problem, that of reducing
transfer waiting times in a transit network. Difficulties
experienced in naive application of the method are dis-
cussed. The rest of the paper is organized as follows. In
Section 2 we present the simultaneous perturbation gra-
dient estimator, contrasting it with the usual finite differ-
ence estimator. In Section 3 we describe the three problem
settings. Discussion of convergence for the SPSA algo-
rithm applied to the examples is provided in Section 4,
with a proof outlined for the single-server queue. The re-
sults of simulation experiments are provided in Section 5.
Section 6 contains a summary and conclusions.

2. Simultaneous perturbations

In this section, we present and contrast finite difference
estimators and simultaneous perturbation estimators for
a performance measure gradient VE[L]. Let ¢; denote the
unit vector in the ith direction of %”, ¢, the simulation
length of the nth iteration, s, the starting state for the nth
iteration, L,(0,w,s) the observed (sample) system per-
formance at 6 on sample path o for duration ¢ starting
from state s, (g,), the ith component of §, (an estimate of
VE[L] at 6,), and {c,} a positive sequence converging to 0.

The usual symmetric difference (SD) estimator for
VE|L] is given by

(gn)l Ll,,(e +cnez, i‘l ? V! ) Cnel,a) ,Si_)

Lt (0 n

2¢, ’

(3)
where o’ and o/ denote the pair of sample paths used
for the ith component of the nth iterate of the algorithm
with respective starting states s and s If the method of
common random numbers is employed, then
ol =l = w, (cf. [7]).

Let {4,} be an i.i.d. vector sequence of perturbations
of 11.d. components {(4,),,i=1,...,p} symmetrically
distributed about 0 with E|(4,),"| uniformly bounded
(see [2] for a definition). Then the simultaneous pertur-
bation (SP) estimator is given by

(n); = (Ly = L;)/[2en(4n) ], (4)
where L} =L, (0, + c,dn, 0 ,s7), (5)
Ly, = L,(0n — cadn, 0, 5,), (6)

o, and o, denote the pair of sample paths used for the
nth iterate of the algorithm with respective starting states
st and s,, and L} and L, are performance estimates at
the parameter value 0, simultaneously perturbed in all
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directions. Again, if the method of common random
numbers is employed, then w; = w, = w,.

The key point to note is that each estimate L, (0, o, s) is
computationally expensive relative to the generation of 4.
We see that the SD estimator (3) requires a different pair
of estimates in the numerator for each parameter to es-
timate the gradient, thus requiring 2p simulations,
whereas the SP estimator (4) uses the same pair of esti-
mates in the numerator for all parameters, and instead
the denominator changes. Thus, SP requires only two
discrete-event simulations at each SA iteration to form a
gradient estimate.

Remark. In both cases there is a practical and technical
issue when 6, + c,4, or 0, + c,e; lies outside the con-
straint set. Usually this is handled by taking the projec-
tion (nearest point) on ©.

3. Problem settings

We consider three optimization problems, all basically
minimizing a waiting time performance measure.

3.1. A single-server queue

Consider a single-server queue with Poisson arrivals and
service times from a uniform distribution (an M/U/1
queue). The goal is to minimize the mean steady-state
time in system T with costs for improving service times.
Specifically, we wish to determine the values of the two
parameters in the uniform service time distribution
U((8), — (0),,(0), +(0),) to minimize the objective
function

JO)=E[TI = Ci-(0), = C2-(0),, 0@, (7)

where C; and C, represent ‘costs’ for reducing the service
time mean and ‘variability,’ respectively,
O =1{0:0< Opin < (0), <(0); <Onax <1/2} is a con-
straint set that ensures stability of the system, and 4 is the
arrival rate. This example was considered in [15], and the
objective function (7) fits the general form given by (1).
The gradient estimate is of the form

N - C
gn :VEOn[T] - <C;>7

where VEj, [T} represents the SP estimate of VE([T] at 0.

3.2. Queueing network optimization problem

Consider an open queueing network with N stations and
general customer routes. Again, the goal is to minimize
mean steady-state time in the system T, this time subject
to a constraint on the allocation of mean service times
throughout the system (similar to an assembly line bal-
ancing problem):
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min E[T],

subject to
0@

where (0), is the mean service time at the ith station, K is
the system total for mean processing times over all the
stations, @ = {0:0 < (Omin); < (0), < (Omax); < 1/A:i} 18
the stability constraint set, and 4;,i = 1,..., N, is the total
arrival rate at station i. Moving the constraint into the
objective function, the gradient estimate is of the form

. | LA
Gn = VEg |T] - NZ(VE()” (7).,
i=1

where again VEj [T represents the SP estimate of VE[T]
at 0,.

3.3. Transportation network

Consider a transit network with bus lines traveling in four
directions on a grid: east, west, north, and south.
Transfers occur, for instance, from a west-bound line to a
north-bound line, and multiple transfers are possible. As
summarized in [16], there are two basic approaches to this
problem: timed transfer and transfer optimization. The
former focuses on coordinating the transfer points, and is
more applicable for networks where transfers constitute a
relatively smaller proportion of overall traffic, e.g., inter-
city trains and planes. This approach would not be
appropriate for a large transit network, such as is found
in a large urban bus network, where there are many de-
centralized transfers. In this case, transfer optimization is
usually employed, where the decision is to specify the de-
parture times of the first bus on a line, called the offset
times.

In transfer optimization, the following are assumed to
be given: the network routes; the headways, defined as
the times between adjacent buses on the same line (as-
sumed to be constant and equal); the transfer points; the
passenger traffic; and transfers. Once the headways are
given, the offset times determine the timetable, or sched-
ule. Let p be the number of transit lines,
0= ((6),...,(0),) the vector of offset times for the
transit network, and @ = @ x --- x @, the constraint
set, where ©; is the set of allowable offset times for transit
line i, i = 1,...,p. The goal is to minimize the total ex-
pected waiting time in the network. Bookbinder and
Désilets [16] formulate this problem as a mathematical
program, under the assumption that the sets
@;,i = 1,...,p, are discrete and finite. The formulation is
equivalent to the well-known quadratic assignment
problem in facilities layout planning, and hence is NP-
complete.

The key assumption in the mathematical programming
formulations is that the expected waiting times be ana-
lytically available. Incorporation of stochastic effects in
the bus travel times and passenger arrivals may preclude
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this (although empirically based approximate expressions
are often used in practice), in which case simulation must
be employed. Thus, the optimization problem is

min £ [(Wx(0)], (8)

where W, is the mean waiting time over n boardings, N is
the number of boardings in a day, and now ), = [0, K] is
a continuous interval, K; being the maximum allowable
offset time on transit line i. Two crucial, but unverified,
assumptions in applying SA are that the objective
function in (8) is sufficiently smooth and that the opti-
mum (at least local) is found at a zero gradient point. As
we shall discuss in the experimental results section, this
need not always be the case in practice, causing difficulty
in applying an SA algorithm.

4. Convergence of the SPSA algorithm

The focus of our work is not on theoretical convergence
issues. However, some of the issues that arise in the the-
ory are also of practical consideration in applications. In
this section we discuss the key issues, and then sketch a
proof for one of our examples, the single-server queue.
The basic convergence requirements place conditions on
the following (cf. [17]):

(1) objective function J(8) (differentiable and either
convex or unimodal);

(2) step-size sequence {a, };

(3) bias and variance of gradient estimate g,.

Let
bn - E[gn|0nasn] - VJ(On)a (9)
€, = gn —E[anmsn}, (10)

i.e., b, and e, are the bias and the noise, respectively, in
the gradient estimate. In the case of SPSA, the bias and
variance requirement translates into conditions on the
following:

e noise sequence {e,};
o difference sequence {c,} for the gradient estimate;
e simultaneous perturbation sequence {4,}.

Traditional finite-difference methods have similar condi-
tions, except for the obvious absence of the last sequence.

Denote the gradient of E[L(6,,®)] by g, = VE[L],
where E[L] is assumed continuously differentiable on 6.
Then for the SP gradient estimator g, of g,, we have the
following lemmas concerning the corresponding bias and
noise terms (see also [2]):

Lemma 1. Assume {(4,);} are all mutually zndependent
with zero mean, bounded “second moments, and E|(4,); !
uniformly bounded on @. Then b, — 0 w.p. 1.
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Proof. Expressing the expectation of the SP gradient
estimate (4) as a conditional expectation on 4,,, and using
Taylor’s theorem to expand E[L;] and E[L, ] as defined by
(5) and (6), respectively, we write

E[(gn);] o
Bl = e )

_ [EILf 145 L |4,]

- E[ 2c,, n) }

B [L(6, + c,,A,,, w)] — E|L(68, — cadn, »)]

_E[ 2¢,(4n),; }
[(E[L(6r, ®)] + gy Anc + O(45¢2))

_E — (E[L(0n, )] — gy Anca + O(43¢2))

B 2¢,(4);

_ [g¥4,  O(Aic,)

~ T @, }

N e 0<C”E @,

= (gn); + Olcn),

where the superscript T denotes the transpose operator.
The last step follows from the conditions that
{(4n),) # i} have zero mean and are independent of
(4,),» E|(4,)7"] is uniformly bounded, and {(4 »);} have
bounded second moments. Applying the deﬁnltlon of b,

given by (9), the result then follows since ¢, — 0.

Remarks. Our result differs slightly from Lemma 1 in [2].
We require weaker conditions, because we are consider-
ing a constrained optimization problem on a compact set
O and because we do not achieve O(c2) bias. As a result,
the existence of third derivatives is not needed, and the
perturbatlons need not be symmetrical (which would give
E[(4 ) ] = 0 in the proof).

Lemma 2. Let L(6,,w) have umformly (in @) bounded
second moments, and E[|(4,);|” %] be uniformly bounded on
©. Then Elele,] is O(c;?

Proof. Since L(6,,w) has uniformly bounded second
moments, similar arguments used in the proof of Lemma
1 can be used to establish that the conditional variance of
(Gn); is O(c;2(4,)7%). Applying the definition of e, given
by (10), the result follows from the assumption that
E[|(4,),]™?] is uniformly bounded.

One form of a general convergence result is the fol-
lowing:
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Proposition 1 [7]. For the SA algorithm (2), let 3 -
a, =oc. If

(1) J(0) is differentiable for each 0 € ©, and either
convex or unimodal,
@) b, — 0 w.p. 1; and
(i) 320 | Elefe)a? < co wp. 1;

then 6, — 6" w.p. 1.

In practice, it may be difficult to verify the conditions on
the objective function, since simulation is applied to those
systems for which analytical properties are not readily
available. In our transportation application, there are
potential discontinuities in the objective function due to
the nature of the underlying system. Even for the simple
single-server queue example, convergence proofs require
a significant amount of analysis of the system [18].

There are also issues specific to the application to
stochastic discrete-event systems (e.g., {7, 9, 10, 18-23].
Optimization problems for these systems fall into two
general classes:

o finite-horizon problems;
o steady-state (infinite-horizon) problems.

The two queueing examples are steady-state problems,
whereas the transportation application is a finite-horizon
problem (the horizon being a day). Steady-state problems
are more difficult, because they introduce two sources of
bias:

(1) finite-difference estimate for a gradient;
(2) finite-horizon estimate for a steady-state perfor-
mance measure.

Finite-horizon problems are easier to handle, since the
second source of bias is absent. In fact, to handle the
second source of bias in steady-state problems often re-
quires that the observation length #, increase with n
without bound [18]. An alternative is to use regenerative-
based estimators that take the observation length as some
multiple of regenerative cycles, e.g., busy periods in a
queue. These types of estimator also allow for simpler
convergence proofs [9]. We now sketch such a proof for
the single-server queue example, largely following
L’Ecuyer and Glynn [18].

Let

N(6,w) = the number of customersin a busy period,(11)

N
H(8,w) = Z T; = the sum of customer system times in
a busy period, (12)

where 7j is the system time of the jth customer in a busy
period. We drop the explicit dependence of N on ¢ and w
for notational brevity. Note that there is no dependence
of N and H on an initial state, since all busy periods start
empty. For the stable single-server queue, we have the
well-known regenerative result (cf. [18]):

j=1
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E|T] = E[H]/E[N].
Taking the gradient,
__ EIN)VE[H] — E[H|VE[N]

VELT = EV)? ’

we consider the problem of finding the zero of

(EIN)?V = EIN|VEIH] — EIHVEI] - VD),
which is equivalent to finding the zero gradient of (7). The
reason for this transformation is that we can then avoid
the question of the bias in estimating steady-state per-
formance over a finite horizon. A new estimator taken
over two separate busy periods, one with 6: =0, +c,a,
and the other with 6, = 0, — ¢,4,, would be of the form

H' —H- Nt — N
g,), = 24— 2 N~ —H_"—L—N+N*C,~
(g )1 2cn<An)i n n 2Cn(An),- n'in
HIN —H N
— _n’'n n'n —N+N_C,',
2c,(4y); mon

where H =H(07,w}),H  =H(0, ,w;),NJ=N(0], o),
and N, =N(0,,0;).

Lemma 3. HX and N} have uniformly (in ©) bounded
second moments.

Proof. This follows from Proposition 8 in [18], as the
U((6), — (9),,(6); + (6),) distribution satisfies Assump-
tions A(i) and B there, being uniformly bounded and
having uniformly bounded second moments.

Proposition 2. Suppose

e8]

o) 2
Zan = 00, Z<ﬁ> < oo, and E[|(An)il_2:|
n=1 n=1 Cn

is uniformly bounded on ©. Then for the SPSA algo-
rithm applied to the MU/ queue problem, 0, — 0" w.p. 1.

Proof Sketch. Following closely the proof of Proposition
4 in [18], we consider each of the three conditions in
Proposition 1. Condition 1 is proved as Propositions 15
and 19 there. For Condition 2, Proposition 15 there es-
tablishes that E[N| and E[H] are continuously differen-
tiable, uniformly on @, so the result follows from
Lemma 1. Finally, Lemmas 2 and 3 and the assumption
that E[|(4,),] % is uniformly bounded imply that E[e]e,]
is O(c?). The last result and the assumption of square
summability of the ratio a,/c, imply Condition 3.

Remark. Although the proof was carried out for our
uniform distribution example, similar arguments hold for
any distribution satisfying Assumptions A(i) and B of
[18].
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5. Experimental results

We now return to the examples of Section 3, for which we
performed numerical experiments using the SPSA algo-
rithm. Implementation of SPSA requires three sequences:
the step-size multiplier sequence {a,}; the difference se-
quence {c,} for the gradient estimate; and the vector of
simultaneous perturbations sequence {4,}. The first two
must be positive sequences converging to zero at the
appropriate rate. In our experiment we took a, = a/n”
and ¢, = c/n/‘, where o, f, a, and ¢ are constants to be
selected, subject to « < 1 and a — f > 0.5, to satisfy the
conditions of Proposition 2. For the {4,} sequence, we
took i.i.d. symmetric Bernoulli random variables, i.e.,
P(4,=1)=P(4,=-1)=10.5, in all of our simulation
experiments, following [2].

5.1. Single-server queue

For the single-server queue example, we compared the
SPSA implementation with SA implementations utilizing
finite-difference (both one-sided and symmetric) gradient
estimates and PA estimates that require only a single
simulation per estimate. We considered six sets of values
of C; and C,. Table 1 gives the resulting optimal values
and the corresponding values of the objective function
and the two partial second derivatives, from which the
value of a is determined, as described in the next para-
graph. As noted in [15], for some values of C; and (5, the
theoretical optimal solution could lie arbitrarily close to
the boundary of the constraint set. The minimum occurs
at a zero gradient point if C; > 6C§ +3C; + 1, a condi-
tion satisfied in all six of the cases we considered. In this
case, the minimum occurs at

o - (1 1 3G\ 1
- ( Vi ﬁ) A
Further implementation values are as follows: 4 = 1;
¢ = 0.001; starting point of 8; = (0.5,0.3); 100 customer
completions per SA iteration; 1000 iterations per repli-
cation (total budget of 100000 customers/replication); a
equal to geometric mean of second derivatives (approxi-
mated to one significant figure); 40 independent replica-
tions. In general, of course, the parameter a could not be

k=2C; -3C3—1. (13)

Table 1. Optimization cases for M/U/1 queue (4 = 1)
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calculated ‘optimally’ in advance, since the objective
function is unknown.

Since analytical results are available, performance of
the algorithms was measured by the value of J(6,), lower
being better. The results are summarized in Table 2. The
headings SDSA, FDSA, and PASA refer to stochastic
approximation algorithms based on symmetric differenc-
es, one-sided (forward) finite differences, and perturba-
tion analysis, respectively; the starting objective function
value and the minimum objective function value are in-
cluded in the left-hand column as benchmarks. The table
gives the mean of the estimated minimum = standard
error (SE), based on 40 independent replications, for the
algorithm after 500 customers simulated and after 1000
customers simulated. In terms of simulation budget, the
n = 1000 case of SPSA corresponds approximately to the
n = 500 case of SDSA, since each iteration of SDSA
requires twice (p = 2) as many simulations as each iter-
ation of SPSA. In this limited set of cases, SPSA per-
forms comparably to the other techniques. Compared
with the finite differences, it does so with half as many
computations.

5.2. Queueing network

We considered two cases: a symmetric case with deter-
ministic service times, and an asymmetric case with ex-
ponential service times. We chose these two cases because
analytical optima can be determined to evaluate the
performance of the algorithm. We considered a network
of five stations (N = 5), took 1/4 =8 as our mean in-
terarrival time, and constrained the total of the mean
service times to be K = 20.

In the balanced case, there were N possible customer
process routes that were cyclic and complete (i.e.,
1—2—...—N,2—3— ... —N-—1,.-+), and each
route was equally likely to be chosen (w.p. 1/N). By
symmetry, the optimal solution is the balanced solution
6" = (K/N,...,K/N). We considered two sets of starting
values for the parameters: 60; =(1,7,2,5,5), and
0 = (4,4,4,4,4), the latter actually being the optimum.
Note that since service times are deterministic, the only
randomness in the system comes from the interarrival
times.

Case C C, 6 J(0) (V3(8Y), (V2J(67)), a
1 1.28125 0.00125 0.2  0.003 -0.03125 1.953 0.4167 1.0
2 1.28969 0.075 0.2  0.180 -0.03969 1.974 0.4167 1.0
3 25 0.002 0.5 0.003 -0.5000 8.000 0.6667 0.4
4 2.6536 0.32 0.5  0.480 -0.6536 8.614 0.6667 0.4
5 13.0 0.005 0.8  0.003 -8.000 125 1.6667 0.1
6 15.535 1.3 0.8  0.780 -10.535 150 1.6667 0.1
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Table 2. SA results: J(6,) as a function of the number of iterations, n, mean = SE
Case SPSA(n) SDSA(n) FDSA(n) PASA(n)

J(61)/J(0%) 500 1000 500 1000 500 1000 500 1000
+0.139 -0.0299 -0.0294 —-0.0309 -0.0311 -0.0309 -0.0311 —-0.0309 -0.0311
-0.03125 +0.0003 10.0004 +0.0002 +0.0001 +0.0002 £0.0001 +0.0002 30.0001
+0.112655 -0.0394 -0.0396 —-0.0390 -0.0393 -0.0391 —-0.0394 -0.0392 -0.0395
-0.03969 +0.0001 +0.0000 +0.0019 10.0012 +0.0014 +0.0007 +0.0013 +0.0007
—-0.4706 —0.4902 —-0.4905 —0.4983 —-0.4987 —-0.4983 —0.4988 —0.4982 —0.4987
-0.5000 +0.0056 +0.0049 10.0015 +0.0011 +0.0013 +0.0009 £0.0015 +0.0011
—0.6428 —-0.6522 —-0.6527 —-0.6526 -0.6528 -0.6524 —-0.6526 -0.6524 —0.6526
-0.6536 +0.0013 10.0008 +0.0011 +0.0008 +0.0018 +0.0014 +0.0019 £0.0014
—5.7215 —7.840 —7.824 -7.911 -7.903 -7.911 -7.903 -7.911 -7.903
—8.000 +0.101 +0.108 +0.046 +0.040 +0.047 £0.040 +0.046 +0.040
-7.3775 —-10.346 -10.329 -10.380 -10.359 -10.379 —-10.358 -10.379 -10.358
-10.535 +0.089 10.084 +0.083 +0.078 +0.084 +0.078 +0.084 +0.078

For the asymmetric case, there were two possible cus-
tomer process routes, each occurring with probability 0.5:
1—2—3—4—5, or 2—5—3. Since the service
times are exponential, the analytical performance can be
found by solving the appropriate traffic equations, and
applying the usual steady-state M /M /1 queue formulas.
Via Mathematica [24], the optimal assignment for this set
of parameters turns out to be (6),= (6),=40/7,and
(0), = (6); = ()5 =20/7.

In addition, we took a=0.08 and ¢ = 1. Iteration
updates were done after every 20, 100, or 500 customer
departures from the system, with the number of iterations
fixed so that the total number of customer departures
totaled 20000. The technique of common random num-
bers was not employed, and common states were not
enforced for the beginning of the positive and negative
perturbation runs. The following projection algorithm
was implemented when the update given by (2) took 0
outside of the feasible set @: project x %(0 < x < 100) of
the way — as measured in the parameter direction most

Table 3. Optimization results for network example with deterministic service times: 6" =

violated — to the boundary. A value of x = 90 was used in
our experiments. In addition, to avoid stability problems,
the upper limit of the feasible region @ was diminished by
a factor of 0.98.

Tables 3 and 4 summarize the results of a simulation
study for the network examples, based on 10 replications
for each example. It appears that taking a large number
of customers per observation with a fewer number of
resulting iterations works better for these network cases
than the converse.

We next considered a larger 10-station asymmetric case
with three classes of customers and K = 40:

1 —2—3—4—5— .. —10 w.p. 0.2;
2—5—3 w.p. 0.5;
3—1—8—10 w.p. 0.3.

Iterations were taken over a fixed customer observation

horizon of 500 customers. As before, technically this
horizon should increase with the number of iterations in

(4,4,4,4,4)

No.of customers/

0, at total number of customers simulated: mean +SE

iteration
o 10000 20000
4,4,4,4.4) 20 393 3.67 427 4.19 3.95 3.75 4.04 3.95 4.36 3.90
+0.35 +0.70 +0.66 +0.51 +0.42 +0.42 +0.46 +0.88 +1.31 +0.53
100 4.09 3.94 4.07 3.89 4.01 4.09 3.80 4.07 3.96 4.07
+0.39 +0.34 +0.42 +0.37 +0.30 +0.29 +0.29 +0.22 +0.22 +0.20
500 4.00 4.01 4.03 4.04 3.92 3.96 3.92 4.14 4.06 3.93
+0.38 +0.50 +0.45 +0.39 +0.50 +0.40 +0.46 +0.36 +0.30 +0.24
(1,7,2,5,5) 20 1.78 6.35 3.22 4.44 4.21 1.61 6.07 3.15 4.16 5.02
10.93 +1.01 *1.15 +1.04 +0.70 +0.67 +0.97 t1.11 +1.41 +1.24
100 2.61 4.85 2.97 4.73 4.84 2.78 5.07 2.79 4.70 4.66
+1.35 +0.82 +1.29 +0.46 +0.54 +1.53 + 0.57 +1.52 +1.02 +0.81
500 2.62 493 3.47 4.68 431 2.09 5.18 3.14 4.65 4.94
+1.53 10.73 +1.72 +0.71 +1.08 +1.19 +0.26 +1.40 +0.65 +0.54
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Table 4. Optimization results for network example with exponential service times: §* = (40/7,20/7,20/7,40/7,20/7)

No. of customers/

8, at total number of customers simulated: mean +SE

iteration
6, 10000 20000
(4,4,44.4) 20 4.07 4.34 3.57 5.12 2.89 5.47 3.73 3.28 4.33 3.20
+1.20 +1.82 +1.90 +1.42 +1.28 +1.48 +0.83 +1.51 +1.23 +1.01
100 443 3.52 3.37 5.63 3.05 5.11 3.00 3.29 5.43 3.16
+1.19 +0.83 +0.74 +1.21 +0.53 +1.03 +0.63 +0.50 +1.47 +0.79
500 5.40 3.32 3.03 5.11 3.14 4.99 3.38 3.32 4.68 3.62
+1.27 +0.83 +0.90 +1.64 +0.57 +0.86 +0.58 +0.47 +1.11 +0.38

order to achieve convergence. Via Mathematica, the
optimal assignment for this set of parameters turns out to
be: (6);=1.33971,(0),=(0)s=1.91388,(0), =(0)s=(0),
=2.67943,(0), = (0) = (0); = (0)y = 6.69856, with an
objective function value of 48.046. The results shown in
Table 5 include the objective function evaluated at the
beginning and the end of each replication, indicating the
improvement,

5.3. Transportation application

We considered a four-line transit network model that
consists of transit lines traveling in four directions on a
grid: east, west, north, and south. These four lines are
represented by the two bi-directional routes in Fig. 1: an
east-west route and a north-south route. There are just
three stops on each line: an origin point, a potential
transfer point that we will call the center point, and a
destination point. Bus travel between stops is represented
by eight different traffic ‘links’ labeled in Fig. 1 on the
four bi-directional segments of two links each. Hence-
forth we will refer to the transit vehicles as ‘buses’ and the
transit lines as ‘bus lines.” We built a simulation program
of the transit network using the SIMAN simulation

language, and then attached the SPSA optimization shell
to it.

We considered first a very simple experiment where
only N = 4 customers rode in the entire day, one at each
of the origin points, with routes chosen randomly. We
chose a fixed headway of K; = 10, uniformly distributed
bus travel times, and considered various arrival time
distributions, starting with deterministic arrivals: all four
customers arriving exactly at time 10. However, the op-
timization scheme failed in this case. A little thought re-
veals that the objective function is insufficiently smooth.
Uniform distributions also fail to meet the objective
function smoothness requirement, so we used triangular
distributions that are in some sense the minimally
smoothest distributions, as the objective function is then
continuously differentiable, with discontinuities in the
second derivative. All arrival times were at time
TR(9,10,11), with bus travel times also TR(9,10,11),
where TR(k, k2, k3) indicates a triangular distribution
with minimum value k7, maximum value k3, and mode k,.

Example 1. We conducted simulation experiments using
three different step sizes for each of the two sequences:
a=1.0,3.0,10.0 and ¢ = 1.0,0.5,0.1; two different start-

Table 5. Optimization results for network example with 10 stations and exponential service times: g = (2.67943, 1.91388, 1.33971,
6.69856, 1.91388, 6.69856, 6.69856, 2.67943, 6.69856, 2.67943), J(0) = 48.046, 0, = (4,4, 4,4, 4, 4, 4, 4, 4, 4), J(0)) = 54.0855

Rep. 8, after 1000 iterations of 500 customers each: mean J(6,)
1 4.78 1.76 0.27 7.96 2.67 7.60 4.49 2.30 4.26 3.90 49.7
2 1.46 1.92 0.05 7.98 1.11 7.72 4.85 3.76 7.98 3.18 49.1
3 2.56 1.10 0.03 7.89 1.03 7.12 5.37 4.56 7.97 2.37 49.2
4 3.03 1.65 0.11 7.82 1.38 7.93 6.48 0.24 7.91 3.46 49.2
5 3.93 1.59 0.14 4.04 1.44 7.99 7.90 2.55 7.98 2.43 49.1
6 4.02 1.99 0.10 7.89 1.44 6.99 5.35 0.67 7.83 3.73 49.3
7 3.21 1.59 0.15 7.82 1.32 6.78 5.94 3.14 7.83 222 48.6
8 2.77 0.84 0.15 6.60 1.35 7.79 7.14 1.40 7.97 3.99 49.0
9 1.87 0.19 0.22 7.89 1.53 7.99 6.72 3.57 7.85 2.17 49.1

10 248 1.57 0.24 7.98 0.36 7.92 6.42 4.02 7.80 1.20 49.2

Mean 3.01 142 0.15 7.39 1.36 7.58 6.07 2.62 7.54 2.87 49.15

SE 0.32 0.17 0.03 0.39 0.18 0.14 0.34 0.46 0.37 0.29 0.03
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Fig. 1. Schematic of four-line traffic network: link ‘i;” is the jth
link on the ith line.

ing points for the offset times: §; = (9,9,9,9), (9,7,13,11);
two different values for the exponent of the finite-differ-
ence step size: « = 1.0, 0.751 (the second value is one
recommended by Spall [2] in conjunction with the § value
following); and a single value for f=0.25 and
©® = (0,19). The results after 500 SPSA iterations are
given in Tables 6 and 7, where the estimated values of the
objective function are given with half-widths of 95%
confidence intervals. At 6; = (9,9,9,9), the 95% confi-
dence interval for the mean waiting time is 6.73 & 0.32. At
6, =(9,7,13,11), the average wait is approximately
5.62 4+ 0.05. Based on the analysis of the last section
(which was not complete, as it did not consider the
transfers), the optimum was guessed to be at
6" = (10.9,10.9,10.9, 10.9), which yielded the 95% confi-
dence interval for the mean waiting time of 2.19 £ 0.29.
The best results for the parameter values occur at
a=c=1.0, with « =0.751, yielding estimates of the
average wait that have lower means than the estimate for
the optimum; however, the confidence intervals overlap,
so the experiments were not statistically conclusive.

Example 2. This differs from Example 1 only in the number
of customers simulated, which was increased from 4 to 80
(20 on each line). We fixed @ = 1.0 for all the runs, and just
considered the first starting point 6; = (9,9,9,9); other-
wise, we again used the same system parameter values as in
the previous example. Table 8§ gives two sample runs of the
algorithm after 500 SPSA iterations, where the estimated

Table 6. Transportation example 1 results: 95% confidence
intervals for E[W] at 6sp0; EW]=673£032at6,=(9,9,9,
9y, E[W] =2.1940.29 at 8" = (10.9, 10.9, 10.9, 10.9); § = 0.25

a
o c 1.0 3.0 10.0
1.0 1.0 3.01 £0.19 3.03 £ 0.16 4.21 £ 0.06

0.5 2.10 + 0.20 217 £0.20 491 £ 0.07
0.1 232 £0.16 273 £0.24 3.87 £ 0.07
0.751 1.0 2.04 £ 0.15 4.10 £ 0.19 5.45 £ 0.05
0.5 2.43 £ 0.07 298 £ 0.13 5.36 £ 0.04
0.1 3.41 £0.33 4.48 + 0.07 5.78 £ 0.05
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Table 7. Transportation example 1 results: 95% confidence
interva*ls for E[W] at Os00; 0, = (9, 7, 13, 11); EW] =562+
0.05; 6" = (10.9, 10.9, 10.9, 10.9); E[W] =2.19 £0.29; § = 0.25

a
o c 1.0 3.0 10.0
1.0 1.0 3.04 £ 0.21 2.97 £ 0.04 4.75 + 0.07

0.5 4.04 = 0.20 349 = 0.05 4.96 £ 0.05
0.1 3.25+0.16 523 £0.33 3.65 = 0.05
0.751 1.0 2.10 £ 0.18 3.31 £0.21 425+ 0.15
0.5 342 £0.16 3.96 £ 0.05 3.82 £ 0.11
0.1 3.84 + 0.08 3.96 £ 0.05 4.44 + 0.04

values of the objective function are given with 95% confi-
dence half-widths. At 6; = (9,9,9,9), the 95% confidence
interval for the mean waiting time is 5.80 £ 0.18. Since
only 500 iterations of the algorithm have been carried out,
convergence has not yet been achieved, and so randomness
in the outcomes is to be expected. The important obser-
vation is that both random samples show substantial im-
provement from the initial values. The final values for the
offsets in the two best results in Table 8 («x = 1.0, ¢ = 1.0,
and ¢ = 0.5) were 0500 = (11.60,10.86,11.56,10.94) and 659
= (11.34,10.64, 11.52,10.78), which are quite close to the
guessed optimal of 6% = (10.9,10.9,10.9,10.9). In fact, in
these two cases, the estimated performance was better than
the guessed optimal.

Example 3. Here, we employed the suggestions of Spall
[2] in choosing the settings of the parameters a, ¢, , §, but
otherwise, everything is the same as in the previous ex-
ample. We took «=0.602,=0.101, and a=c=1.
Table 9 gives the results for 10 different seed sets, all after
500 iterations. Again, substantial improvement is
achieved.

6. Conclusions

We have applied the technique of SPSA to the optimi-
zation of discrete-event systems via simulation. The

Table 8. Transportation example 2 results: 95% confidence in-
tervals for E[] at 0500; f?[W] =580+0.18at 8, =(9,9,9,9);
E[W]=246+0.16 at 0 = (10.9, 10.9, 10.9, 10.9); p = 0.25;
a=10

c

Seed set o 1.0 0.5 0.1
1 1.0 299 +0.12 3.03 £ 0.10 4.34 £ 0.05
0.751 3.53 £ 0.07 3.45 % 0.07 5.07 £ 0.13
2 1.0 2.03 £ 0.10 2.07 £ 0.13 4.01 £0.05
0.751 4.10 £ 0.07 3.25 £ 0.07 3.75+0.13




242

Table 9. Transportation example 3 results: 95% confidence in-
tervals for E[W] at Osop; E[W] = 5.76 £0.12 at 6; = (9,9, 9, 9);
EW]=245+0.10 at 0 = (11, 11, 11, 11} o=0.602;
f=0101;a=c=10

Ré’p. 0500 E[W]
1 11.83 11.01 11.89 10.99 2.06 £ 0.07
2 11.95 10.89 11.74 10.96 2.08 £ 0.08
3 11.21 10.83 11.65 7.25 3.03 £ 0.07
4 11.05 8.29 10.97 6.63 3.86 £ 0.06
S 12.02 10.80 11.62 11.00 2.17 £ 0.08
6 1.66 11.00 12.06 11.00 2.07 £ 0.07
7 11.24 10.88 11.70 6.50 3.04 £ 0.07
8 11.92 10.98 12.02 11.04 2.11 £ 0.07
9 12.06 11.03 12.05 10.99 2.12 £ 0.06
10 10.93 6.35 11.11 6.57 3.94 + 0.07

Mean 2.65

technique offers significant computational savings over
traditional finite-difference methods and is applicable to
any system that can be simulated. The primary purpose
of this paper was to introduce this technique to the dis-
crete-event simulation community. We considered three
different discrete-event systems and conducted experi-
ments to investigate the viability of the technique. The
simulation results, though not comprehensive, were very
promising and should help encourage further experi-
mental and theoretical work on the application of SPSA
to the optimization of discrete-event systems.
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