
Generating Exact D-Optimal Designs for Polynomial Models

Jacob E. Boon
Operations Assessments Group

National Security Technology Department
The Johns Hopkins University Applied Physics Laboratory

Laurel, MD 20723
Email: jacob.boon@jhuapl.edu

Keywords: Optimal experimental design, mathematical
optimization, general linear regression

Abstract
 This paper compares several optimization algorithms
that can be used to generate exact D-optimal designs (i.e.,
designs for a specified number of runs) for any polynomial
model. The merits and limitations of each algorithm are
demonstrated on several low-order polynomial models, with
numerical results verified against analytical results. The
efficiencies – with respect to estimating model parameters –
of the D-optimal designs are also compared to the
efficiencies of one commonly used class of experimental
designs: fractional factorial designs. In the examples
discussed, D-optimal designs are significantly more efficient
than fractional factorial designs when the number of runs is
close to the number of parameters in the model.

1. INTRODUCTION

In simulations and experiments where little is known
about the underlying function relating the independent
variables to the dependent variable, a polynomial model is
often used to approximate the behavior of the computer
simulation or real-world system. One common example of
this approach is variable screening tests, where a
multivariate linear model is used to identify the handful of
independent variables – out of a potentially huge set of
variables – that have a systematic effect on the dependent
variable. Another application of polynomial models is
response surface modeling, where a polynomial surface is
used as an approximation of the true function in order to
reduce the computational load of function optimization. In
other contexts, there may be reason to believe that a
particular polynomial model represents the true relationship
between the inputs and output. The techniques discussed in
this paper apply to all cases where a polynomial relationship
between independent and dependent variables is assumed.
Although the researcher may be interested in characterizing
the bias error of the polynomial model (see [Goel et. al.
2006], for example), in many cases the goal of the
experiment is simply to minimize the post-experiment
uncertainty in the model parameters. In such cases, it is

prudent to design the experiment based on the D-optimal
criterion.

Polynomial models are of the form

k
T
kk vz += θh k = 1, …, n,

where n is the number of simulation runs; vk represents
constant variance, mean-zero, uncorrelated process noise;
hk = g(xk) is the p-dimensional design vector (which is a
function of the vector input x for the kth simulation run); θ is
a p-dimensional vector of regression coefficients; and zk is
the kth simulation output. The form of the design vector hk
is determined by the specific regression model being used.
For example, if the model includes an intercept, linear term,
and quadratic term for a single factor (independent
variable), then xk will be a scalar and hk = [1 xk xk

2]T. In
order to be a polynomial model, hk must consist only of
multiplicative combinations of the factors to various powers
(e.g., x1

3, x3, x2x5
2, etc.). The n input vectors are chosen

from N ≤ n design points (X1, X2,…, XN) in the space of
possible input combinations. Although we will consider
only hypercube design spaces, some of the techniques
considered in this paper can easily be extended to more
general design spaces that one might encounter in practice.
The choice of input vectors at various design points is
summarized by the concept of a design, denoted

ξ ≡ X1 X2 XN
w1 w2 wN

…
…ξ ≡ X1 X2 XN

w1 w2 wN

…
… ,

where wi represents the proportion of total runs executed at
design point Xi. Being a set of proportions, we constrain the
wi to satisfy

1
1

=∑ =

N

i iw .

For finite-sample designs, note that wi n must be a natural
number.

In this context, one of the most common goals of
experimental design is to identify a design ξ that minimizes
the post-experiment uncertainty in the p parameter
estimates. More formally, the goal is to choose ξ such that
volume of the p-dimensional confidence ellipsoid for θ is
minimized. This can be accomplished by choosing ξ such

SpringSim '07 Vol. 2 121 ISBN 1-56555-314-4

mailto:jacob.boon@jhuapl.edu

that det[HTH] is maximized, where H is the pn × matrix
with the ith row equal to hi (see, for example, [Spall 2003]
pp. 471-472). A design that maximizes det[HTH] for a
fixed number of runs is referred to as an exact D-optimal
design. Regardless of the specific form of the regression
model (i.e., regardless of the specific form of the hk), the
matrix H has d = n f degrees of freedom, where f is the
number of factors. Thus, the problem of choosing the best
design can be cast as a minimization problem, where the
dimension of the search space is d and with loss function
L(μ) = −det[HTH] (μ is the d-dimensional vector of input
levels for each factor in each run).

Even for relatively small n and f, the dimension of the
search space d quickly becomes quite large. For example, if
n = 10 and f = 2, then d = 20. This makes identifying a
global minimum of L(μ) for large n and large f difficult.
The challenge of obtaining an exact D-optimal design for
general n, f, and polynomial regression model is one of the
reasons researchers rely so heavily on classical methods of
experimental design (e.g.,. fractional factorial designs). In
the following sections, we examine a few specific examples
that test the limits of several optimization algorithms in
identifying D-optimal experimental designs.

2. OPTIMIZATION ALGORITHMS

The application of numerical techniques to the problem
of identifying exact D-optimal designs is not new. Chapter
15 of [Atkinson and Donev 1992] describes several
algorithms that have been applied in this context. One such
class of algorithms, called exchange algorithms, involves
three steps: (1) the generation of a list of M candidate points
in the design space, (2) the generation of an initial design
typically based on the M candidate points, and (3) iterative
updates of the initial design through changes in the design
weights wi (i = 1,…,M) with the goal of improving the
design with respect to the D-optimal criterion. Matlab’s
statistics toolbox contains two implementations of such
exchange algorithms: rowexch and cordexch. Both
functions generate the same default list of candidate points:
the set of 3f factorial points at levels −1, 0, and 1 for
quadratic models, and the set of 2f factorial points at levels
−1 and 1 for linear models. Polynomial models of order
greater than order two are not handled by rowexch and
cordexch. The default initial design for both functions is
generated by selecting each of the d inputs from a uniform
distribution over [−1,1]. This represents a departure from
most exchange algorithms, which typically choose an initial
design based on the list of carefully chosen candidate points.
The two Matlab functions differ, though, as to how the
initial design is updated. In the case of rowexch, the
algorithm evaluates the utility of replacing each point in the
initial random design by one of the points in the set of M

candidate design points. The algorithm sequentially
replaces each of the design points by the candidate design
point that leads to the largest gain in det[HTH], if any gain
is possible. The exchange portion of cordexch works
similarly, although this algorithm works at the component
level, treating each of the f inputs in each of the n runs
separately.

In addition to these exchange algorithms, we will
consider three well-known optimization algorithms: Blind
Random Search (BRS), Localized Random Search (LRS),
and Simultaneous Perturbation Stochastic Approximation
(SPSA).1 Knowing that the efficiency of BRS is poor even
when the dimension of the search space is only moderately
high (e.g., more than four or five in many applications), this
algorithm serves primarily as a baseline upon which to
improve. LRS search is well-suited to a problem of this
type, where loss function evaluations are noise-free and the
appropriate choice of random search vectors ensures that
one will not get stuck at a local minimum. It is also natural
to apply SPSA in this context, since the randomness in
search direction and magnitude, like LRS, ensures that
SPSA will not get stuck at a local minima. SPSA has the
additional feature of using a noisy approximation of the loss
function’s gradient to guide the direction of its search. Note
that although SPSA’s stepwise approximation of the loss
function is noisy, each individual loss function measurement
is noise-free.

Before discussing results, a few words about the
particular implementation of LRS and SPSA used here.
LRS works by perturbing its estimate of the optimal θ using
a random search vector at each iteration and checking for
improvement in the loss function. To allow LRS converge
more rapidly in the latter stages of its search, the variance of
the random search vector generated at each iteration is
reduced from 0.025 to 0.01 after 70% of its computation
budget is exhausted. Similarly, the parameters that control
how fast SPSA’s gain sequences decay are changed from
the standard α = 0.602 and γ = 0.101 to the asymptotically

1 For details on these algorithms, see [Spall 2003] Chapter 2
(BRS and LRS) and Chapter 7 (SPSA).

ISBN 1-56555-314-4 122 SpringSim '07 Vol. 2

Table 1. det[Halg
THalg] / det[Hoptimal

THoptimal] for various approaches. Results apply to a quadratic regression with two factors.

n BRS LRS SPSA SPSA best rowexch cordexch

6 0.190 0.999 0.996 1.000 0.956* 0.983

7 0.163 0.999 0.996 1.000 0.979* 0.994

8 0.172 0.997 0.991 1.000 0.976* 0.997

9 0.130 0.999 0.973 0.999 1** 1**
* Equivalent to a fractional factorial design; ** Equivalent to a full factorial design

optimal α = 1 and γ = 1/6 after 70% of its computational
budget is exhausted.2 Since the loss function associated
with SPSA’s estimate is not, in general, monotonically
increasing from iteration to iteration, it is possible that
SPSA may happen across the optimal design (or a design
arbitrarily close to it) and then proceed to search among
lesser designs in future iterations. For this reason, we will
also consider the best design SPSA generates across all
iterations. This estimate will be referred to as ‘SPSA best,’
and computing it requires making an extra loss function
measurement at each iteration of SPSA. Apart from the few
exceptions noted here, the implementations of BRS, LRS,
and SPSA used in this paper are standard.

3. QUADRATIC REGRESSION WITH TWO

FACTORS
In this section, we consider the most general second-

order polynomial, but in order to compare with known
solutions, we limit ourselves to two factors. Thus, our
regression model is

vxxxxxxz += θ],,,,,1[21
2
22

2
11 ,

where x1 and x2 are scalars such that −1 ≤ x1, x2 ≤ 1,3 and θ
is a 6-dimensional vector of regression coefficients.

[Box and Draper 1971] solved the problem of
generating an exact D-optimal design for this regression
model when the number of simulation runs n = 6, 7,…,18.
According to these authors, the D-optimal designs for each
n were obtained via a computer hill-climbing search. Exact
D-optimal designs for n = 6,…,9 are as follows:

2 See [Spall 2003] p. 190 for a discussion of reasonable
choices for α and γ, including the recommendation to
convert α and γ to their asymptotically optimal values at
some point in the search.
3 The D-optimal criterion has the desirable property of
transform invariance. That is, a D-optimal design for each
factor ranging between −1 and 1 is also a D-optimal design
after the range of each factor undergoes a linear
transformation (with design points scaled in the same way,
of course).

n = 6: (−1, −1), (1, −1), (−1, 1), (−δ, −δ), (1, 3δ), (3δ, 1),
where δ = (4−√13)/3 = 0.1315;

n = 7: (±1, ±1), (−0.092, 0.092), (1, −0.067), (0.067, −1);
n = 8: (±1, ±1), (1, 0), (0.082, −1), (0.082, −1), (−0.215, 0);
n = 9: the 32 factorial at levels −1, 0, and 1.

For their own independent searches, BRS, LRS, and
SPSA were each given a sizeable budget of 106 (1 million)
loss function evaluations. Note that, since the computation
of ‘SPSA best’ requires an extra loss function measurement
at each iteration, ‘SPSA best’ is really the result of 1.5
million loss function evaluations. Since the number of loss
function measurements made during each call to rowexch
and cordexch varies, it is impossible to assign them the
same fixed computational budget. To cope with this, we
store the best design across 10,000 replications of rowexch
and cordexch. In this way, the runtime of each of the five
algorithms is roughly the same. The results of these
searches are summarized in Table 1.

Although rowexch is able to incorporate design points
in its initial random design (generated in exactly the same
way that BRS generates its candidate designs), it never did
so in this experiment. Thus, out of 10,000 initial random
designs, none of the design points were better suited to the
problem of estimating the optimal θ than the points in the 32
factorial space. As a result, rowecxh simply generated the
best fractional factorial design for each n. On the other
hand, the component-wise exchange in cordexch did find
design points better suited for estimating θ. In this way,
cordexch generated designs more efficient than the
fractional factorial designs.

As expected, BRS is unable to cope with the high
dimensionality of the search space (in this example, the
dimension is between 12 and 18). On the other hand, there
is nothing stopping BRS from stumbling upon an excellent
design – it just may take billions (or more!) iterations. We
also observe that LRS performs very well, considering the
lack of directionality in its search. In fact, LRS outperforms

SpringSim '07 Vol. 2 123 ISBN 1-56555-314-4

Table 2. det[Halg
THalg] / det[Hoptimal

THoptimal] for various approaches. Results apply to a quadratic regression with 3 factors.

n BRS LRS SPSA SPSA best rowexch cordexch

10 0.000 0.960 0.994 0.996 0.716 0.716

SPSA, unless you consider the best SPSA design across all
iterations. Although SPSA and LRS provided more
efficient designs than Matlab’s exchange algorithms in some
cases, the difference is not extraordinary. For this particular
example, using the fractional factorial designs – which are
easy to generate – only slightly degrades the potential
efficiency of the design. Still, one might imagine cases
where each experiment is so costly (or time-consuming) that
refining a fractional factorial design is worthwhile. We do
note, however, that the gap in design efficiency between
fractional factorial design and the exact D-optimal design is
largest when the number of runs is equal to the number of
parameters in the model.

4. QUADRATIC REGRESSION WITH THREE

FACTORS
Extending the results of the previous section, we now

consider the problem of generating an exact D-optimal
design for the quadratic regression model with three factors

vxxxxxxxxxxxxz += θ],,,,,,,,,1[323121
2
33

2
22

2
11

and n = 10 simulation runs. Note that since the model
contains ten parameters, the number of simulation runs must
be at least ten. In this setting, the dimension of the design
space is n f = 30. [Box and Draper 1971] also solved this
problem, stating that the optimal inputs for ten runs are

(−1,−1,−1), (1,−1,−1), (−1,1,−1), (−1,−1,1), (−1,α,α),
(α,−1,α), (α,α,−1), (−β,1,1), (1,−β,1), and (1,1,−β), where

α = 0.1925 and β = 0.2912.

Applying the same algorithms as in the previous
sections, again allowing 106 loss function evaluations for
BRS, LRS, and SPSA, as well as 10,000 replications of
rowexch and cordexch, we get the results summarized in
Table 2. Again we observe the futility of BRS in a high-
dimensional situation; even with 106 iterations, the BRS
design fails to have even 0.1% of the efficiency of the
optimal design. We also observe that LRS and SPSA are
able to generate designs very close to the exact D-optimal
design, with the best SPSA design across all iterations
coming within 0.4% of the exact D-optimal design.

Since the regression model used in this example (and
the last) is quadratic in the factors, fractional factorial
designs consist of the factors set at one of three levels –

either −1, 0, or 1 – in each run. Thus, with 30 input levels to
choose, there are 330 ≈ 2 x 1014 possible fractional factorial
designs. Although rowech and cordexch are not constrained
to generate fractional factorial designs, they both returned
factional factorial designs in this case. With the gap in
design efficiency between good fractional factorial designs
(generated by rowech and cordexch) and the exact D-
optimal design at around 28%, this is a case where allowing
input levels to take on more than two or three values (a la
many classical experimental designs) offers a significant
gain in performance.

5. PURE CUBIC REGRESSION WITH ONE

FACTOR
In this final example, we show that numerical methods

can also be helpful in determining asymptotic D-optimal
designs. An asymptotically D-optimal design, as opposed to
an exact D-optimal design, assigns weights wi to the N
design points assuming an infinite number of runs. We
investigate the optimum experimental design for the
regression model

,],,,1[32 vxxxz += θ

where −1 ≤ x ≤ 1 is a scalar input. In this case, θ contains
four parameters, so the number of runs n must be at least
four. We proceed by finding the optimal finite-sample
design with n = 4 and showing via the Kiefer-Wolfowitz
equivalence theorem that this design is in fact the D-optimal
asymptotic design.

To test design ξ for asymptotic efficiency using the
Kiefer-Wolfowitz equivalence theorem (see [Spall 2003] p.
478 for a statement of the theorem), we must compute the
variance function

)()ξ()()ξ,(1T xxxV gMg −= ,

where g(x) maps inputs to the space of design vectors and
M(ξ) is the precision matrix

T
1

)()()ξ(i
N

i ii XX ggM ∑=
= w .

The variance function V(x,ξ) is proportional to the variance
of predictions , and if V(x,ξ) is less than p for all x
given design ξ, the Kiefer-Wolfowitz equivalence theorem
states that ξ is an asymptotically D-optimal design.

)(ˆ xz

One might approach the problem of identifying the
D-optimal asymptotic design by first identifying a candidate

ISBN 1-56555-314-4 124 SpringSim '07 Vol. 2

set of support points and then searching for the optimal
weighting across these points. This approach is analogous
to that of factorial designs, where the factors are constrained
to take on either −1 or 1 for linear regression models and
either −1, 0, or 1 for quadratic regression models. In the
current example, if the candidate set of support points is
specified to be {−1, −0.5, 0, 0.5, 1}, the best design across
the 54 = 625 possible designs is

ξ (1) = −1 −0.5 0.5 1
¼ ¼ ¼ ¼ξ (1) = −1 −0.5 0.5 1
¼ ¼ ¼ ¼

For this design, the value of det[HTH], where H is one
of the 4! = 24 possible permutations of the four design
points, is 1.2656.

Computing the variance function V(x,ξ(1)) and plotting
V(x,ξ(1)) versus x (−1 ≤ x ≤ 1) gives Figure 1.

Figure 1. Plot of the variance function V(x,ξ(1)).

Since V(x,ξ(1)) is greater than p = 4 for some x, the
Kiefer-Wolfowitz equivalence theorem ensures that ξ(1) is
not the D-optimal asymptotic design. On the other hand, the
maximum of the variance function is not much greater than
p (it is approximately 4.152), which suggests that ξ(1) is
“close” to the D-optimal asymptotic design.

Another approach is to perform a numerical search,
such as has been described in this paper, over the continuous
domain in R4]1,1[− 4. The following design was generated
with 250,000 iterations of SPSA:

ξ (2) = −1 −0.4472 0.4420 1
¼ ¼ ¼ ¼ξ (2) = −1 −0.4472 0.4420 1
¼ ¼ ¼ ¼ .

For this design, the value of det[HTH] is 1.3105.
Furthermore, computing the variance function V(x,ξ(2)) and
plotting V(x,ξ(2)) versus x where −1 ≤ x ≤ 1 gives Figure 2.

In addition to det[HTH] being larger for ξ(2) than for
ξ(1), ξ(2)

 is very close to satisfying the condition that
V(x,ξ(2)) ≤ p (the maximum value of V(x,ξ(2)) is 4.001 at
x = 0.45). Thus, in terms of efficiency in the choice of

design points, ξ(2) is very close to a D-optimal asymptotic
design.

Figure 2. Plot of the variance function V(x,ξ(2)).

A third approach is to attack the problem analytically.
If we assume that the set of optimal design points is of the
general form {a1, a2, a3, a4}, where −1 ≤ ai ≤ 1 (i = 1,…,4),
then det[HTH] does not have enough structure to determine
the optimal values for the ai. On the other hand, if we
assume that the set of optimal design points is of the form
{−1, −a, a, 1}, as suggested by the numerical search,
det[HTH] has the form

246810 1664966416 aaaaa +−+− .

Setting the derivative of this equal to zero, we get

0818165 3579 =+−+− aaaaa .

Factoring this result, we get

0)1()1)(15(332 =+−− aaaa .

The above polynomial in a has roots at −1, 1, 0, 1/√5,
and −1/√5. Inspection of the second derivative or a plot of
det[HTH] reveals that only 1/√5 and −1/√5 provide local
maxima. Note that 1/√5 ≈ 0.44721, which makes the
following design very similar to the one found via the
numerical search:

ξ (3) = −1 −1/√5 1/√5 1
¼ ¼ ¼ ¼ξ (3) = −1 −1/√5 1/√5 1
¼ ¼ ¼ ¼ .

A plot of V(x,ξ(3)) reveals that the maximum value of
the variance function over the interval −1 ≤ x ≤ 1 is p = 4.
Thus, by the Kiefer-Wolfowitz equivalence theorem, design
ξ(3) is a D-optimal asymptotic design. In this example, the
numerical approach was instrumental in simplifying the
analytical optimization of det[HTH].

6. CONCLUSIONS

We have explored several techniques that can be used
to numerically search for exact D-optimal designs. For the
regression models considered, we observed that BRS was

SpringSim '07 Vol. 2 125 ISBN 1-56555-314-4

unable to cope with the high-dimensionality of the search
space. LRS and SPSA, on the other hand, did converge to
the optimal design after many iterations. But because the
magnitude of det[Hoptimal

THoptimal] for the optimal design
matrix Hoptimal increases as the number of runs n and factors
f increases, SPSA needed to be retuned for each problem.
LRS, on the other hand, did not require any retuning; that is,
the same distribution of random search vectors was used in
all cases. Another desirable property of LRS and SPSA is
that they can be easily extended to more general design
spaces (i.e., space more complex than a hypercube).
Matlab’s exchange algorithms can also be extended in this
way, although the user must generate custom candidate lists
and initial designs that adhere to the design space
constraints.

This paper did not explore the role of orthogonality in
the selection of experimental designs. If a design is
orthogonal, then each component of θ may be treated
independently from the others in post-experiment
hypothesis testing. In many cases, the designs generated by
Matlab’s exchange algorithms were, for the most part,
orthogonal; the nearly D-optimal designs generated by LRS
and SPSA, on the other hand, would typically lead to
undesirable correlations between components of θ. The
tradeoff – if there is one to be made – between orthogonality
and D-optimality must be made by the researcher. If
orthogonality or near-orthogonality is required, the
necessary constraints could be imposed on SPSA and LRS
to generate such designs.

This work might be extended by investigating the
performance of these techniques when the number of factors
is considerably higher. Although analytical solutions have
not been derived in many cases, numerical techniques could
at least be compared with fractional factorial designs.
Another extension of this work might be a theoretical
comparison, possibly within the framework suggested by
[Spall et. al. 2006], of algorithm efficiencies for finding D-
optimal designs in certain classes of linear regression
models. Finally, one might explore the efficiencies of these
techniques when generating designs based on other design
criteria, such as the model-robust and model-sensitive
criteria discussed in [Goos et. al. 2005].

References

Atkinson, A. C. and Donev, A. N. (1992). Optimum
Experimental Designs. Oxford University Press, Oxford.

Box, M. J. and Draper, N. R. (1971). “Factorial Designs, the
|XT X| Criterion, and Some Related Matters.” Technometrics
Vol. 13 Issue 4. 731-742.

Goel, T., Haftka, R. T., Papila, M., Shyy, W. (2006).
“Generalized Pointwise Bias Error Bounds for Response
Surface Approximations.” International Journal for
Numerical Methods in Engineering Vol. 65 Is. 12. 2035-
2059.

Goos, P., Kobilinsky A., O’Brien T. E., and Vandebroek,
M. (2005). “Model-Robust and Model-Sensitive Designs.”
Computational Statistics & Data Analysis Vol. 49. 201-216.

Spall, J. C. (2003). Introduction to Stochastic Search and
Optimization. John Wiley & Sons, Inc., Hoboken, New
Jersey.

Spall, J. C., Hill, S. D., and Stark, D. R. (2006).
“Theoretical Framework for Comparing Several Stochastic
Optimization Approaches,” in Probabilistic and
Randomized Methods for Design under Uncertainty (G.
Calafiore and F. Dabbene, eds.). Springer-Verlag, London,
Chapter 3 (pp. 99-117).

Biography
 Since graduating from Cornell University in 2003 with
a Bachelor’s degree in Mathematics and Philosophy, Jacob
Boon has been a member of the Associate Professional Staff
at the Johns Hopkins University Applied Physics
Laboratory. In 2006, Mr. Boon earned a Master’s degree in
Applied and Computational Mathematics from Johns
Hopkins University.

ISBN 1-56555-314-4 126 SpringSim '07 Vol. 2

	TITLE PAGE
	SYMPOSIA LIST
	BIS Table of Contents
	ACROBAT HELP
	Generating Exact D-Optimal Designs for Polynomial Models
	Keywords:
	Abstract
	1. INTRODUCTION
	2. OPTIMIZATION ALGORITHMS
	3. QUADRATIC REGRESSION WITH TWO FACTORS
	4. QUADRATIC REGRESSION WITH THREE FACTORS
	5. PURE CUBIC REGRESSION WITH ONE FACTOR
	6. CONCLUSIONS
	References
	Biography

