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The authors develop a two-timescale simultaneous perturbation stochastic approximation algorithm
for simulation-based parameter optimization over discrete sets. This algorithm is applicable in cases
where the cost to be optimized is in itself the long-run average of certain cost functions whose noisy es-
timates are obtained via simulation. The authors present the convergence analysis of their algorithm.
Next, they study applications of their algorithm to the problem of admission control in communication
networks. They study this problem under two different experimental settings and consider appropriate
continuous time queuing models in both settings. Their algorithm finds optimal threshold-type policies
within suitable parameterized classes of these. They show results of several experiments for different
network parameters and rejection cost. The authors also study the sensitivity of their algorithm with
respect to its parameters and step sizes. The results obtained are along expected lines.
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1. Introduction

Stochastic discrete optimization plays animportantrole
the design and analysis of discrete event systems. Exa

the algorithm does not necessarily proceed along the path

of decreasing cost as increases in cost function are al-
N Jowed with a certain probability. The original annealing
M-algorithm, however, requires cost function measurements

ples include the problem of resource (buffer/bandwidth) 15 he precisely known. Various variants of the above algo-

allocation in manufacturing systems and communicatig
networks [1, 2], as well as admission control and rou
ing in communication/wireless networks [3]. Discrete op
timization problems in general are hard combinatori
problems.

There have been several approaches for solving d

crete optimization problems. Among these, simulated

annealing [4] and its variants have been well studied. He
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N rithm have subsequently been developed that work with
[- noisy or imprecise measurements [5] or use simulation
" [6]. Alrefaei and Andraddttir [6] also propose the use of
Al a “constant temperature” annealing schedule instead of
. a (slowly) decreasing schedule. Some other variants of
IS- simulated annealing that work with noisy objective func-
tion estimates include the stochastic ruler algorithm of
'®Yan and Mukai [7] and the stochastic comparison al-
gorithm of Gong, Ho, and Zhai [8]. Algorithms based
on simulated annealing, however, are known to be slow
in general. In some other work, a stochastic branch and
bound algorithm for problems of discrete stochastic op-
timization, subject to constraints that are possibly given
by a set of inequalities, has been developed in Norkin,
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Ermoliev, and Ruszcagki [9]. In Barnhart, Wieselthier, | surements for any-vector parameter and is, in general,
and Ephremides [3], the problem of admission control in found to be very efficient.
multihop wireless networks is considered, and a gradignt  In Bhatnagar and Borkar[16], atwo-timescale stochas-
search-based procedure is used for finding an optimal pol- tic approximation algorithm that uses one-sided differ-
icy within the class of certain coordinate convex policies; ence K-W-type gradient estimates was developed as an
see also Jordan and Varaiya [10], who consider optimiza- alternative to PA-type schemes. The idea here is that ag-
tion on the above type of policies for an admission contrpl gregation/averaging of data is performed using the faster
problem in multiple-service, multiple-resource networks. timescale recursions while parameter updates are per-
In Gokbayrak and Cassandras [2], a stochastic discreteformed on the slower one, and the entire algorithm is
resource allocation problem is considered. The discrete updated at each epoch. The disadvantage with this algo-
optimization problem is transformed into an analogous rithm, however, is that it requires a significant amount of
(surrogate) continuous parameter optimization problem computation since it generated§ + 1) parallel simula-
by constructing the convex hull of the discrete sear¢h tions at each instant and hence is slow wieis large.
space. An estimate of the cost derivative is obtained us- In Bhatnagar et al. [17], the SPSA-based analog of the
ing concurrent estimation [11] or perturbation analysis algorithm in Bhatnagar and Borkar [16] was developed,
(PA) [12] techniques. For the surrogate problem, they except for the difference that an averaging of the faster
use the simplex method to identify th& + 1) points in timescale recursions over a certain fixed numlier(1)
the discrete constraint set whose convex combination the of epochs was proposed before each parameter update, in
RN -valued surrogate state is. In Gokbayrak and Cassan-addition to the two-timescale averaging. This number
dras [13], more general constraint sets than the one aboves set arbitrarily, and the additional averaging is seen to
are considered, although the basic approach is similar (toimprove performance. Other simulation optimization al-
Gokbayrak and Cassandras [2]). A computationally sim- gorithms based onthe SPSA technique have more recently
pler algorithm (than the simplex method) is provided fgr been developed in Bhatnagar and Borkar [18], Bhatnagar
identifying the above-mentioned points. (The basic ap- et al. [19], and Bhatnagar [20].
proach in Gokbayrak and Cassandras [2, 13] is somewhat The algorithms described in the previous two para-
loosely similar to our approach below. We provide dg- graphs are for optimization over continuously valued sets.
tailed comparisons in the next section.) Inthis article, we develop an algorithm for discrete param-
In the works cited above, noisy estimates of the cost eter simulation-based optimization where the cost is the
function are assumed available at discrete parameter setlong-run average of certain cost functions that depend on
tings, with the goal being to find the optimum parameter the state of an underlying parameterized Markov process.
for the noise-averaged cost. There are, however, scenafiosT his algorithm is a variant of the algorithm in Bhatnagar
in which the cost for a given parameter value isinitselfthe etal.[17]thatis adapted to optimization over discrete sets
long-run average of a certain cost function whose noigsy and uses two-timescale averaging. The motivation for us-
estimates at the (above) given parameter values can be|obing two-timescale stochastic approximation is shown in
tained via simulation. For solving such problems, there the next section. In a related work [1], a variant of the
have been approaches in the continuous optimizatipn SPSA algorithm [15] is used for function optimization
framework. For instance, those based on PA [12] or the over discrete sets. This, however, is of the one-timescale
likelihood ratio [14] require one simulation for finding the  variety and is not developed for the setting of simulation
optimum parameter. These, however, require knowledge optimization as in this study. We briefly explain the con-
of sample path derivatives of performance with respect vergence analysis of our algorithm. Next, we present an
to (w.r.t.) the given parameter. In addition, they require application of our algorithm for finding optimal policies
certain constraining regularity conditions on sample per- for a problem of admission control [21, 22] in commu-
formance and underlying process parameters. Among|fi- nication networks. Our methods are applicable to both
nite difference gradient approximation-based approaches,admission control of calls (e.g., of customers who require
the Kiefer-Wolfowitz (K-W) algorithm with two-sided | services with certain quality of service [Qo0S] require-
differences requires/2 loss function measurements fo ments for an arbitrary or random duration of time) as well
an N-dimensional parameter vector. In a recent related as packet admission control (or that for individual packets
work [15], the gradient estimates in a K-W-type algorithm at link routers within the network). We consider two dif-
are chosen by simultaneously perturbing all parameter ferent settings for our experiments. These are explained
components along random directions, most commonly in detail in section 4. We assume the class of feedback
by using independent, symmetrit1-valued, Bernoulli- policies in these settings to be of the threshold type that
distributed, random variables. This algorithm, known as depend on the state of the underlying Markov process at
the simultaneous perturbation stochastic approximatipn any instant. Our algorithm gives an optimal policy within
(SPSA) algorithm, requires only two loss function mea- the prescribed class of policies (i.e., computes the optimal
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such threshold-type policy). Obtaining optimal policie
using analytical techniques in such settings is not feasi-
ble in general. Moreover, as we explain in the next section,

tor with 1 in theith place and 0 elsewhere. Then,

(J(0 4+ de;) — J(0))

PA-type approaches, as with Gokbayrak and Cassandras Vil(®) = g!)ano 3 @

[2, 13], are not directly applicable on such settings. Our =

simulation-based discrete parameter algorithm proves gf- T e iy _ 0

fective here as it gives an optimal policy within a give - 3“210 1|—|>ngo 3l “ O(h(Xj) XD |- @)
]:

parameterized class of policies (in this case, the thresho
type policies). This is similar in spirit to neurodynamig
programming techniques with policy parameterization i
the context of Markov decision processes [23, 24].

The rest of the article is organized as follows: section
describes the setting and the algorithm and provides
motivation for the two-timescale idea. We also discus
comparisons of our approach here with the ones in Gg
bayrak and Cassandras [2, 13]. The convergence analy
is briefly presented in section 3. The experiments on &
mission control in communication networks are presents
in section 4. Finally, section 5 provides the concludin
remarks.

2. Framework and Algorithm

Consider a Markov processx,?} parameterized by
6 € D c 2N, where Z is the set of all inte-
gers andN > 1. SupposeX,?, n > 1, take val-
ues inS c R9 for somed > 1. We assume
D has the formD = ]_[fvzl{D,»,min, ..., Di max}. Here,
Dj min, Di max € Z With D; min < Dimax, i =1,..., N,
and{D; min, - . .
from D; min t0 D; max, With both end points included. As-
sume thatforanyfixeél e D, {X,?} is ergodic as well with
transition kernepg(x, dy),x, y € S.Leth : RY — R be
the associated cost function that is assumed to be boun
and continuous. The aimis to fidd € D such that

JO) = lim =3 hx¥) =mins@. @
(6%) nm}ﬂé(,) minJ@. (1)

Here, J(-) denotes the long-run average cost. The ai
therefore is to find* that minimizes/ (0).

Before we proceed further, we first provide the motiva-
tion for using the two-timescale stochastic approximatign

approach. Suppose for the moment that we are interes
in finding a parametes, taking values in a continuously
valued set, that minimizes(0). One then needs to com-
pute the gradien?J (0) = (V1J(0), ..., VnJ(O)T, as-
suming that it exists. Consider a Markov chaK]@} gov-
erned by parametet. Also, considerN other Markov
chains {X’j} governed by parameter® + 3¢;, i =

, Di.max} is the set of successive integers

Id-

The gradientVJ (6) may thus be estimated by simulat-
ing the outcomes of théN + 1) Markov chains{X?}

2 and {Xi.}, i = 1,...,N, respectively. These Markov

achains, in turn, correspond to the underlying processes
s in independently running parallel systems that are each
k- identical to one another except that they run with dif-
siderent parameter values (above). Note that the transition
d- dynamics of these Markov chains need not be precisely
2d known as long as state transitions of these chains can be
g simulated. Estimates (2) correspond to one-sided Kiefer-
Wolfowitz estimates of the gradieRt/ (6). One can sim-
ilarly obtain two-sided Kiefer-Wolfowitz gradient esti-
mates as well. More recently, Spall [15] proposed the fol-
lowing (SPSA) randomized difference gradient estimates.
Supposen;, i = 1,..., N, are independent identically
distributed (i.i.d.) Bernoulli-distributed random variables
with A; = £1 w.p. 1/2, and letA = (Aq, ..., Ay)T.
QuantitiesA are called random perturbations. (More gen-
eral conditions on the sequences of independently gener-
atedAs are given in Spall [15]; see also condition (A) be-
low, which is similar to Spall [15].) Consider now Markov
chains{X; '} and{X, } that are respectively governed by
parametergd + 5A) and(6 — 8A). Then, the SPSA gra-
dient estimate is

>

ded o0 o (J(O+8A) — J (8 —8A))
V’J(e)_a“ToE[ N } 4
-1
— |i i +y\ -
=y M, g 2D G |

)

where the expectation is taken w.r.t. the common distri-
M bution of A;.

Note from the form (3) of the estimates above, it is
clear that the outer limit is taken only after the inner
imit. For classes of systems for which the two limits (in
3)) can be interchanged, gradient estimates from a sin-
gle sample path can be obtained using PA [12] or likeli-
hood ratio [14] techniques. For a general class of systems
for which the above limit interchange is not permissible,
any recursive algorithm that computes optiméishould
have two loops, with the outer loop (corresponding to pa-
rameter updates) being updated once after the inner loop

te

1,..., N, respectively. Here; is anN-dimensional vec-

(corresponding to data averages), for a given parameter
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value, has converged. Thus, one can physically ident

fy dard requirement in SPSA algorithms; see, for instance,

separate timescales: the faster one on which data basedpall [15] for similar conditions. LeF denote the com-
on a fixed parameter value are aggregated and averagednon distribution function of the random variablag(n).
and the slower one on which the parameter is updated

once the averaging is complete for one latter iteration. 2.1 Discrete Parameter Stochastic Approximation
The same effect as on different physical timescales can a|gorithm

also be achieved by using different step-size schedu

(also called timescales) in the stochastic approximation

algorithm. Note also from the form of (5) that the expeg
tation is taken after the inner loop limit and is followeg
by the outer limit. Bhatnagar and Borkar [16] develo
a two-timescale algorithm using (3) as the gradient e
timate, while Bhatnagar et al. [17] do so with (5). The

es

« Step 0 (Initialize): Sez1(0) = Z2(0) = 0. Fix 61(0),

02(0), ..., O5(0) within the setD and form the pa-
H rameter vectord(0) 2 61(0), ..., O5ONT. Fix L
S- and (large)M arbitrarily. Setn := 0, m := 0 and

fix a constantt > 0. Generate i.i.d. random variables
A1(0), A2(0), ..., Ay(0), each with distributior” and

D

use of the latter (SPSA) estimate was found in Bhatnagar _ A
et al. [17] to significantly improve performance in two- such that these are independent6ed). Set6}(0) =
timescale algorithms. As explained before, the algorithms T;(6;(0) —cj(0)) and62(0) 217,(6,(0) +cA;(0)),
of Bhatnagar and Borkar .[16] and Bhatnagar et gl. ['1 1 j=1,... N, respectively.
were for the setting of continuous parameter optimizatiop. . 02
In what follows, we develop a variant of the algo * Step 1: Generate simulatioﬁgL(fjn andx,’, ") , respec-
rithm in Bhatnagar et al. [17] for discrete parameter tively governed byol(n) £ (61(n), ..., 6%, (n)7 and
stochastic optimization. Consider two step size sched- 5 A 5 r
ules or timescale sequendesn)} and{b(n)} that satisfy %) = (B1(n), ..., 0 ()" Next, update
a(), b(n) > 0Vn, and o1
ZYnL +m+1) = ZX 0L +m) + b)) (h(X,; 1))
Y am) =Y bn) = oo, !
" n — Z (nL + m)),
> (am)? + b(n)?) < oo, 2
" Z2L +m+ 1) = Z2(L +m) + b h(xH )
a(n) = o(b(n)). (6) 2L 4 my).
Let c > 0 be a given constant. Also, IdT;(x) de- _ _ .
note the projection from € R t0 {D; min, - - - » Di.max- Ifm=L-1,setnl :=nL+Lm:=0andgoto
. . . L el step 2;
In other words, if the pointr is an integer and lies
within the set{D; min. ... , Dimax, thenT;(x) = x, else, setn := m + 1 and repeat step 1.
elsel’; (x) is the closest integer within the above set tp e Step2:Foli =1,...,N,

x. Furthermore, ifx is equidistant from two points in
{Di min, - - - » Di max}, thenT';(x) is arbitrarily set to one
of them. Fory = (y1,...yn)T € RY, supposd’(y)
= (T'1(y), ..., Tn(yn)T. Then,I'(y) denotes the pro-
jection ofy € RN on the setD (defined earlier).

Now suppose for any: > 0, A(n) € RN is a
vector of mutually independent and mean zero ra

dom variables{A1(n), ..., Anx(n)} (namely, A(n) 2
(A1(n), ..., Ay(m)T), taking values in a compact sef
E c R and having a common distribution. We assum
that random variable4; (n) satisfy condition (A) below.

Condition (A). There exists a constarf < oo,
such that for anyn > 0, andi € {1,...,N},
E[(Aim) %] < K.

We also assume thdt(n), n > 0, are mutually in-
dependent vectors and thatn) is independent of the

ZinL) — zZ(nL)])

bin+1 =T, (e,- (m) +a(m) [ 2cAi(n)

Setn:=n+1.1fn = M, go to step 3;

else, generate i.i.d. random variables(n), Ax(n), ...,

n- Ay (n) with distribution F (independent of their previ-
ous values and also of previous and currénalues).
Setbt(n) := T';(8;(n) —cA;(n), 65(n) := T';(8;(n)
+cAj(n), j=1,...,N,andgoto step 1.

« Step 3 (termination): Terminate algorithm and output

o(M) 2 O1(M), ..., 0n(M)T as the final parameter
vector.

[¢)

In the above,ZY(nL + m) and Z2(nL + m), m =
0,1,...,L —1,n > 0, are defined according to their
corresponding recursions in step 1 and are used for aver-

o-field 6(8(1), I < n). Condition (A) is a somewhat stan-
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we use only two simulations here for any-vector pa- an interchange because of the use of two timescales, un-
rameter. Note that in the above, we also allow for an addi- like Gokbayrak and Cassandras[2, 13], who use only one.
tional averaging ovel. (possibly greater than 1) epochs In the type of cost functions and underlying process pa-
in the two simulations. This is seen to improve perfor- rameters used in our experiments in section 4, PA is not
mance of the system, particularly when the parameter di- directly applicable. Finally, Gokbayrak and Cassandras
mensionN is large. We study system performance with [2, 13] require that the “neighborhoodN + 1) points,
varying values ofL in our experiments. Note also thaf whose convex combination arfy" -valued state of the
the value ofc should be carefully chosen here. In par- surrogate system is, need to be explicitly obtained, which
ticular, ¢ > 1/(2R) should be used, witlR being the is computationally cumbersome. Our algorithm does not
maximum absolute value that the random variableg:) require such an identification of points as it directly up-
can take. This is because for valuescahat are lower, dates the algorithm on the discrete set. Next, we present
both perturbed paramete@%(n) and62(n) (after being the convergence analysis for our algorithm.

projected onto the grid) would always lead to the same
point. The algorithm would not show good convergenge )
behavior in such a case. For instance, witerin) are | 3. Convergence Analysis
i.i.d. symmetric, Bernoulli-distributed, random variable
with A ;(n) = £1 w.p. 1/2, the value of chosen should | SupposeD¢ denotes the convex hull of the sbt Then
be greater than 0.5. This fact is verified through our ex- N

periments as well, where we generate perturbations ac-D¢ has the form[ [[Di.min, Di maxi—namely, it is the
cording to the above distribution. Moreover, one should ) i=1 ]

choose appropriate step size sequences that do not|deCartesian product of the intervall®; min, Dimaxl C R,
crease too fast so as to allow for better exploration of the ¢ = 1. - - » N. For showing convergence, we first extend
search space. the dynamics of the Markov procesx,?} to the contin-

We now provide some comparisons with the approach uously valued parameter set D¢ and show the analy-
used in Gokbayrak and Cassandras [2, 13] as the basicjapsis for the extended parameter process. Convergence for
proach used in the above references is somewhat loo elythe original process is then straightforward. Note that the
similar to ours. The method in Gokbayrak and Cassan- setD contains only a finite number (say,) of points.
dras [2, 13] uses a (surrogate) system with parameters inFor simplicity, we enumerate these@s..., ”. Thus,

a continuously valued set that is obtained as a convex hull D = {6%, ..., 8"}. The setD¢ then corresponds to
of the underlying discrete set. The algorithm used there
updates parameters in the above set, using a continupus " ;
={> b |
i=1

UJ

m

OUZO, i:l,...,m, Z()lel}
i=1

optimization algorithm by considering the sample cost for D
the surrogate system to be a continuously valued lingar
interpolation of costs for the original system parameters.
The surrogate parameters after each update are proje ted!
onto the original discrete set to obtain the corresponding 0 —
parameter value for the original system. The algorith 4
itself uses PA/concurrent estimation-based sample gr i'depéﬁéence of the weights, i = 1, ... ,m, on the pa-
ent estimates, with the operating parameter being the cor-amete and assume that (0),i = 1,... ,m, are con-

responding projected “discrete” update. Note that there tinuously differentiable with respect t For§ e D€,
are crucial differences between our approach and the aneyefine the transition kerngly(x, dy), x, y € S as

above. As shown in the next section, we also use a conyex

hull of the discrete parameter set, but this is only done fpr m

proving the convergence of our algorithm that updates pa- po(x,dy) = Z ok (0) per (x, dy).

rameters directly in the discrete set. We do not require the 1

continuous surrogate system at all during the optimization

process. Furthermore, since we use an SPSA-based finitdt is easy to verify thapg(x, dy), 6 € D¢, satisfy prop-
difference gradient estimate, we do not need PA-type gra- erties of a transition kernel and thag(x, dy) are con-
dient estimates. We directly work (for the gradient est]- tinuously differentiable with respect o Moreover, it is

mates) with the projected perturbed parameter values|in gasy to verify that the Markov procesx ¥} continues
the discrete set. As stated earlier, the use of PA requiresig pe ergodic for every e D¢ as well. LetJ¢(0) de-

constraining conditions onthe cost and system parameters,gte the long-run average cost corresponding €& D°.
so as to allow for an interchange between the expectationThen, jc(9) = J(0) for 6 € D. For a setd, SUppOseA|

and gradient (of cost) operators. We do not require such genotes its cardinality. The following lemma is valid for

general, any pointt € D¢ can be written as
m

Z ; (9)6. Here we consider an explicit functional

Volume 81, Number 11 SIMULATION 761
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finite state Markov chains, that is, whel < oco. We
have

LEMMA 1. For|S| < oo, J€(0) is continuously differ-
entiable ino.

Proof. Note thatJ¢(0) here can be written as

JEO) =Y h()Hi(0),
ieS
wherey; (0) is the steady-state probability of the chair

{X,?} being in statei € § for given 6 € D¢. Then
it is sufficient to show thafi;(0), i € S are continu-
ously differentiable functions. Let for fixe@, P(0) :=
[[pg(i, )i, jes denote the transition probability matrix

of the Markov chair{ X%}, and leti (6) := [ (0)];cs de-
note the vector of stationary probabilities. Here we deno
by pg(i, j) the transition probabilities of this chain. Alsg
let Z(0) := [I — P(6)— P*°(0)]~1, wherel is the identity
matrix andP>°(0) = lim,,—, o (P(0) + ...+ P™(0))/m.
Here, P (0) corresponds to the:-step transition prob-

ability matrix with element? (i, j) = Prx? = j|

Xg =1i),i,j € S. For simplicity, let us first conside¥
to be a scalar. Then, from theorem 2 of Schweitzer [2
pp. 402-3], one can write

w®+h) = w® U + (PO +h) — P©)Z®) + o(hz;)

Thus,
w'(0) = n(®)P'(6)Z().

Hence,u'(0) (the derivative ofv(9)) exists if P/(9) (the
derivative of P(0)) does. Note that by construction, for
0 € D¢, P’(0) exists and is continuous. Next, note that

WO+ h) — ' O) < [n®+h) PO+ h)ZO+ h)
— WO PO+ hZO+ h)|
+ |W(O)P (O +h)Z(O + h)
—n®P'(O)Z(O+ h)|
+ [W(O)P'(B)Z (6 + h)
— @O P (O)Z()].

Then, (again) from theorem 2 [25, pp. 402-3], one c4g
write Z(6 + h) as

ZO+h)=Z(©O)H 6,6+ h)
— P®(O)H®,0+h)U®,0+ h)
Z(©)H (0,6 + h),

I

te

Ot

762 SIMULATION Volume 81, Number 11

where

H®,0+h) =[ —(PO+h) —PO)] =1

as |[h| - 0
and

U@®,04+h)=(PO+h)—P(®)Z®) -0

as |h| — 0.

In the above is the matrix (of appropriate dimension)
with all zero elements. It thus follows that6 + #) —
Z(0) as|h| — 0. Moreovenw.(0) is continuous since it is
differentiable. Thus, from abovg,’(0) is continuous in
0 as well, and the claim follows. For vectér a similar
proof as above verifies the claim. O

REMARK. Lemma 1 is an important result that is re-
quired to push through a Taylor series argument in the
following analysis. Moreover/€(6) turns out to be the
associated Liapunov function for the corresponding or-
dinary differential equation (ODE) (8) that is asymptoti-
cally tracked by the algorithm. However, as stated before,
lemma 1 is valid only for the case of finite state Markov
chains. This is because the result of Schweitzer [25] used
in the proof is valid only for finite state chains. For general
state Markov processes, certain sufficient conditions for
the differentiability of the stationary distribution are given
in Vazquez-Abad and Kushner [26]. These are, however,
difficult to verify in practice. In the remainder of the anal-
ysis (for the case of general state Markov processes taking
values inR?), we simply assume that¢ () is continu-
ously differentiable ird. For our numerical experiments
in section 4, we require only the setting of a finite state
Markov chain, for which lemma 1 holds.

Let us now define another projection functién:
RN — D¢ in the same manner as the projection func-
tion I', except that the new function projects points in
RN on the setD¢ in place of D. Now consider the al-
gorithm described in section 2, with the difference that
we use projectiom™ (-) in place ofT;(-) in step 2 of the
algorithm, wherel/(-),i = 1,..., N are defined suit-
ably (as withI';(-)). The above thus corresponds to the
continuous parameter version of the algorithm described
in section 2. We now describe the analysis for the above
(continuous parameter) algorithm witli(-) in place of
I'(-). For any bounded and continuous functigr) € R,

let £ (),i = 1,..., N be defined by

o))" e RN letf (y) = (1 (y),

I (x +nu(x)) — x
n

e — i
; (v(x)) 4@(

Nextfory = (y1, ...



DISCRETE PARAMETER STOCHASTIC APPROXIMATION ALGORITHM

..., Iy (yw))T. Consider the following ODE:

8(t) = [ (=vJ°®). (8)
LetK 2 (0 e D¢ | [ (VJ¢(8)) = 0} denote the set of
all fixed points of the ODE (8). Suppose for giver- 0,
K€ denotes the sek € = B116—6 || <eV® € K}.
Then we have the following:

THEOREM 1. Givene > 0, there existgg > 0 such that
for anyc € (0, ¢o], the continuous parameter version o
the algorithm converges to soriee K€, as the number
of iterationsM — oc.

Proof. The proof proceeds through a series of approx
mation steps as in Bhatnagar et al. [17]. We briefly sket
it below. Let us define a new sequenfggn)} of step

sizes according tg(n) =b ([%]) Where[%] denotes

the integer part ot]L—l. It is then easy to see thag(n)}
satisfies

> b)) =00, Y bn)? < oo, an)=o(bn).

In fact, b(n) goes to zero faster thd?{n) does, and thus
b(n) corresponds to an “even faster timescale” that).
Now define{t(n)} and{s(n)} as follows:z(0) = 0 and

t(n) =Y b(m), n > 1. Furthermores(0) = 0 and

m=1
n

s(n)y=Y _a(m), n > 1. Also, let A(t) = A(n) for

m=1
t € [s(n),s(n + 1)]. Itis then easy to see that the cont

tinuous parameter version of the algorithm above, on th

timescale, tracks the trajectories of the system of ODEs:
0(1) =0, 9
Zl(t) = J°O(1) — cA®) — 240, (10)
Z2) = JEO() + eA)) — Z201), (11)

in the following manner: suppose we define continuod
time processey (1)} and{Y?(¢)} according ta’ 1(z (n))

= ZY(nL), Y%(t(n)) = Z3(nL), and forr € [t(n), 1 (n +
1)1, Y1(r) andY?(r) are continuously interpolated from
the values they take at the boundaries of these interva
Furthermore, let us define a real-valued sequ¢igeas
follows: suppos& > 0is agiven constant. Thefiy = 0,
and forn > 1,

f

ch

is

1

T, = min{t(m) | t(m) > T,—1+T}.

S

S.

ThusT,, — T,—1 ~ T,Vn > 1. Also, for anyn, there exists
some integem, such thatl,, = ¢ (m,). Now define pro-
cessedY 1" ()} and{Y2"(¢)} according toy 1" (T,) =
Yt (ma)) = ZHnL), Y>"(T,) = Y2(t(my)) = Z*(nl),
andfort € [T}, Tp41), Y1"(+) andY 2" (¢) evolve accord-
ing to the ODEs (10)-(11). By an application of Gron-
wall's inequality, it is easy to see that

sup | Yo - Yo |,
te[T,, Thy1)

sup || Y2"(r) — Y2(1) |— O asn — oo.
1€y, Tys1)

Now note that the iteration in step 2 of the continuous
version of the algorithm can be written as follows: for
i=1...,N,

8;(n + 1) = TS(6; (n) + b(n)n; (n)),

where v; (n) o(1), Vi 1,...,N, sincea(n) =
o(b(n)). Let us now define two continuous time pro-
cesses(6(r)} and {6(r)} as follows: 6(t(n)) = 6(n)

= (01(n), ... ,0n()T,n > 1.Also, fort €[t (n), t (n+

1)], 6(¢) is continuously interpolated from the values it
takes at the boundaries of these intervals. Furthermore,
0(T,) = 6(t(my,)) = 6(n), and fort € [T,, T,+1), 0(¢)
evolves according to the ODE (9). Thus, givEm > 0,

3P suchthavn > P, sup | Y""(t) =Y'(t) || <,
1€[Ty, Ts1)
i =12 Also, sup | 6@ —0@) | <. Itis now
telTy, Tr+1)

easy to see (cf. [27]) th@it ZL(nL) —J(B(n) —cA(n)) |
and| Z2(nL) —J¢(6(n) +cA(n)) | — 0 asn — oo.

Now note that because of the above, the iteration in
step 2 of the new algorithm can be written as follows: for
i=1...,N,

6i(n+1) =T} (6;(n) +a(n)

(

+a(n)k(n)),

JO(n) — cA(n)) — J(O(n) + cA(n))
2cA;(n)

)

whereg(n) = o(1). Using Taylor series expansions of
JE(O(n) —cAm)) andJ(0(n) +cA(n)) around the point
0(n), one obtains
JEO(n) — cA(n)) = J°(6(n))
N
—c ) AjmViIOm) + o(c)
j=1

and
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J(O(n) + cAn)) = J(B(n))

N
+e ) AjmVIO™) + o(o),
j=1

respectively. Thus,

JOn) —cAn) = JBn) + cAn))

2cA\;(n)
D)
=V, J°Om) — Y A’_(n) V,J€(0(n)) + o(c).
j=Lj#i !

(12)

Now let{F,, n > 0} denote the sequence &fiields de-
fined by 7, = o(6(m), m < n, A(m), m < n), with
A(—=1) = 0. It is now easy to see that the processes
{M1(n)}, ..., {My(n)} defined by

n—1

Mi(n) =) a(m)

(

—E[

JO(m) — cA(m)) — J(6(m) + cA(m))
2cA\;(m)
J(O(m)—cA(m))—J(6(m)+cA(m))
2cA\;(m)

|fm]>9

i =1,...,N, form convergent martingale sequences.
Thus, from (12), we have

JOM) —cAn) = JBn) + cAn))

E[ Sen ) | Fal
N
: A :
= -V, J°Om)— Y El A’_((Z))]v,-r(e(n>>+o(c).
J=Lj# '

By condition (A),E[ij((n))] =0,Vj #i,n>0.The
i\n

4
iteration in step 2 of the new algorithm can now be written
as follows: fori =1,..., N,

6i(n+1) =T (0:(n) —a()V;i J(6(n)) + a(n)B(n)),
(13)

wheref(n) = o(1) by the above. Thus, the iteration in

itself as an associated strict Liapunov function. The claim
follows. O

Finally, note that we havd (0) = J€(®) for 6 € D.
Moreover, while updating in the original algorithm, we
impose the restriction (via the projectiol-)) that6 can
move only on the grid of points whereD = D¢ N 2V,

By the foregoing analysis, the continuous parameter ver-
sion of the algorithm shall converge in a “small” neigh-
borhood of alocal minimum af¢(-). Thus, in the original
algorithm,6 shall converge to a point on the grid that is
(again) in a neighborhood of the local minimum (above)
of J¢(-) and hence in a corresponding neighborhood of a
local minimum ofJ (-); see Gerencsér, Hill, and Vago [1,
p. 1793] for a similar argument based on cerfaimixing
processes. We now present our numerical experiments.

4. Numerical Experiments

We consider the problem of admission control in com-
munication networks under bursty traffic. We specifically
consider two different settings here. In both settings, we
assume feedback policies to be of the threshold type that
are, in particular, functions of the state of the underlying
Markov process.

4.1 Setting 1

The basic modelis shownin Figure 1. There isasingle bot-
tleneck node that is fed with arrivals that follow a Markov-
modulated Poisson process (MMPP). In an MMPP, there
is an underlying continuous time Markov chain (CTMC)
{z;} taking values in a finite set (sa¥). Whenz, = i (for
somei € S), the MMPP stream sends packets according
to a Poisson process with rait€i) that is a function of

i. In general, we assumie(i) # \(j) fori # j. The
Markov chain{z;} stays for an exponential amount of
time in a given state, at the end of which it transits to a
new state. An MMPP is generally used to model bursty
traffic in communication networks. The states in the un-
derlying Markov chain may represent different classes of
traffic. Note that ifg; denotes the queue length at time
then{(q;, z;)} corresponds to the underlying continuous
time Markov chain for the whole system. We assymé

to have five states, numberedl0. .. , 4, with transition
rate matrixQ given by

-09 02 03 01 03
03 -07 01 02 01
0= 06 02 -09 O 01
04 05 03 -13 01
02 06 03 08 -19

step 2 can be seen as a discretization of the ODE (8), ex-

cept for some additional error terms that, however, vani
asymptotically. Now for the ODE (8% corresponds to
the set of asymptotically stable fixed points, with(6)
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transiting to some other state (s@ematrix above). The
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Figure 1. The admission control model of setting 1

Feedback

rates of the Poisson process in each of the states 0 throughgueue at any instant is thus upper bounded by 490 because

4 are taken to be 10, 15, 18, 22, and 30, respectively.
service times are assumed to be exponentially distribu
withratepw = 17. Ingeneral, these rates could be setina
manner since we only require the Markov chiy, z;)}

to be ergodic for any given set of threshold values (s¢
below). Since we consider a finite buffer system, the abo
Markov chain will be ergodic. We consider the following
class of feedback policies:

Fori=0,1,...,4,

{

if MMPP state = i

{

if queue length < N;
accept incoming packet;
ese

reject incoming packet;
}

}

The parameter to be tuned Vo, N1, ..., Na)T,
whereN; corresponds to the threshold queue length whg
the state of the underlying CTMC isc {0, ..., 4}. The
aim is to find the optimum parameter that would the
give the corresponding optimal feedback policy withi
the class of policies described above. For this, we u
our discrete parameter optimization algorithm describg

ﬁe of the form of the feedback policies and the constraint set.

dWe assume that the queue length information is fed back
ny to the controller once in every 100 arriving packets. The
values ofc andL in the algorithm are chosen to be 1 and
e 100, respectively. The step sizegn)} and{b(n)} in the

ve algorithm are taken as

b(n) = anda(n) =

e 19

1
2/3
] i

10

[

respectively, fom > 1 anda(0) = b(0) = 1. In the
above,[i denotes the integer part et-. Note that we

study the sensitivity of the algorithm w.r.t. the parameters
¢, L and the step sizes for setting 2 below. We consider
Ai(n),i =0,1,...,4,n > 0to bei.i.d., Bernoulli dis-
tributed withA; (n) = +1 w.p. 1/2. The cost of accepting
an incoming packet is the queue length as seen by it. For
the rejection costRC), we assign a fixed constant value.
We run the algorithm for 100,000 iterations or parameter
updates. After convergence of the algorithm, the resulting
threshold values are then used in another simulation that
2N is run for 100,000 arrivals to compute the estimate for
long-run average cost.

n In Figure 2, we show the plot of convergence of thresh-
1 old Ng using our algorithm when the cost of rejection is set
S€ at 250. We do not show plots of other thresholds and also
2d those corresponding to other rejection costs since these

in section 2. Note that the form of feedback policies that are somewhat repetitive in nature. In Table 1, we show

we consider (see also setting 2 below) is quite gene
as it is based on the state of the underlying MMPP
well. In cases where such information is not availabls
one may consider optimizing a single threshold based
just the queue length at the bottleneck node. This woy
correspond to optimizing parameterized hidden Markg
models or Markov chains under partial observations a
could be easily handled using our algorithm [17].
The projection seD is chosen to bé2, ... , 490°.

Thus, all the thresholds take values in the s

al values of threshold parameters to which our algorithm
S converged along with the long-run average costs obtained
2, using the converged values for varying rejection costs but
PN with cost of acceptance the same as above. Note also from
Id Table 1 that on the whole, as the rejection cost s increased,
V the long-run average costs also increase. There is, how-
nd ever, no particular order in which the various thresholds
converge. For the CTMC rate matrix given above, the
steady-state probabilities;, i = 0,1, ... , 4, are found
et to berg = 0.28, 11 = 0.21, np = 0.19, 3 = 0.16,

{2,...,490,. The maximum number of customers in

andr4 = 0.16, respectively. We also performed exper-
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Figure 2. Convergence of threshold No when rejection cost = 250

Table 1. Effect of increase in RC on performance
RC N§ N} N3 N3 N} J(0*%)
100 117 89 147 7 343 18.06
125 205 362 252 3 101 21.72
150 157 140 177 4 297 23.06
200 136 402 294 10 330 24.55
250 59 72 32 32 481 24.94
300 41 321 22 61 369 27.92
350 30 336 9 55 421 36.09
400 34 409 16 59 415 34.06
450 30 420 7 34 406 46.18
500 10 451 24 86 367 44.73

iments with different rejection costs in different states 4.2 Setting 2

of the CTMC but with the cost of accepting arrivals th

same as before. Specifically, we chose the rejection costsThe model we consider here is in many ways more gen-
for this case to be 108 50i for states =0, 1, ... , 4 of eral than the one earlier. The basic model is shown in
the underlying CTMC. The average rejection cost in this Figure 3. A similar model has recently been considered
case is thus 185.5. The long-run average cost for this casein Bhatnagar and Reddy [28], where the admission con-
was found to be 23.80. Upon comparison with the valugs trol problem is analyzed in detail and a variant of our
in Table 1, it is clear that this value lies in between the algorithm that updates parameters in the (continuously
long-run average costs corresponding to the cases wi erivalued) closed convex hull of the discrete search space
the rejection costs are set uniformly (over all states) at 150 is proposed. We consider two streams of packets, one
and 200, respectively, which conforms with intuition. controlled and the other uncontrolled. The uncontrolled

766 SIMULATION Volume 81, Number 11
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Uncontrolled
Source

Poisson A u )

A (n-1)
; CN %
Regularized — Accept
SMPP o i CO——
- . |
Stream C ! . ' Feedback
A (n-1) | Main Queue \
‘ | at nT,n>0.
| |
Rejectl - _ __ _ _ _ _| D, [~—=— _

Figure 3. The admission control model of setting 2

stream corresponds to higher priority traffic, while the CN are admitted to the main queue first (as they have
controlled stream characterizes lower priority traffic that higher priority) whenever there are vacant slots available
is bursty in nature and receives best-effort service. We in the main queue buffer that we assume has Biz&d-
assume the uncontrolled stream to be a Poisson processnission control (in the regular sense) is performed only on
with raten, while the controlled stream is assumed tp packets from the SMMPP stream that are stored at node
be a regularized semi-Markov-modulated Poisson prp- CN. Packets from this stream are admitted to the main
cess (SMMPP) that we explain below. Suppfsé is a queue at instantsT based on the queue lenggh of the
regularized semi-Markov process, that is, one for whicgh main queue, the number of uncontrolled stream packets
transitions are Markov but that take place evEiipstants admitted at time:T', and also the statg, 1 (during in-
of time for someT fixed. Supposéy;,} takes valuesina | terval[(n — 1)T, nT)) of the underlying Markov process
finite setV. Now if y, = y,7 =i € V, we assume the | inthe SMMPP. We assume that feedback policies (for the
SMMPP sends packets according to a Poisson processcontrolled stream) are of the threshold type. Eyr of
with raten (i) during the time intervgin T, (n +1)T). As the formD, = MT for someM > 0, the joint process
with an MMPP, an SMMPP may also be used to model {(gn, Yn—1, ¢n—1» Yn—21 - - - » Gn—m» Yn—m—1)} IS Markov.
bursty traffic. For ease of exposition, we give the form of the policies
Packets from both streams are first collected at|a below for the case oD, = 0. Supposd.y, ..., Ly are
multiplexor or control node CN during time intervalg given integers satisfying & L; < B,V j € V. Here,
[(n—=1T,nT),n = 1, and are stored in different buffers]| eachL ; serves as a threshold for the controlled SMMPP
(These correspond to the input buffers at node CN.) We stream when the state of the underlying Markov chain is
assume both buffers have infinite capacity. Atinstafts j. Leta* anda® denote the number of arrivals from the
the queue length,, » > 1 in the main queue is observed| uncontrolled and controlled streams, respectively, at node
and this information is fed back to node CN. We assume, CN during the time interval(n — 1)T, nT).
however, that this information is received at the CN wit
adelayD;,. On the basis of this information, a decision o
the number of packets to accept from both streams (that
are stored in the control buffers) is instantly made. Packets . |« > B _;

Feedback Policies

that are not admitted to the main queue from either stream {

areimmediately dropped, and they leave the system. Thus, Accept first(B — i) uncontrolled packets and no con-
the interim buffers at the control node CN are emptied ey- trolled packets.

ery T units of time, with packets from these buffers either }

joining the main queue or getting dropped. We assume eifi<LjandL; —i<a"<B—i

that packets from the uncontrolled source waiting at node {
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Accept all uncontrolled packets and no controlle
packets.
}
e Ifi < L,- andij —i>a"
{

Accept all uncontrolled packets and

- Ifa¢ < ij—i—a”
{
Accept all controlled packets
}
—Ifa*>L;—i—a"
{ _
Accept firstL; — i — a" controlled packets

}
}

eIfi>L;andB —i > a"
{
Accept all uncontrolled packets and no controlle
packets.

}

For our experiments, we consider an SMMPP strea
with four states, with the transition probability matrix of
the underlying Markov chain chosen to be

0O 06 04 O
04 0 06 O

0o 0 o0 1

0O 07 0 03

P =

The corresponding rates of the associated Poisson p
cesses in each of these states are chosarilas= 0.5,
A2 = 1.0, n(3) = 1.5, andr(4) = 2.5, respectively.
The service times in the main queue are considered to
exponentially distributed with raje = 1.3. We show re-
sults of experiments with different values Bf \,, Dy,
and the rejection cosR(C). These quantities are assume
constant for a given experiment. We also show exps
iments with different values for step sizés(n)}, and
{b(n)}, as well as parametersand L, respectively.

i of \,, the average cost increasesZass increased (and
thus is the lowest for the lowest value Bfconsidered).
This happens because Ads increased, the system ex-
ercises control less often as also the average number of
packets that arrive into the control node buffers in any
given interval increases. Also from Table 3, note that as
the uncontrolled rate,, is increased to 1.0, the average
cost values increase significantly over corresponding val-
ues of these fok, = 0.1. This is again expected since
the higher priority uncontrolled packets now have a sig-
nificant presence in the main queue buffer, leading to an
overall increase in values of(6*) as packets from the
control stream get rejected more frequently. In Table 4,
we varyR C over arange of values, keeping the cost of ac-
cepting a packet the same as before. Also, we Keapd

\, fixed at 3 and @4, respectively. Furthermor®), = 0.

As expected, the average cogi*) increases a®C is
increased. In Table 5, we show the impact of varying

for fixed T = 3, \, = 0.1, andRC = 50, respectively.
Note that agD,, is increased, performance deteriorates as
expected.

In the above tables, we set the step sizes as in (14).
Also, ¢ = 1 andL = 100 as before. In Tables 6 through
8, we study the effect of changing these parameters when
T = 3 andRC = 50 are held fixed. In Table 6, we let
b(n) as in (14), whilea(n) has the formru(0) = 1 and

)

m

a(n) = ,n > 1. We study the variation in perfor-

n 1o
mance f(%?J different values af € [0.66, 1]. Note from
the table that when = 0.66 is usedqa(n) = b(n), Vn. In

ro-such a scenario, the algorithm does not show good per-
formance as observed from the average cost value, which
is high. Wheru is increased, performance improves very

bequickly until aftera = 0.75, beyond which it stabilizes.
These results also suggest that a difference in timescales
in the recursions improves performance.

| In Tables 7 and 8, we study the effects of changing

r- andL on performance for above valuesioandR C, with
step sizes as in (14). Note from Table 7 that performance
is not good fore < 0.5. As described previously (section

In Figure 4, we show the convergence behavior for ome 2), this happens because tox 0.5, the parameters for

of the threshold values, for the cage= 3, ), = 0.4,
D, = 0, andRC = 50. The same for other cases an
thresholds is similar and is hence not shown. We deng
by N1*, ..., N4* the optimal values of the threshold pa
rametersv1y, ..., N4, respectively. We assume that th
cost of accepting a packet at the main queue is the que
length as seen by it. The buffer size at the main queue
assumed to be 80.

In Tables 2 and 3, we study the change in average ¢
behavior for different values @ andX,, whenRC = 50
and D, = 0. Specifically, in Table 2 (respectively, Ta-
ble 3), the results of experiments for whigfp = 0.1 (re-

both simulations after projection would lead to the same
d point. Performance is seen to improve o 0.5. From
te Table 8, it can be seen that performance is not good for
low values ofL (see the case corresponding/ie= 10).
» It has also been observed in the case of continuous opti-
suemization algorithms [17, 19, 20] that low valuesibfead
is to poor system performance. Also, observe that when
is increased beyond a point (see entries corresponding
pstto L = 700 andL = 1000, respectively), performance
degrades again. This implies that excessive additional av-
eraging is also not good for system performance. From
the table, it can be seen thiatshould ideally lie between

spectively, 10) are tabulated. Note that for a given valu

768 SIMULATION Volume 81, Number 11
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60 T T T T T T T T T

50 b
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Value of Threshold N1

20 b

10F T
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Number of Parameter Updates % 10*

Figure 4. Convergence of the values of threshold N1for T = 3, \,, = 0.4, D, =0, and RC =50

Table 2. A\, =0.1, RC =50, D, =0

T N1* N2* N3* N4* J(6%)
3 15 23 36 4 14.23
5 11 9 38 21 15.92

10 23 20 11 59 18.08

Table 3. A, =10, RC =50, D, =0

T N1* N2* N3* N4* J(©6%)
3 8 41 28 19 25.69
5 14 11 19 6 27.91

10 21 19 37 9 31.32
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RC N1* N2* N3* N4* J(©%)
40 23 16 36 17 15.12
50 44 32 23 19 16.81
60 26 36 14 30 19.40
70 31 25 19 12 22.08
80 22 29 49 53 25.59
90 19 43 42 36 29.61
100 8 50 38 26 34.18
Table 5.\, =04, T =3, RC =50
Dy, N1* N2* N3* Na* J(©0%)
0 44 32 23 19 16.81
3 53 35 41 9 18.33
6 11 48 50 10 19.52
9 12 56 17 12 21.64
Table 6.7 =3, Ay =0.1, RC =50, D, =0
o N1* N2* N3* Na&* J(©6%)
0.66 59 26 6 19 25.12
0.70 37 32 19 21 18.81
0.72 21 31 26 28 16.42
0.75 15 23 36 4 14.23
0.80 24 32 37 12 13.67
0.85 16 29 49 43 13.79
0.90 14 37 32 29 13.61
1.00 18 45 38 16 13.66
Table7.T=3,\, =0.1, RC =50, D, =0
c N1* N2* N3* Na* J(©%)
0.40 58 50 32 40 29.12
0.50 52 38 13 19 18.29
0.52 19 20 38 10 14.04
0.55 11 19 29 21 13.71
0.70 21 28 35 17 14.42
1.00 15 23 36 4 14.23
Table 8.7 =3, A =0.1, RC =50, D, =0
L N1* N2* N3* Na* J(©6%)
10 51 39 21 45 29.20
50 32 28 22 29 15.29
100 15 23 36 4 14.23
200 9 15 29 8 13.92
500 17 18 25 47 14.01
700 27 9 34 31 16.22
1000 21 38 4 51 18.26
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5. Conclusions

We developed in this article a two-timescale simultan
ous perturbation stochastic approximation algorithm th
finds the optimum parameter in a discrete search sp
This algorithm is applicable in cases where the cost
be optimized is in itself the long-run average of certai
cost functions whose noisy estimates can be obtained
ing simulation. The advantage of a simulation-based
proach is that the transition dynamics of the underlyi
Markov processes need not be precisely known as lo
as state transitions of these can be simulated. We bri
presented the convergence analysis of our algorithm.
nally, we applied this algorithm to find optimal feedbac
policies within threshold-type policies for an admissio
control problem in communication networks. We show
experiments under two different settings. The results o
tained are along expected lines. The proposed algorith
however, must be tried on high-dimensional parame
settings and tested for their online adaptability in larg
simulation scenarios. In general, SPSA algorithms a
known to scale well under such settings; see, for instan
Bhatnagar et al. [17] and Bhatnagar [20], who consid
high-dimensional parameters. The same, however, sho
be tried for the discrete parameter optimization algorith
considered here.

Recently, in Bhatnagar et al. [19], SPSA-type algqg
rithms that use certain deterministic perturbations inste
of randomized have been developed. These are fou
to improve performance over randomized perturbatig

SPSA. Along similar lines, in Bhatnagar and Borkar [18],

the use of a chaotic iterative sequence for random nu
ber generation for averaging in the generated perturh
tions in SPSA algorithms has been proposed along w
a smoothed functional algorithm that uses certain perty
bations involving Gaussian random variables. In Bhatn
gar [20], adaptive algorithms for simulation optimizatior
based on the Newton algorithm have also been develop
for continuous parameter optimization. It would be in
teresting to develop discrete parameter analogs of thg
algorithms as well and to study their performance in oth
applications.
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