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1. Introduction

Stochastic discrete optimization plays an important role in
the design and analysis of discrete event systems. Exam-
ples include the problem of resource (buffer/bandwidth)
allocation in manufacturing systems and communication
networks [1, 2], as well as admission control and rout-
ing in communication/wireless networks [3]. Discrete op-
timization problems in general are hard combinatorial
problems.

There have been several approaches for solving dis-
crete optimization problems. Among these, simulated
annealing [4] and its variants have been well studied. Here
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the algorithm does not necessarily proceed along the path
of decreasing cost as increases in cost function are al-
lowed with a certain probability. The original annealing
algorithm, however, requires cost function measurements
to be precisely known. Various variants of the above algo-
rithm have subsequently been developed that work with
noisy or imprecise measurements [5] or use simulation
[6]. Alrefaei and Andradóttir [6] also propose the use of
a “constant temperature” annealing schedule instead of
a (slowly) decreasing schedule. Some other variants of
simulated annealing that work with noisy objective func-
tion estimates include the stochastic ruler algorithm of
Yan and Mukai [7] and the stochastic comparison al-
gorithm of Gong, Ho, and Zhai [8]. Algorithms based
on simulated annealing, however, are known to be slow
in general. In some other work, a stochastic branch and
bound algorithm for problems of discrete stochastic op-
timization, subject to constraints that are possibly given
by a set of inequalities, has been developed in Norkin,
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Ermoliev, and Ruszczy´nski [9]. In Barnhart, Wieselthier,
and Ephremides [3], the problem of admission control in
multihop wireless networks is considered, and a gradient
search-based procedure is used for finding an optimal pol-
icy within the class of certain coordinate convex policies;
see also Jordan and Varaiya [10], who consider optimiza-
tion on the above type of policies for an admission control
problem in multiple-service, multiple-resource networks.

In Gokbayrak and Cassandras [2], a stochastic discrete
resource allocation problem is considered. The discrete
optimization problem is transformed into an analogous
(surrogate) continuous parameter optimization problem
by constructing the convex hull of the discrete search
space. An estimate of the cost derivative is obtained us-
ing concurrent estimation [11] or perturbation analysis
(PA) [12] techniques. For the surrogate problem, they
use the simplex method to identify the(N + 1) points in
the discrete constraint set whose convex combination the
RN -valued surrogate state is. In Gokbayrak and Cassan-
dras [13], more general constraint sets than the one above
are considered, although the basic approach is similar (to
Gokbayrak and Cassandras [2]). A computationally sim-
pler algorithm (than the simplex method) is provided for
identifying the above-mentioned points. (The basic ap-
proach in Gokbayrak and Cassandras [2, 13] is somewhat
loosely similar to our approach below. We provide de-
tailed comparisons in the next section.)

In the works cited above, noisy estimates of the cost
function are assumed available at discrete parameter set-
tings, with the goal being to find the optimum parameter
for the noise-averaged cost. There are, however, scenarios
in which the cost for a given parameter value is in itself the
long-run average of a certain cost function whose noisy
estimates at the (above) given parameter values can be ob-
tained via simulation. For solving such problems, there
have been approaches in the continuous optimization
framework. For instance, those based on PA [12] or the
likelihood ratio [14] require one simulation for finding the
optimum parameter. These, however, require knowledge
of sample path derivatives of performance with respect
to (w.r.t.) the given parameter. In addition, they require
certain constraining regularity conditions on sample per-
formance and underlying process parameters. Among fi-
nite difference gradient approximation-based approaches,
the Kiefer-Wolfowitz (K-W) algorithm with two-sided
differences requires 2N loss function measurements for
an N -dimensional parameter vector. In a recent related
work [15], the gradient estimates in a K-W-type algorithm
are chosen by simultaneously perturbing all parameter
components along random directions, most commonly
by using independent, symmetric,±1-valued, Bernoulli-
distributed, random variables. This algorithm, known as
the simultaneous perturbation stochastic approximation
(SPSA) algorithm, requires only two loss function mea-

surements for anyN -vector parameter and is, in general,
found to be very efficient.

In Bhatnagar and Borkar [16], a two-timescale stochas-
tic approximation algorithm that uses one-sided differ-
ence K-W-type gradient estimates was developed as an
alternative to PA-type schemes. The idea here is that ag-
gregation/averaging of data is performed using the faster
timescale recursions while parameter updates are per-
formed on the slower one, and the entire algorithm is
updated at each epoch. The disadvantage with this algo-
rithm, however, is that it requires a significant amount of
computation since it generates(N + 1) parallel simula-
tions at each instant and hence is slow whenN is large.
In Bhatnagar et al. [17], the SPSA-based analog of the
algorithm in Bhatnagar and Borkar [16] was developed,
except for the difference that an averaging of the faster
timescale recursions over a certain fixed number (L ≥ 1)
of epochs was proposed before each parameter update, in
addition to the two-timescale averaging. This numberL

is set arbitrarily, and the additional averaging is seen to
improve performance. Other simulation optimization al-
gorithms based on the SPSA technique have more recently
been developed in Bhatnagar and Borkar [18], Bhatnagar
et al. [19], and Bhatnagar [20].

The algorithms described in the previous two para-
graphs are for optimization over continuously valued sets.
In this article, we develop an algorithm for discrete param-
eter simulation-based optimization where the cost is the
long-run average of certain cost functions that depend on
the state of an underlying parameterized Markov process.
This algorithm is a variant of the algorithm in Bhatnagar
et al. [17] that is adapted to optimization over discrete sets
and uses two-timescale averaging. The motivation for us-
ing two-timescale stochastic approximation is shown in
the next section. In a related work [1], a variant of the
SPSA algorithm [15] is used for function optimization
over discrete sets. This, however, is of the one-timescale
variety and is not developed for the setting of simulation
optimization as in this study. We briefly explain the con-
vergence analysis of our algorithm. Next, we present an
application of our algorithm for finding optimal policies
for a problem of admission control [21, 22] in commu-
nication networks. Our methods are applicable to both
admission control of calls (e.g., of customers who require
services with certain quality of service [QoS] require-
ments for an arbitrary or random duration of time) as well
as packet admission control (or that for individual packets
at link routers within the network). We consider two dif-
ferent settings for our experiments. These are explained
in detail in section 4. We assume the class of feedback
policies in these settings to be of the threshold type that
depend on the state of the underlying Markov process at
any instant. Our algorithm gives an optimal policy within
the prescribed class of policies (i.e., computes the optimal
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such threshold-type policy). Obtaining optimal policies
using analytical techniques in such settings is not feasi-
ble in general. Moreover, as we explain in the next section,
PA-type approaches, as with Gokbayrak and Cassandras
[2, 13], are not directly applicable on such settings. Our
simulation-based discrete parameter algorithm proves ef-
fective here as it gives an optimal policy within a given
parameterized class of policies (in this case, the threshold-
type policies). This is similar in spirit to neurodynamic
programming techniques with policy parameterization in
the context of Markov decision processes [23, 24].

The rest of the article is organized as follows: section 2
describes the setting and the algorithm and provides a
motivation for the two-timescale idea. We also discuss
comparisons of our approach here with the ones in Gok-
bayrak and Cassandras [2, 13]. The convergence analysis
is briefly presented in section 3. The experiments on ad-
mission control in communication networks are presented
in section 4. Finally, section 5 provides the concluding
remarks.

2. Framework and Algorithm

Consider a Markov process{Xθ
n } parameterized by

θ ∈ D ⊂ ZN , where Z is the set of all inte-
gers andN ≥ 1. SupposeXθ

n , n ≥ 1, take val-
ues in S ⊂ Rd for some d ≥ 1. We assume
D has the formD = ∏N

i=1{Di,min, . . . , Di,max}. Here,
Di,min, Di,max ∈ Z with Di,min ≤ Di,max, i = 1, . . . , N ,
and{Di,min, . . . , Di,max} is the set of successive integers
from Di,min to Di,max, with both end points included. As-
sume that for any fixedθ ∈ D, {Xθ

n } is ergodic as well with
transition kernelpθ(x, dy),x, y ∈ S. Leth : Rd → Rbe
the associated cost function that is assumed to be bounded
and continuous. The aim is to findθ∗ ∈ D such that

J (θ∗) = lim
n→∞

1

n

n∑
i=1

h(Xθ∗
i ) = min

θ∈D
J(θ). (1)

Here,J (·) denotes the long-run average cost. The aim
therefore is to findθ∗ that minimizesJ (θ).

Before we proceed further, we first provide the motiva-
tion for using the two-timescale stochastic approximation
approach. Suppose for the moment that we are interested
in finding a parameterθ, taking values in a continuously
valued set, that minimizesJ (θ). One then needs to com-
pute the gradient∇J (θ) ≡ (∇1J (θ), . . . , ∇NJ (θ))T , as-
suming that it exists. Consider a Markov chain{Xθ

j } gov-
erned by parameterθ. Also, considerN other Markov
chains {Xi

j } governed by parametersθ + δei , i =
1, . . . , N , respectively. Here,ei is anN -dimensional vec-

tor with 1 in theith place and 0 elsewhere. Then,

∇iJ (θ) = lim
δ→0

(J (θ + δei) − J (θ))

δ
(2)

= lim
δ→0


 lim

l→∞
1

δl

l−1∑
j=0

(h(Xi
j ) − h(Xθ

j ))


 . (3)

The gradient∇J (θ) may thus be estimated by simulat-
ing the outcomes of the(N + 1) Markov chains{Xθ

j }
and {Xi

j }, i = 1, . . . , N , respectively. These Markov
chains, in turn, correspond to the underlying processes
in independently running parallel systems that are each
identical to one another except that they run with dif-
ferent parameter values (above). Note that the transition
dynamics of these Markov chains need not be precisely
known as long as state transitions of these chains can be
simulated. Estimates (2) correspond to one-sided Kiefer-
Wolfowitz estimates of the gradient∇J (θ). One can sim-
ilarly obtain two-sided Kiefer-Wolfowitz gradient esti-
mates as well. More recently, Spall [15] proposed the fol-
lowing (SPSA) randomized difference gradient estimates.
Suppose
i , i = 1, . . . , N , are independent identically
distributed (i.i.d.) Bernoulli-distributed random variables
with 
i = ±1 w.p. 1/2, and let
 = (
1, . . . , 
N)T .
Quantities
 are called random perturbations. (More gen-
eral conditions on the sequences of independently gener-
ated
s are given in Spall [15]; see also condition (A) be-
low, which is similar to Spall [15].) Consider now Markov
chains{X+

n } and{X−
n } that are respectively governed by

parameters(θ + δ
) and(θ − δ
). Then, the SPSA gra-
dient estimate is

∇iJ (θ) = lim
δ→0

E

[
(J (θ + δ
) − J (θ − δ
))

2δ
i

]
(4)

= lim
δ→0

E


 lim

l→∞
1

2δl

l−1∑
j=0

(h(X+
j ) − h(X−

j ))


 ,

(5)

where the expectation is taken w.r.t. the common distri-
bution of
i .

Note from the form (3) of the estimates above, it is
clear that the outer limit is taken only after the inner
limit. For classes of systems for which the two limits (in
(3)) can be interchanged, gradient estimates from a sin-
gle sample path can be obtained using PA [12] or likeli-
hood ratio [14] techniques. For a general class of systems
for which the above limit interchange is not permissible,
any recursive algorithm that computes optimumθ should
have two loops, with the outer loop (corresponding to pa-
rameter updates) being updated once after the inner loop
(corresponding to data averages), for a given parameter
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value, has converged. Thus, one can physically identify
separate timescales: the faster one on which data based
on a fixed parameter value are aggregated and averaged
and the slower one on which the parameter is updated
once the averaging is complete for one latter iteration.
The same effect as on different physical timescales can
also be achieved by using different step-size schedules
(also called timescales) in the stochastic approximation
algorithm. Note also from the form of (5) that the expec-
tation is taken after the inner loop limit and is followed
by the outer limit. Bhatnagar and Borkar [16] develop
a two-timescale algorithm using (3) as the gradient es-
timate, while Bhatnagar et al. [17] do so with (5). The
use of the latter (SPSA) estimate was found in Bhatnagar
et al. [17] to significantly improve performance in two-
timescale algorithms.As explained before, the algorithms
of Bhatnagar and Borkar [16] and Bhatnagar et al. [17]
were for the setting of continuous parameter optimization.

In what follows, we develop a variant of the algo-
rithm in Bhatnagar et al. [17] for discrete parameter
stochastic optimization. Consider two step size sched-
ules or timescale sequences{a(n)} and{b(n)} that satisfy
a(n), b(n) > 0 ∀n, and∑

n

a(n) =
∑
n

b(n) = ∞,

∑
n

(a(n)2 + b(n)2) < ∞,

a(n) = o(b(n)). (6)

Let c > 0 be a given constant. Also, letΓi (x) de-
note the projection fromx ∈ R to {Di,min, . . . , Di,max}.
In other words, if the pointx is an integer and lies
within the set{Di,min, . . . , Di,max}, then Γi (x) = x,
elseΓi (x) is the closest integer within the above set to
x. Furthermore, ifx is equidistant from two points in
{Di,min, . . . , Di,max}, thenΓi (x) is arbitrarily set to one
of them. Fory = (y1, . . . yN)T ∈ RN , supposeΓ(y)

= (Γ1(y1), . . . , ΓN(yN))T . Then,Γ(y) denotes the pro-
jection ofy ∈ RN on the setD (defined earlier).

Now suppose for anyn ≥ 0, 
(n) ∈ RN is a
vector of mutually independent and mean zero ran-

dom variables{
1(n), . . . , 
N(n)} (namely,
(n)

=

(
1(n), . . . , 
N(n))T ), taking values in a compact set
E ⊂ RN and having a common distribution. We assume
that random variables
i (n) satisfy condition (A) below.

Condition (A). There exists a constant̄K < ∞,
such that for anyn ≥ 0, and i ∈ {1, . . . , N},
E

[
(
i (n))−2] ≤ K̄.

We also assume that
(n), n ≥ 0, are mutually in-
dependent vectors and that
(n) is independent of the
σ-field σ(θ(l), l ≤ n). Condition (A) is a somewhat stan-

dard requirement in SPSA algorithms; see, for instance,
Spall [15] for similar conditions. LetF denote the com-
mon distribution function of the random variables
i (n).

2.1 Discrete Parameter Stochastic Approximation
Algorithm

• Step 0 (Initialize): SetZ1(0) = Z2(0) = 0. Fix θ1(0),
θ2(0), . . . , θN(0) within the setD and form the pa-

rameter vectorθ(0)

= (θ1(0), . . . , θN(0))T . Fix L

and (large)M arbitrarily. Setn := 0, m := 0 and
fix a constantc > 0. Generate i.i.d. random variables

1(0), 
2(0), . . . , 
N(0), each with distributionF and

such that these are independent ofθ(0). Setθ1
j (0)


=
Γj (θj (0) −c
j (0)) andθ2

j (0)

= Γj (θj (0) +c
j (0)),

j = 1, . . . , N , respectively.

• Step 1: Generate simulationsX
θ1(n)
nL+m andX

θ2(n)
nL+m, respec-

tively governed byθ1(n)

= (θ1

1(n), . . . , θ1
N(n))T and

θ2(n)

= (θ2

1(n), . . . , θ2
N(n))T . Next, update

Z1(nL + m + 1) = Z1(nL + m) + b(n)(h(X
θ1(n)
nL+m)

− Z1(nL + m)),

Z2(nL + m + 1) = Z2(nL + m) + b(n)(h(X
θ2(n)
nL+m)

− Z2(nL + m)).

If m = L − 1, setnL := nL + L, m := 0 and go to
step 2;

else, setm := m + 1 and repeat step 1.

• Step 2: Fori = 1, . . . , N ,

θi (n + 1) = Γi

(
θi (n) + a(n)

[
Z1(nL) − Z2(nL)

2c
i (n)

])
.

Setn := n + 1. If n = M, go to step 3;

else, generate i.i.d. random variables
1(n), 
2(n), . . . ,

N(n) with distributionF (independent of their previ-
ous values and also of previous and currentθ values).
Setθ1

j (n) := Γj (θj (n) −c
j (n)), θ2
j (n) := Γj (θj (n)

+c
j (n)), j = 1, . . . , N , and go to step 1.

• Step 3 (termination): Terminate algorithm and output

θ(M)

= (θ1(M), . . . , θN(M))T as the final parameter

vector.

In the above,Z1(nL + m) and Z2(nL + m), m =
0, 1, . . . , L − 1, n ≥ 0, are defined according to their
corresponding recursions in step 1 and are used for aver-
aging the cost function in the algorithm. As stated earlier,
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we use only two simulations here for anyN -vector pa-
rameter. Note that in the above, we also allow for an addi-
tional averaging overL (possibly greater than 1) epochs
in the two simulations. This is seen to improve perfor-
mance of the system, particularly when the parameter di-
mensionN is large. We study system performance with
varying values ofL in our experiments. Note also that
the value ofc should be carefully chosen here. In par-
ticular, c > 1/(2R) should be used, withR being the
maximum absolute value that the random variables
j (n)

can take. This is because for values ofc that are lower,
both perturbed parametersθ1

j (n) andθ2
j (n) (after being

projected onto the grid) would always lead to the same
point. The algorithm would not show good convergence
behavior in such a case. For instance, when
j (n) are
i.i.d. symmetric, Bernoulli-distributed, random variables
with 
j (n) = ±1 w.p. 1/2, the value ofc chosen should
be greater than 0.5. This fact is verified through our ex-
periments as well, where we generate perturbations ac-
cording to the above distribution. Moreover, one should
choose appropriate step size sequences that do not de-
crease too fast so as to allow for better exploration of the
search space.

We now provide some comparisons with the approach
used in Gokbayrak and Cassandras [2, 13] as the basic ap-
proach used in the above references is somewhat loosely
similar to ours. The method in Gokbayrak and Cassan-
dras [2, 13] uses a (surrogate) system with parameters in
a continuously valued set that is obtained as a convex hull
of the underlying discrete set. The algorithm used there
updates parameters in the above set, using a continuous
optimization algorithm by considering the sample cost for
the surrogate system to be a continuously valued linear
interpolation of costs for the original system parameters.
The surrogate parameters after each update are projected
onto the original discrete set to obtain the corresponding
parameter value for the original system. The algorithm
itself uses PA/concurrent estimation-based sample gradi-
ent estimates, with the operating parameter being the cor-
responding projected “discrete” update. Note that there
are crucial differences between our approach and the one
above. As shown in the next section, we also use a convex
hull of the discrete parameter set, but this is only done for
proving the convergence of our algorithm that updates pa-
rameters directly in the discrete set. We do not require the
continuous surrogate system at all during the optimization
process. Furthermore, since we use an SPSA-based finite
difference gradient estimate, we do not need PA-type gra-
dient estimates. We directly work (for the gradient esti-
mates) with the projected perturbed parameter values in
the discrete set. As stated earlier, the use of PA requires
constraining conditions on the cost and system parameters
so as to allow for an interchange between the expectation
and gradient (of cost) operators. We do not require such

an interchange because of the use of two timescales, un-
like Gokbayrak and Cassandras [2, 13], who use only one.
In the type of cost functions and underlying process pa-
rameters used in our experiments in section 4, PA is not
directly applicable. Finally, Gokbayrak and Cassandras
[2, 13] require that the “neighborhood”(N + 1) points,
whose convex combination anyRN -valued state of the
surrogate system is, need to be explicitly obtained, which
is computationally cumbersome. Our algorithm does not
require such an identification of points as it directly up-
dates the algorithm on the discrete set. Next, we present
the convergence analysis for our algorithm.

3. Convergence Analysis

SupposeDc denotes the convex hull of the setD. Then

Dc has the form
N∏

i=1

[Di,min, Di,max]—namely, it is the

Cartesian product of the intervals[Di,min, Di,max] ⊂ R,
i = 1, . . . , N . For showing convergence, we first extend
the dynamics of the Markov process{Xθ

n } to the contin-
uously valued parameter setθ ∈ Dc and show the analy-
sis for the extended parameter process. Convergence for
the original process is then straightforward. Note that the
setD contains only a finite number (say,m) of points.
For simplicity, we enumerate these asθ1, . . . , θm. Thus,
D = {θ1, . . . , θm}. The setDc then corresponds to

Dc = {
m∑

i=1

αiθ
i | αi ≥ 0, i = 1, . . . , m,

m∑
i=1

αi = 1}.

In general, any pointθ ∈ Dc can be written as

θ =
m∑

i=1

αi (θ)θ
i . Here we consider an explicit functional

dependence of the weightsαi , i = 1, . . . , m, on the pa-
rameterθ and assume thatαi (θ), i = 1, . . . , m, are con-
tinuously differentiable with respect toθ. For θ ∈ Dc,
define the transition kernelpθ(x, dy), x, y ∈ S as

pθ(x, dy) =
m∑

k=1

αk(θ)pθk (x, dy).

It is easy to verify thatpθ(x, dy), θ ∈ Dc, satisfy prop-
erties of a transition kernel and thatpθ(x, dy) are con-
tinuously differentiable with respect toθ. Moreover, it is
easy to verify that the Markov process{Xθ

n } continues
to be ergodic for everyθ ∈ Dc as well. LetJ c(θ) de-
note the long-run average cost corresponding toθ ∈ Dc.
Then,J c(θ) = J (θ) for θ ∈ D. For a setA, suppose|A|
denotes its cardinality. The following lemma is valid for
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finite state Markov chains, that is, where|S| < ∞. We
have

LEMMA 1. For |S| < ∞, J c(θ) is continuously differ-
entiable inθ.

Proof. Note thatJ c(θ) here can be written as

J c(θ) =
∑
i∈S

h(i)µi (θ),

whereµi (θ) is the steady-state probability of the chain
{Xθ

n } being in statei ∈ S for given θ ∈ Dc. Then
it is sufficient to show thatµi (θ), i ∈ S are continu-
ously differentiable functions. Let for fixedθ, P(θ) :=
[[pθ(i, j)]]i,j∈S denote the transition probability matrix

of the Markov chain{Xθ
n }, and letµ(θ) := [µi (θ)]i∈S de-

note the vector of stationary probabilities. Here we denote
by pθ(i, j) the transition probabilities of this chain. Also
letZ(θ) := [I −P(θ)−P ∞(θ)]−1, whereI is the identity
matrix andP ∞(θ) = limm→∞(P (θ) + . . . + P m(θ))/m.
Here,P m(θ) corresponds to them-step transition prob-
ability matrix with elementspm

θ
(i, j) = Pr(Xθ

m = j |
Xθ

0 = i), i, j ∈ S. For simplicity, let us first considerθ
to be a scalar. Then, from theorem 2 of Schweitzer [25,
pp. 402-3], one can write

µ(θ + h) = µ(θ)(I + (P (θ + h) − P(θ))Z(θ) + o(h)).

(7)

Thus,

µ′(θ) = µ(θ)P ′(θ)Z(θ).

Hence,µ′(θ) (the derivative ofµ(θ)) exists ifP ′(θ) (the
derivative ofP(θ)) does. Note that by construction, for
θ ∈ Dc, P ′(θ) exists and is continuous. Next, note that

|µ′(θ + h) − µ′(θ)| ≤ |µ(θ + h)P ′(θ + h)Z(θ + h)

− µ(θ)P ′(θ + h)Z(θ + h)|
+ |µ(θ)P ′(θ + h)Z(θ + h)

− µ(θ)P ′(θ)Z(θ + h)|
+ |µ(θ)P ′(θ)Z(θ + h)

− µ(θ)P ′(θ)Z(θ)|.
Then, (again) from theorem 2 [25, pp. 402-3], one can
write Z(θ + h) as

Z(θ + h) = Z(θ)H(θ, θ + h)

− P ∞(θ)H(θ, θ + h)U(θ, θ + h)

Z(θ)H(θ, θ + h),

where

H(θ, θ + h) = [I − (P (θ + h) − P(θ))]−1 → I

as |h| → 0

and

U(θ, θ + h) = (P (θ + h) − P(θ))Z(θ) → 0̄

as |h| → 0.

In the above,̄0 is the matrix (of appropriate dimension)
with all zero elements. It thus follows thatZ(θ + h) →
Z(θ) as|h| → 0. Moreoverµ(θ) is continuous since it is
differentiable. Thus, from above,µ′(θ) is continuous in
θ as well, and the claim follows. For vectorθ, a similar
proof as above verifies the claim. �
REMARK. Lemma 1 is an important result that is re-
quired to push through a Taylor series argument in the
following analysis. Moreover,J c(θ) turns out to be the
associated Liapunov function for the corresponding or-
dinary differential equation (ODE) (8) that is asymptoti-
cally tracked by the algorithm. However, as stated before,
lemma 1 is valid only for the case of finite state Markov
chains. This is because the result of Schweitzer [25] used
in the proof is valid only for finite state chains. For general
state Markov processes, certain sufficient conditions for
the differentiability of the stationary distribution are given
in Vazquez-Abad and Kushner [26]. These are, however,
difficult to verify in practice. In the remainder of the anal-
ysis (for the case of general state Markov processes taking
values inRd ), we simply assume thatJ c(θ) is continu-
ously differentiable inθ. For our numerical experiments
in section 4, we require only the setting of a finite state
Markov chain, for which lemma 1 holds.

Let us now define another projection functionΓc:
RN → Dc in the same manner as the projection func-
tion Γ, except that the new function projects points in
RN on the setDc in place ofD. Now consider the al-
gorithm described in section 2, with the difference that
we use projectionΓc

i (·) in place ofΓi (·) in step 2 of the
algorithm, whereΓc

i (·), i = 1, . . . , N are defined suit-
ably (as withΓi (·)). The above thus corresponds to the
continuous parameter version of the algorithm described
in section 2. We now describe the analysis for the above
(continuous parameter) algorithm withΓc(·) in place of
Γ(·). For any bounded and continuous functionv(·) ∈ R,
let Γ̂

c

i (·), i = 1, . . . , N be defined by

Γ̂
c

i (v(x)) = lim
η↓0

(
Γc

i (x + ηv(x)) − x

η

)
.

Next fory = (y1, . . . , yN)T ∈ RN , let Γ̂
c
(y) = (Γ̂

c

1(y1),
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. . . , Γ̂
c

N (yN))T . Consider the following ODE:

.

θ(t) = Γ̂
c (−∇J c(θ)

)
. (8)

Let K

= {θ ∈ Dc | Γ̂

c
(∇J c(θ)) = 0} denote the set of

all fixed points of the ODE (8). Suppose for givenε > 0,

Kε denotes the setKε 
= {θ | ‖ θ − θ′ ‖ ≤ ε ∀ θ′ ∈ K}.
Then we have the following:

THEOREM 1. Givenε > 0, there existsc0 > 0 such that
for anyc ∈ (0, c0], the continuous parameter version of
the algorithm converges to someθ∗ ∈ Kε, as the number
of iterationsM → ∞.

Proof. The proof proceeds through a series of approxi-
mation steps as in Bhatnagar et al. [17]. We briefly sketch
it below. Let us define a new sequence{̃b(n)} of step

sizes according tõb(n) = b
([ n

L

])
, where

[ n

L

]
denotes

the integer part of
n

L
. It is then easy to see that{̃b(n)}

satisfies∑
n

b̃(n) = ∞,
∑
n

b̃(n)2 < ∞, a(n) = o(̃b(n)).

In fact,b(n) goes to zero faster thañb(n) does, and thus
b̃(n) corresponds to an “even faster timescale” thanb(n).
Now define{t (n)} and{s(n)} as follows:t (0) = 0 and

t (n) =
n∑

m=1

b̃(m), n ≥ 1. Furthermore,s(0) = 0 and

s(n) =
n∑

m=1

a(m), n ≥ 1. Also, let 
(t) = 
(n) for

t ∈ [s(n), s(n + 1)]. It is then easy to see that the con-
tinuous parameter version of the algorithm above, on this
timescale, tracks the trajectories of the system of ODEs:

.

θ(t) = 0, (9)

.

Z
1
(t) = J c(θ(t) − c
(t)) − Z1(t), (10)

.

Z
2
(t) = J c(θ(t) + c
(t)) − Z2(t), (11)

in the following manner: suppose we define continuous
time processes{Y 1(t)} and{Y 2(t)} according toY 1(t (n))

= Z1(nL), Y 2(t (n)) = Z2(nL), and fort ∈ [t (n), t (n +
1)], Y 1(t) andY 2(t) are continuously interpolated from
the values they take at the boundaries of these intervals.
Furthermore, let us define a real-valued sequence{Tn} as
follows: supposeT > 0 is a given constant. Then,T0 = 0,
and forn ≥ 1,

Tn = min{t (m) | t (m) ≥ Tn−1 + T }.

ThusTn−Tn−1 ≈ T , ∀n ≥ 1.Also, for anyn, there exists
some integermn such thatTn = t (mn). Now define pro-
cesses{Y 1,n(t)} and{Y 2,n(t)} according toY 1,n(Tn) =
Y 1(t (mn))= Z1(nL),Y 2,n(Tn)= Y 2(t (mn))= Z2(nL),
and fort ∈ [Tn, Tn+1),Y 1,n(t) andY 2,n(t) evolve accord-
ing to the ODEs (10)-(11). By an application of Gron-
wall’s inequality, it is easy to see that

sup
t∈[Tn,Tn+1)

‖ Y 1,n(t) − Y 1(t) ‖,

sup
t∈[Tn,Tn+1)

‖ Y 2,n(t) − Y 2(t) ‖→ 0 asn → ∞.

Now note that the iteration in step 2 of the continuous
version of the algorithm can be written as follows: for
i = 1, . . . , N ,

θi (n + 1) = Γc
i (θi (n) + b̃(n)ηi (n)),

where ηi (n) = o(1), ∀i = 1, . . . , N , sincea(n) =
o(̃b(n)). Let us now define two continuous time pro-
cesses{θ(t)} and {θ̂(t)} as follows: θ(t (n)) = θ(n)

= (θ1(n), . . . , θN(n))T , n ≥ 1. Also, fort ∈ [t (n), t (n+
1)], θ(t) is continuously interpolated from the values it
takes at the boundaries of these intervals. Furthermore,
θ̂(Tn) = θ̂(t (mn)) = θ(n), and for t ∈ [Tn, Tn+1), θ̂(t)

evolves according to the ODE (9). Thus, givenT , η > 0,
∃P such that∀n ≥ P , sup

t∈[Tn,Tn+1)

‖ Y i,n(t) −Y i(t) ‖ < η,

i = 1, 2. Also, sup
t∈[Tn,Tn+1)

‖ θ̂(t) −θ(t) ‖ < η. It is now

easy to see (cf. [27]) that‖ Z1(nL) −J c(θ(n) −c
(n)) ‖
and‖ Z2(nL) −J c(θ(n) +c
(n)) ‖ → 0 asn → ∞.

Now note that because of the above, the iteration in
step 2 of the new algorithm can be written as follows: for
i = 1, . . . , N ,

θi (n + 1) = Γc
i (θi (n) + a(n)(
J c(θ(n) − c
(n)) − J c(θ(n) + c
(n))

2c
i (n)

)

+a(n)ξ(n)) ,

whereξ(n) = o(1). Using Taylor series expansions of
J c(θ(n) −c
(n)) andJ c(θ(n) +c
(n)) around the point
θ(n), one obtains

J c(θ(n) − c
(n)) = J c(θ(n))

− c

N∑
j=1


j (n)∇j J
c(θ(n)) + o(c)

and
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J c(θ(n) + c
(n)) = J c(θ(n))

+ c

N∑
j=1


j (n)∇j J
c(θ(n)) + o(c),

respectively. Thus,

J c(θ(n) − c
(n)) − J c(θ(n) + c
(n))

2c
i (n)

= −∇iJ
c(θ(n)) −

N∑
j=1,j �=i


j (n)


i (n)
∇j J

c(θ(n)) + o(c).

(12)

Now let {Fn, n ≥ 0} denote the sequence ofσ-fields de-
fined byFn = σ(θ(m), m ≤ n, 
(m), m < n), with

(−1) = 0. It is now easy to see that the processes
{M1(n)}, . . . , {MN(n)} defined by

Mi(n) =
n−1∑
m=0

a(m)

(
J c(θ(m) − c
(m)) − J c(θ(m) + c
(m))

2c
i (m)

−E[J
c(θ(m)−c
(m))−J c(θ(m)+c
(m))

2c
i (m)
|Fm]

)
,

i = 1, . . . , N , form convergent martingale sequences.
Thus, from (12), we have

E[J
c(θ(n) − c
(n)) − J c(θ(n) + c
(n))

2c
i (n)
| Fn]

= −∇iJ
c(θ(n)) −

N∑
j=1,j �=i

E[
j (n)


i (n)
]∇j J

c(θ(n)) + o(c).

By condition (A),E[
j (n)


i (n)
] = 0, ∀j �= i, n ≥ 0. The

iteration in step 2 of the new algorithm can now be written
as follows: fori = 1, . . . , N ,

θi (n + 1) = Γc
i (θi (n) − a(n)∇iJ

c(θ(n)) + a(n)β(n)),

(13)

whereβ(n) = o(1) by the above. Thus, the iteration in
step 2 can be seen as a discretization of the ODE (8), ex-
cept for some additional error terms that, however, vanish
asymptotically. Now for the ODE (8),K corresponds to
the set of asymptotically stable fixed points, withJ c(θ)

itself as an associated strict Liapunov function. The claim
follows. �

Finally, note that we haveJ (θ) = J c(θ) for θ ∈ D.
Moreover, while updatingθ in the original algorithm, we
impose the restriction (via the projectionΓ(·)) thatθ can
move only on the gridD of points whereD = Dc ∩ZN .
By the foregoing analysis, the continuous parameter ver-
sion of the algorithm shall converge in a “small” neigh-
borhood of a local minimum ofJ c(·). Thus, in the original
algorithm,θ shall converge to a point on the grid that is
(again) in a neighborhood of the local minimum (above)
of J c(·) and hence in a corresponding neighborhood of a
local minimum ofJ (·); see Gerencsér, Hill, and Vágó [1,
p. 1793] for a similar argument based on certainL-mixing
processes. We now present our numerical experiments.

4. Numerical Experiments

We consider the problem of admission control in com-
munication networks under bursty traffic. We specifically
consider two different settings here. In both settings, we
assume feedback policies to be of the threshold type that
are, in particular, functions of the state of the underlying
Markov process.

4.1 Setting 1

The basic model is shown in Figure 1.There is a single bot-
tleneck node that is fed with arrivals that follow a Markov-
modulated Poisson process (MMPP). In an MMPP, there
is an underlying continuous time Markov chain (CTMC)
{zt } taking values in a finite set (say)U . Whenzt = i (for
somei ∈ S), the MMPP stream sends packets according
to a Poisson process with rateλ(i) that is a function of
i. In general, we assumeλ(i) �= λ(j) for i �= j . The
Markov chain{zt } stays for an exponential amount of
time in a given state, at the end of which it transits to a
new state. An MMPP is generally used to model bursty
traffic in communication networks. The states in the un-
derlying Markov chain may represent different classes of
traffic. Note that ifqt denotes the queue length at timet ,
then{(qt , zt )} corresponds to the underlying continuous
time Markov chain for the whole system. We assume{zt }
to have five states, numbered 0, 1, . . . , 4, with transition
rate matrixQ given by

Q =




−0.9 0.2 0.3 0.1 0.3
0.3 −0.7 0.1 0.2 0.1
0.6 0.2 −0.9 0 0.1
0.4 0.5 0.3 −1.3 0.1
0.2 0.6 0.3 0.8 −1.9


 .

The process{zt }, for instance, spends an amount of time
distributed according to exp(0.9) when in state 0 before
transiting to some other state (seeQ-matrix above). The
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Figure 1. The admission control model of setting 1

rates of the Poisson process in each of the states 0 through
4 are taken to be 10, 15, 18, 22, and 30, respectively. The
service times are assumed to be exponentially distributed
with rateµ = 17. In general, these rates could be set in any
manner since we only require the Markov chain{(qt , zt )}
to be ergodic for any given set of threshold values (see
below). Since we consider a finite buffer system, the above
Markov chain will be ergodic. We consider the following
class of feedback policies:

For i = 0, 1, . . . , 4,
{
if MMPP state = i

{
if queue length < Ni

accept incoming packet;
else
reject incoming packet;
}
}

The parameter to be tuned is(N0, N1, . . . , N4)
T ,

whereNi corresponds to the threshold queue length when
the state of the underlying CTMC isi ∈ {0, . . . , 4}. The
aim is to find the optimum parameter that would then
give the corresponding optimal feedback policy within
the class of policies described above. For this, we use
our discrete parameter optimization algorithm described
in section 2. Note that the form of feedback policies that
we consider (see also setting 2 below) is quite general
as it is based on the state of the underlying MMPP as
well. In cases where such information is not available,
one may consider optimizing a single threshold based on
just the queue length at the bottleneck node. This would
correspond to optimizing parameterized hidden Markov
models or Markov chains under partial observations and
could be easily handled using our algorithm [17].

The projection setD is chosen to be{2, . . . , 490}5.
Thus, all the thresholds take values in the set
{2, . . . , 490}. The maximum number of customers in

queue at any instant is thus upper bounded by 490 because
of the form of the feedback policies and the constraint set.
We assume that the queue length information is fed back
to the controller once in every 100 arriving packets. The
values ofc andL in the algorithm are chosen to be 1 and
100, respectively. The step sizes{a(n)} and{b(n)} in the
algorithm are taken as

b(n) = 1[
n
10

]2/3 anda(n) = 1[
n
10

]3/4 , (14)

respectively, forn ≥ 1 anda(0) = b(0) = 1. In the

above,
[ n

10

]
denotes the integer part of

n

10
. Note that we

study the sensitivity of the algorithm w.r.t. the parameters
c, L and the step sizes for setting 2 below. We consider

i (n), i = 0, 1, . . . , 4, n ≥ 0 to be i.i.d., Bernoulli dis-
tributed with
i (n) = ±1 w.p. 1/2. The cost of accepting
an incoming packet is the queue length as seen by it. For
the rejection cost (RC), we assign a fixed constant value.
We run the algorithm for 100,000 iterations or parameter
updates.After convergence of the algorithm, the resulting
threshold values are then used in another simulation that
is run for 100,000 arrivals to compute the estimate for
long-run average cost.

In Figure 2, we show the plot of convergence of thresh-
oldN0 using our algorithm when the cost of rejection is set
at 250. We do not show plots of other thresholds and also
those corresponding to other rejection costs since these
are somewhat repetitive in nature. In Table 1, we show
values of threshold parameters to which our algorithm
converged along with the long-run average costs obtained
using the converged values for varying rejection costs but
with cost of acceptance the same as above. Note also from
Table 1 that on the whole, as the rejection cost is increased,
the long-run average costs also increase. There is, how-
ever, no particular order in which the various thresholds
converge. For the CTMC rate matrix given above, the
steady-state probabilitiesπi , i = 0, 1, . . . , 4, are found
to beπ0 = 0.28, π1 = 0.21, π2 = 0.19, π3 = 0.16,
andπ4 = 0.16, respectively. We also performed exper-
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Figure 2. Convergence of threshold N0 when rejection cost = 250

Table 1. Effect of increase in RC on performance

RCRCRC N∗
0N∗
0N∗
0 N∗

1N∗
1N∗
1 N∗

2N∗
2N∗
2 N∗

3N∗
3N∗
3 N∗

4N∗
4N∗
4 J (θ∗)J (θ∗)J (θ∗)

100 117 89 147 7 343 18.06
125 205 362 252 3 101 21.72
150 157 140 177 4 297 23.06
200 136 402 294 10 330 24.55
250 59 72 32 32 481 24.94
300 41 321 22 61 369 27.92
350 30 336 9 55 421 36.09
400 34 409 16 59 415 34.06
450 30 420 7 34 406 46.18
500 10 451 24 86 367 44.73

iments with different rejection costs in different states
of the CTMC but with the cost of accepting arrivals the
same as before. Specifically, we chose the rejection costs
for this case to be 100+ 50i for statesi = 0, 1, . . . , 4 of
the underlying CTMC. The average rejection cost in this
case is thus 185.5. The long-run average cost for this case
was found to be 23.80. Upon comparison with the values
in Table 1, it is clear that this value lies in between the
long-run average costs corresponding to the cases when
the rejection costs are set uniformly (over all states) at 150
and 200, respectively, which conforms with intuition.

4.2 Setting 2

The model we consider here is in many ways more gen-
eral than the one earlier. The basic model is shown in
Figure 3. A similar model has recently been considered
in Bhatnagar and Reddy [28], where the admission con-
trol problem is analyzed in detail and a variant of our
algorithm that updates parameters in the (continuously
valued) closed convex hull of the discrete search space
is proposed. We consider two streams of packets, one
controlled and the other uncontrolled. The uncontrolled
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Figure 3. The admission control model of setting 2

stream corresponds to higher priority traffic, while the
controlled stream characterizes lower priority traffic that
is bursty in nature and receives best-effort service. We
assume the uncontrolled stream to be a Poisson process
with rateλu while the controlled stream is assumed to
be a regularized semi-Markov-modulated Poisson pro-
cess (SMMPP) that we explain below. Suppose{yt } is a
regularized semi-Markov process, that is, one for which
transitions are Markov but that take place everyT instants
of time for someT fixed. Suppose{yt } takes values in a
finite setV . Now if yn ≡ ynT = i ∈ V , we assume the
SMMPP sends packets according to a Poisson process
with rateλ(i) during the time interval[nT , (n+1)T ). As
with an MMPP, an SMMPP may also be used to model
bursty traffic.

Packets from both streams are first collected at a
multiplexor or control node CN during time intervals
[(n−1)T , nT ), n ≥ 1, and are stored in different buffers.
(These correspond to the input buffers at node CN.) We
assume both buffers have infinite capacity.At instantsnT ,
the queue lengthqn, n ≥ 1 in the main queue is observed,
and this information is fed back to node CN. We assume,
however, that this information is received at the CN with
a delayDb. On the basis of this information, a decision on
the number of packets to accept from both streams (that
are stored in the control buffers) is instantly made. Packets
that are not admitted to the main queue from either stream
are immediately dropped, and they leave the system.Thus,
the interim buffers at the control node CN are emptied ev-
eryT units of time, with packets from these buffers either
joining the main queue or getting dropped. We assume
that packets from the uncontrolled source waiting at node

CN are admitted to the main queue first (as they have
higher priority) whenever there are vacant slots available
in the main queue buffer that we assume has sizeB. Ad-
mission control (in the regular sense) is performed only on
packets from the SMMPP stream that are stored at node
CN. Packets from this stream are admitted to the main
queue at instantsnT based on the queue lengthqn of the
main queue, the number of uncontrolled stream packets
admitted at timenT , and also the stateyn−1 (during in-
terval[(n − 1)T , nT )) of the underlying Markov process
in the SMMPP. We assume that feedback policies (for the
controlled stream) are of the threshold type. ForDb of
the formDb = MT for someM > 0, the joint process
{(qn, yn−1, qn−1, yn−2, . . . , qn−M, yn−M−1)} is Markov.
For ease of exposition, we give the form of the policies
below for the case ofDb = 0. SupposēL1, . . . , L̄N are
given integers satisfying 0≤ L̄j ≤ B, ∀ j ∈ V . Here,
eachL̄j serves as a threshold for the controlled SMMPP
stream when the state of the underlying Markov chain is
j . Let au andac denote the number of arrivals from the
uncontrolled and controlled streams, respectively, at node
CN during the time interval[(n − 1)T , nT ).

Feedback Policies

• If au ≥ B − i

{
Accept first(B − i) uncontrolled packets and no con-
trolled packets.
}

• If i < L̄j andL̄j − i ≤ au < B − i

{
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Accept all uncontrolled packets and no controlled
packets.
}

• If i < L̄j andL̄j − i > au

{
Accept all uncontrolled packets and

– If ac < L̄j − i − au

{
Accept all controlled packets
}

– If ac ≥ L̄j − i − au

{
Accept firstL̄j − i − au controlled packets
}

}
• If i ≥ L̄j andB − i > au

{
Accept all uncontrolled packets and no controlled
packets.
}

For our experiments, we consider an SMMPP stream
with four states, with the transition probability matrix of
the underlying Markov chain chosen to be

P =



0 0.6 0.4 0
0.4 0 0.6 0
0 0 0 1
0 0.7 0 0.3


 .

The corresponding rates of the associated Poisson pro-
cesses in each of these states are chosen asλ(1) = 0.5,
λ(2) = 1.0, λ(3) = 1.5, andλ(4) = 2.5, respectively.
The service times in the main queue are considered to be
exponentially distributed with rateµ = 1.3. We show re-
sults of experiments with different values ofT , λu, Db,
and the rejection cost (RC). These quantities are assumed
constant for a given experiment. We also show exper-
iments with different values for step sizes{a(n)}, and
{b(n)}, as well as parametersc andL, respectively.

In Figure 4, we show the convergence behavior for one
of the threshold values, for the caseT = 3, λu = 0.4,
Db = 0, andRC = 50. The same for other cases and
thresholds is similar and is hence not shown. We denote
byN1∗, . . . , N4∗ the optimal values of the threshold pa-
rametersN1, . . . , N4, respectively. We assume that the
cost of accepting a packet at the main queue is the queue
length as seen by it. The buffer size at the main queue is
assumed to be 80.

In Tables 2 and 3, we study the change in average cost
behavior for different values ofT andλu whenRC = 50
andDb = 0. Specifically, in Table 2 (respectively, Ta-
ble 3), the results of experiments for whichλu = 0.1 (re-
spectively, 1.0) are tabulated. Note that for a given value

of λu, the average cost increases asT is increased (and
thus is the lowest for the lowest value ofT considered).
This happens because asT is increased, the system ex-
ercises control less often as also the average number of
packets that arrive into the control node buffers in any
given interval increases. Also from Table 3, note that as
the uncontrolled rateλu is increased to 1.0, the average
cost values increase significantly over corresponding val-
ues of these forλu = 0.1. This is again expected since
the higher priority uncontrolled packets now have a sig-
nificant presence in the main queue buffer, leading to an
overall increase in values ofJ (θ∗) as packets from the
control stream get rejected more frequently. In Table 4,
we varyRC over a range of values, keeping the cost of ac-
cepting a packet the same as before. Also, we keepT and
λu fixed at 3 and 0.4, respectively. Furthermore,Db = 0.
As expected, the average costJ (θ∗) increases asRC is
increased. In Table 5, we show the impact of varyingDb

for fixed T = 3, λu = 0.1, andRC = 50, respectively.
Note that asDb is increased, performance deteriorates as
expected.

In the above tables, we set the step sizes as in (14).
Also, c = 1 andL = 100 as before. In Tables 6 through
8, we study the effect of changing these parameters when
T = 3 andRC = 50 are held fixed. In Table 6, we let
b(n) as in (14), whilea(n) has the forma(0) = 1 and

a(n) = 1[
n
10

]α , n ≥ 1. We study the variation in perfor-

mance for different values ofα ∈ [0.66, 1]. Note from
the table that whenα = 0.66 is used,a(n) = b(n), ∀n. In
such a scenario, the algorithm does not show good per-
formance as observed from the average cost value, which
is high. Whenα is increased, performance improves very
quickly until afterα = 0.75, beyond which it stabilizes.
These results also suggest that a difference in timescales
in the recursions improves performance.

In Tables 7 and 8, we study the effects of changingc

andL on performance for above values ofT andRC, with
step sizes as in (14). Note from Table 7 that performance
is not good forc < 0.5. As described previously (section
2), this happens because forc < 0.5, the parameters for
both simulations after projection would lead to the same
point. Performance is seen to improve forc > 0.5. From
Table 8, it can be seen that performance is not good for
low values ofL (see the case corresponding toL = 10).
It has also been observed in the case of continuous opti-
mization algorithms [17, 19, 20] that low values ofL lead
to poor system performance. Also, observe that whenL

is increased beyond a point (see entries corresponding
to L = 700 andL = 1000, respectively), performance
degrades again. This implies that excessive additional av-
eraging is also not good for system performance. From
the table, it can be seen thatL should ideally lie between
100 and 500.

768 SIMULATION Volume 81, Number 11



DISCRETE PARAMETER STOCHASTIC APPROXIMATION ALGORITHM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

10

20

30

40

50

60

Number of Parameter Updates

V
al

ue
 o

f T
hr

es
ho

ld
 N

1

Figure 4. Convergence of the values of threshold N1 for T = 3, λu = 0.4, Db = 0, and RC = 50

Table 2. λu = 0.1λu = 0.1λu = 0.1, RC = 50RC = 50RC = 50, Db = 0Db = 0Db = 0

TTT N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

3 15 23 36 4 14.23
5 11 9 38 21 15.92

10 23 20 11 59 18.08

Table 3. λu = 1.0λu = 1.0λu = 1.0, RC = 50RC = 50RC = 50, Db = 0Db = 0Db = 0

TTT N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

3 8 41 28 19 25.69
5 14 11 19 6 27.91

10 21 19 37 9 31.32
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Table 4. T = 3T = 3T = 3, λu = 0.4λu = 0.4λu = 0.4, Db = 0Db = 0Db = 0

RCRCRC N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

40 23 16 36 17 15.12
50 44 32 23 19 16.81
60 26 36 14 30 19.40
70 31 25 19 12 22.08
80 22 29 49 53 25.59
90 19 43 42 36 29.61

100 8 50 38 26 34.18

Table 5. λu = 0.4λu = 0.4λu = 0.4, T = 3T = 3T = 3, RC = 50RC = 50RC = 50

DbDbDb N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

0 44 32 23 19 16.81
3 53 35 41 9 18.33
6 11 48 50 10 19.52
9 12 56 17 12 21.64

Table 6. T = 3T = 3T = 3, λu = 0.1λu = 0.1λu = 0.1, RC = 50RC = 50RC = 50, Db = 0Db = 0Db = 0

ααα N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

0.66 59 26 6 19 25.12
0.70 37 32 19 21 18.81
0.72 21 31 26 28 16.42
0.75 15 23 36 4 14.23
0.80 24 32 37 12 13.67
0.85 16 29 49 43 13.79
0.90 14 37 32 29 13.61
1.00 18 45 38 16 13.66

Table 7. T = 3T = 3T = 3, λu = 0.1λu = 0.1λu = 0.1, RC = 50RC = 50RC = 50, Db = 0Db = 0Db = 0

ccc N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

0.40 58 50 32 40 29.12
0.50 52 38 13 19 18.29
0.52 19 20 38 10 14.04
0.55 11 19 29 21 13.71
0.70 21 28 35 17 14.42
1.00 15 23 36 4 14.23

Table 8. T = 3T = 3T = 3, λu = 0.1λu = 0.1λu = 0.1, RC = 50RC = 50RC = 50, Db = 0Db = 0Db = 0

LLL N1∗N1∗N1∗ N2∗N2∗N2∗ N3∗N3∗N3∗ N4∗N4∗N4∗ J (θ∗)J (θ∗)J (θ∗)

10 51 39 21 45 29.20
50 32 28 22 29 15.29

100 15 23 36 4 14.23
200 9 15 29 8 13.92
500 17 18 25 47 14.01
700 27 9 34 31 16.22

1000 21 38 4 51 18.26
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5. Conclusions

We developed in this article a two-timescale simultane-
ous perturbation stochastic approximation algorithm that
finds the optimum parameter in a discrete search space.
This algorithm is applicable in cases where the cost to
be optimized is in itself the long-run average of certain
cost functions whose noisy estimates can be obtained us-
ing simulation. The advantage of a simulation-based ap-
proach is that the transition dynamics of the underlying
Markov processes need not be precisely known as long
as state transitions of these can be simulated. We briefly
presented the convergence analysis of our algorithm. Fi-
nally, we applied this algorithm to find optimal feedback
policies within threshold-type policies for an admission
control problem in communication networks. We showed
experiments under two different settings. The results ob-
tained are along expected lines. The proposed algorithm,
however, must be tried on high-dimensional parameter
settings and tested for their online adaptability in large
simulation scenarios. In general, SPSA algorithms are
known to scale well under such settings; see, for instance,
Bhatnagar et al. [17] and Bhatnagar [20], who consider
high-dimensional parameters. The same, however, should
be tried for the discrete parameter optimization algorithm
considered here.

Recently, in Bhatnagar et al. [19], SPSA-type algo-
rithms that use certain deterministic perturbations instead
of randomized have been developed. These are found
to improve performance over randomized perturbation
SPSA. Along similar lines, in Bhatnagar and Borkar [18],
the use of a chaotic iterative sequence for random num-
ber generation for averaging in the generated perturba-
tions in SPSA algorithms has been proposed along with
a smoothed functional algorithm that uses certain pertur-
bations involving Gaussian random variables. In Bhatna-
gar [20], adaptive algorithms for simulation optimization
based on the Newton algorithm have also been developed
for continuous parameter optimization. It would be in-
teresting to develop discrete parameter analogs of these
algorithms as well and to study their performance in other
applications.

6. Acknowledgments

The authors thank all the reviewers for their many com-
ments that helped in significantly improving the quality of
this manuscript. The authors thank Mr. I. B. B. Reddy for
help with the simulations. The first author was supported
in part by grant no. SR/S3/EE/43/2002-SERC-Engg from
the Department of Science and Technology, Government
of India.

7. References

[1] Gerencsér, L., S. D. Hill, and Z. Vágó. 1999. Optimization over
discrete sets via SPSA. InProceedings of the IEEE Confer-
ence on Decision and Control, pp. 1791-5.

[2] Gokbayrak, K., and C. G. Cassandras. 2001. Online surrogate
problem methodology for stochastic discrete resource alloca-
tion problems.Journal of Optimization Theory and Applica-
tions 108 (2): 349-75.

[3] Barnhart, C. M., J. E. Wieselthier, and A. Ephremides. 1995.
Admission-control policies for multihop wireless networks.
Wireless Networks 1:373-87.

[4] Kirkpatrick, S., C. D. Gelatt, and M. Vecchi. 1983. Optimization
by simulated annealing.Science 220:621-80.

[5] Gelfand, S. B., and S. K. Mitter. 1989. Simulated annealing with
noisy or imprecise energy measurements.Journal of Opti-
mization Theory and Applications 62 (1): 49-62.

[6] Alrefaei, M. H., and S. Andradóttir. 1999. A simulated annealing
algorithm with constant temperature for discrete stochastic
optimization.Management Science 45 (5): 748-64.

[7] Yan, D., and H. Mukai. 1992. Stochastic discrete optimization.
SIAM Journal of Control and Optimization 30 (3): 594-612.

[8] Gong, W.-B., Y.-C. Ho, and W. Zhai. 1999. Stochastic compari-
son algorithm for discrete optimization with estimation.SIAM
Journal of Optimization 10 (2): 384-404.

[9] Norkin, V. I., Y. M. Ermoliev, and A. Ruszczy´nski. 1998. On op-
timal allocation of indivisibles under uncertainty.Operations
Research 46 (3): 381-95.

[10] Jordan, S., and P. Varaiya. 1994. Control of multiple service
multiple resource communication networks.IEEE Transac-
tions on Communications 42 (11): 2979-88.

[11] Cassandras, C. G., and C. G. Panayiotou. 1999. Concurrent sam-
ple path analysis of discrete event systems.Journal of Discrete
Event Dynamic Systems: Theory and Applications 9:171-95.

[12] Ho, Y.-C., and X.-R. Cao. 1991.Perturbation analysis of dis-
crete event dynamical systems. Boston: Kluwer.

[13] Gokbayrak, K., and C. G. Cassandras. 2002. Generalized surro-
gate problem methodology for online stochastic discrete op-
timization.Journal of Optimization Theory and Applications
114 (1): 97-132.

[14] L’Ecuyer, P., and P. W. Glynn. 1994. Stochastic optimization
by simulation: Convergence proofs for theGI/G/1 queue in
steady-state.Management Science 40 (11): 1562-78.

[15] Spall, J. C. 1992. Multivariate stochastic approximation using
a simultaneous perturbation gradient approximation.IEEE
Transactions on Automatic Control 37 (3): 332-41.

[16] Bhatnagar, S., andV. S. Borkar. 1998.A two time scale stochastic
approximation scheme for simulation based parametric opti-
mization.Probability in the Engineering and Informational
Sciences 12:519-31.

[17] Bhatnagar, S., M. C. Fu, S. I. Marcus, and S. Bhatnagar. 2001.
Two timescale algorithms for simulation optimization of hid-
den Markov models.IIE Transactions 33 (3): 245-58.

[18] Bhatnagar, S., and V. S. Borkar. 2003. Multiscale chaotic SPSA
and smoothed functional algorithms for simulation optimiza-
tion. SIMULATION 79 (10): 568-80.

[19] Bhatnagar, S., M. C. Fu, S. I. Marcus, and I.-J.Wang. 2003. Two-
timescale simultaneous perturbation stochastic approximation
using deterministic perturbation sequences.ACM Transac-
tions on Modelling and Computer Simulation 13 (2): 180-209.

[20] Bhatnagar, S. 2005. Adaptive multivariate three-timescale
stochastic approximation algorithms for simulation based op-
timization. ACM Transactions on Modeling and Computer
Simulation 15 (1): 74-107.

Volume 81, Number 11 SIMULATION 771



Bhatnagar and Kowshik

[21] Kelly, F. P., P. B. Key, and S. Zachary. 2000. Distributed admis-
sion control.IEEE Journal on Selected Areas in Communica-
tions 18:2617-28.

[22] Liebeherr, J., D. E.Wrege, and D. Ferrari. 1996. Exact admission
control for networks with a bounded delay service.IEEE/ACM
Transactions on Networking 4 (6): 885-901.

[23] Bertsekas, D. P., and J. N. Tsitsiklis. 1996.Neuro-dynamic pro-
gramming. Belmont, MA: Athena Scientific.

[24] Marbach, P., and J. N. Tsitsiklis. 2001. Simulation-based opti-
mization of Markov reward processes.IEEE Transactions on
Automatic Control 46 (2): 191-209.

[25] Schweitzer, P. J. 1968. Perturbation theory and finite Markov
chains.Journal of Applied Probability 5:401-13.

[26] Vazquez-Abad, F. J., and H. J. Kushner. 1992. Estimation of the
derivative of a stationary measure with respect to a control
parameter.Journal of Applied Probability 29:343-52.

[27] Hirsch, M. W. 1989. Convergent activation dynamics in contin-
uous time networks.Neural Networks 2:331-49.

[28] Bhatnagar, S., and I. B. B. Reddy. 2005. Optimal threshold poli-
cies for admission control in communication networks via
discrete parameter stochastic approximation.Telecommuni-
cation Systems 29 (1): 9-31.

Shalabh Bhatnagar is an assistant professor in the Department
of Computer Science and Automation at the Indian Institute of
Science, Bangalore, India.

Hemant J. Kowshik is an undergraduate student in the Depart-
ment of Electrical Engineering at the Indian Institute of Technol-
ogy Madras, Chennai, India.

772 SIMULATION Volume 81, Number 11


