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In this article, we present three smoothed functional (SF) algorithms for simulation optimization.

While one of these estimates only the gradient by using a finite difference approximation with

two parallel simulations, the other two are adaptive Newton-based stochastic approximation al-

gorithms that estimate both the gradient and Hessian. One of the Newton-based algorithms uses

only one simulation and has a one-sided estimate in both the gradient and Hessian, while the other

uses two-sided estimates in both quantities and requires two simulations. For obtaining gradient

and Hessian estimates, we perturb each parameter component randomly using independent and

identically distributed (i.i.d) Gaussian random variates.

The earlier SF algorithms in the literature only estimate the gradient of the objective func-

tion. Using similar techniques, we derive two unbiased SF-based estimators for the Hessian and

develop suitable three-timescale stochastic approximation procedures for simulation optimization.

We present a detailed convergence analysis of our algorithms and show numerical experiments

with parameters of dimension 50 on a setting involving a network of M/G/1 queues with feedback.

We compare the performance of our algorithms with related algorithms in the literature. While

our two-simulation Newton-based algorithm shows the best results overall, our one-simulation

algorithm shows better performance compared to other one-simulation algorithms.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Simulation Theory; G.3

[Probability and Statistics]: Probabilistic Algorithms (including Monte Carlo); I.6.0 [Simula-
tion and Modeling]: General

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Smoothed functional algorithms, three-timescale stochastic

approximation, simulation optimization, Gaussian perturbations, Newton-based algorithms

ACM Reference Format:
Bhatnagar, S. 2007. Adaptive Newton-based multivariate smoothed functional algorithms for sim-

ulation optimization. ACM Trans. Model. Comput. Simul. 18, 1, Article 2 (December 2007), 35

pages. DOI = 10.1145/1315575.1315577 http://doi.acm.org/10.1145/1315575.1315577

This work was supported in part by Grants SR/S3/EE/43/2002-SERC-Engg and SR/S3/EECE/

011/2007 from the Department of Science and Technology, Goverment of India.

Author’s address: Department of Computer Science and Automation, Indian Institute of Science,

Bangalore 560 012, India; email: shalabh@csa.iisc.ernet.in.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permission@acm.org.
C© 2007 ACM 1049-3301/2007/12-ART2 $5.00 DOI 10.1145/1315575.1315577 http://doi.acm.org/

10.1145/1315575.1315577

ACM Transactions on Modeling and Computer Simulation, Vol. 18, No. 1, Article 2, Pub. date: December 2007.



2:2 • S. Bhatnagar

1. INTRODUCTION

The Robbins-Monro stochastic approximation algorithm (see Robbins and
Monro [1951]) is used to find zeros of an objective function whose noisy es-
timates are available either as outputs of a real system or via simulation. In
the case of gradient search algorithms, the objective function whose zeros are
to be found is typically the gradient of average cost. Most often, the average
cost itself does not possess an analytic expression; hence obtaining its gradient
through direct methods is not possible. Simulation has been widely used in such
scenarios. Techniques based on perturbation analysis (PA) (Ho and Cao [1991]),
and likelihood ratio (LR) (L’Ecuyer and Glynn [1994]), typically require a single
simulation run per gradient estimate (we call such algorithms one-simulation
methods). However, they require certain constraining assumptions on the un-
derlying process parameters and sample performance. LR-based approaches
also rely on a change of measure with respect to which the average cost expec-
tation is taken. It is assumed in PA- and LR-based approaches that the gradient
of sample performance exists. Further, in many of these approaches, the param-
eter is updated only at certain regeneration epochs which can be sparse in large
or high-dimensional systems.

In optimization approaches based on estimating gradients, the two-sided
(one-sided) Kiefer-Wolfowitz (K-W) gradient estimates (cf. Kiefer and Wolfowitz
[1952]) require 2N (N + 1) parallel simulations of the system to estimate an
N -dimensional parameter. Spall’s [1992] simultaneous perturbation stochastic
approximation (SPSA) algorithm, on the other hand, requires only two parallel
simulations by using random perturbations for all parameter components in
the gradient estimate and has been found to perform well in various settings. A
related one-simulation algorithm of Spall [1997], however, has not been found
to perform as well because of certain “additional” bias terms in the gradient es-
timate. In the smoothed functional (SF) scheme originally due to Katkovnik and
Kulchitsky (see Katkovnik and Kulchitsky [1972] and Rubinstein [1981]), the
idea is to approximate the gradient of expected performance by its convolution
with a multivariate normal distribution. In Styblinski and Opalski [1986], the
SF scheme is applied for yield gradient estimation to optimize certain param-
eters of the integrated circuit (IC) manufacturing process. While the original
SF algorithm in Katkovnik and Kulchitsky [1972] uses only one simulation, in
Styblinski and Tang [1990] and Chin [1997], a related two-simulation SF algo-
rithm based on a finite difference gradient estimate was presented. The latter
algorithm has been shown (Styblinski and Tang [1990]) to have less variability
compared with the one-simulation SF algorithm (Katkovnik and Kulchitsky
[1972]; Styblinski and Opalski [1986]).

There is also considerable work on adaptive Newton-based schemes that esti-
mate the Hessian in addition to the gradient. For instance, in Fabian [1971], the
Hessian is estimated using finite differences that are in turn based on finite dif-
ference estimates of the gradient. This requires O(N 2) samples of the objective
function at each update epoch. In Ruppert [1985], the objective function gradi-
ents were assumed known and the Hessian was estimated using finite gradient
differences. In Spall [2000], a Newton-type stochastic adaptive algorithm has
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been proposed. The Hessian estimates there are obtained using four objective
function samples in cases where the gradients are not known and three sam-
ples in cases where these are known. The estimates in Spall [2000] were based
on the simultaneous perturbation methodology. These (Hessian) estimates at
each update epoch are projected onto the set of positive definite and symmet-
ric matrices so that the algorithm performs a search in the descent direction in
order to converge to a minimum. Certain mappings for obtaining the above pro-
jected Hessian estimates were described in Bertsekas [1999] and Spall [2000].
In Zhu and Spall [2002], another mapping based on projecting the eigenvalues
of Hessian updates onto the positive half line was given. The algorithm there
replaces the inverse of the projected Hessian update with that of the geometric
mean of the projected eigenvalues in the parameter recursion step. In Spall
[2006], a variant of the adaptive algorithm of Spall [2000] has recently been
proposed.

Two-timescale stochastic approximation algorithms have been used for find-
ing solutions to systems of equations involving two nested loops. For instance,
gradient search-based algorithms for simulation optimization that use two
timescales have been developed in Bhatnagar and Borkar [1998, 2003], Bhat-
nagar et al. [2001, 2003]. Since the aim in these is to find the gradient of average
cost, one requires that the cost function corresponding to any given parameter
update be averaged before the next parameter update step. Using two-timescale
stochastic approximation, both the above steps are allowed to move in tandem,
one after the other. Thus cost is averaged on the faster timescale recursion
while the slower recursion performs a gradient search. The above schemes are
efficient alternatives to the perturbation analysis schemes that update system
parameters only at regeneration epochs (Ho and Cao [1991]). In Bhatnagar
[2005], four adaptive Newton-based algorithms that estimate the Hessian in
addition to the gradient of average cost have been developed in the simulation
optimization setting. All of these use three timescales or step-size schedules
and use four, three, two, and one simulation(s) of the system, respectively.

In this article, we develop three SF-based algorithms for simulation opti-
mization. The first algorithm estimates only the gradient by using two-sided
estimates. This is a direct extension of the algorithm in Bhatnagar and Borkar
[2003] that is based on one-sided gradient estimates (similar to Katkovnik and
Kulchitsky [1972]). Our next two algorithms are of the Newton type and esti-
mate both the gradient and Hessian of average cost. We obtain two different
estimates of the Hessian of the objective function that require one and two
system simulations, respectively, and are obtained using convolutions of these
with the multivariate normal density function. We show via an integration by
parts argument (applied twice) that each of the above convolutions requires
only simulated objective function values corresponding to certain perturbed
parameters. The Hessian estimates are thus obtained in an elegant manner
directly from the objective function simulations via a transformation that in-
volves generating N independent N (0, 1)-distributed random variates at each
update step (where N corresponds to the parameter dimension). One of our
algorithms uses only one simulation at each update epoch and estimates both
the gradient and Hessian of the objective function while the other does so with
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two simulations and uses two-sided estimates. Note that the original method
discussed in Katkovnik and Kulchitsky [1972], Rubinstein [1981], Styblinski
and Opalski [1986], Chin [1997], and Styblinski and Tang [1990] only estimates
the gradient. To the best of our knowledge, this is the first work that develops SF
estimates for the Hessian and combines these together with previously known
gradient estimates to develop two Newton-based SF algorithms for simulation
optimization.

In the setting of simulation optimization that we consider, the objective
function corresponds to the long-run average cost. Our gradient-based SF
scheme requires two-timescale updates while our Newton-based algorithms
use three timescales or step-size schedules in their recursions. Here, on the
fastest timescale, data for the Hessian updates is aggregated and averaged.
Next, the estimate of the Hessian is projected onto the space of positive definite
and symmetric matrices. The inverse of the projected Hessian is then computed.
Data for the gradient estimate is averaged on a slower timescale. Finally, on
the slowest timescale recursion, the parameter is updated using estimates of
the inverse of the projected Hessian matrix and the gradient of average cost.
We provide a detailed convergence analysis for our algorithms. In particular,
we show the unbiasedness of the Hessian estimates in the limit as the “spread
parameter” goes to zero. We present numerical results using our algorithms
over a setting involving a network of two M/G/1 queues with feedback and
show performance comparisons with other algorithms developed in Bhatnagar
[2005], Bhatnagar and Borkar [2003], and Bhatnagar et al. [2001, 2003], re-
spectively. The setting for our experiments that we consider is similar to that
in Bhatnagar [2005]. As emphasized before, our main contribution in this work
is in the development of efficient Newton-based SF algorithms for simulation
optimization that estimate the Hessian in addition to the gradient by requiring
one and two system simulations, respectively. Our algorithm N-SF2 performs
better in comparison with other algorithms in the literature over the setting
considered here. We show unbiasedness of our Hessian estimates in the limit as
the spread parameter goes to zero and prove convergence of all our algorithms.

The rest of the article is organized as follows: Section 2 presents the frame-
work and some key assumptions. All our algorithms are presented in Section 3.
We also present here a derivation of the gradient and Hessian estimators us-
ing the SF approach. Numerical experiments are presented in Section 4. The
conclusions are given in Section 5. Finally, a detailed convergence analysis for
our algorithms is presented in an Appendix at the end of the article.

2. FRAMEWORK

Let {X n, n ≥ 1} be an Rd -valued (for some given d ≥ 1) parameterized Markov
process with a tunable parameter θ that takes values in a given compact and
convex set C ⊂ RN . We assume that, for any given θ ∈ C, the process {X n}
is ergodic Markov. Let p(θ , x, d y) and νθ , respectively, denote the transition
kernel and stationary distribution of {X n} when θ is the operative parameter.
Note that in discrete event systems (DES), state changes are effected upon
occurrences of events at certain time points. The embedded state-valued process
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of most (general) DES is Markov. Thus, Markov processes provide a powerful
framework for the analysis of many DES; see, for instance, Cassandras [1993].

Let h : Rd → R+ be a given Lipschitz continuous cost function. Our aim is
to find a θ ∈ C that minimizes the long-run average cost

J (θ ) = lim
l→∞

1

l

l−1∑
j=0

h(X j ). (1)

The above limit exists because of ergodicity of the process {X n} for any given
θ ∈ C. We assume that J (θ ) satisfies the following:

Assumption (A1). J (θ ) is twice continuously differentiable in θ .

Note that (A1) is a standard requirement in most gradient search-based
algorithms; see for instance, Bhatnagar [2005] and Spall [2000]. However, for
our algorithms to work, we do not require (A1) as such. Our smoothed functional
algorithms estimate not the gradient ∇ J itself, but rather the convolution Dβ

of ∇ J with a N (0, β2) probability density function. Even in the absence of (A1),
we show that, for fixed β > 0, each of our algorithms converges to a point
at which Dβ(θ ) = 0. We use (A1) to show that both smoothed gradients and
smoothed Hessians converge to their unsmoothed counterparts as β → 0: ‖
Dβ(θ ) − ∇ J (θ ) ‖→ 0 and ‖ D2

β(θ ) − ∇2 J (θ ) ‖ → 0. Thus θ converges to a true
local minimizer as β → 0.

Suppose {θ (n)} is some sequence of random parameters obtained using (say)
an iterative scheme on which the process {X n} depends. Let Hn = σ (θ (m), X m,
m ≤ n), n ≥ 1 denote a sequence of associated σ -fields. We call {θ (n)} nonantic-
ipative if for all Borel sets A ⊂ Rd ,

P (X n+1 ∈ A | Hn) = p(θ (n), X n, A).

It can be easily seen that sequences {θ (n)} obtained using all our algorithms
in the next section are nonanticipative. We shall assume the existence of a
stochastic Liapunov function (below).

Assumption (A2). There exist ε0 > 0, K ⊂ Rd compact and V ∈ C(Rd ) such
that lim

‖x‖→∞
V (x) = ∞ and, under any nonanticipative {θ (n)},

(1) supn E[V (X n)2] < ∞ and

(2) E[V (X n+1) | Hn] ≤ V (X n) − ε0, whenever X n �∈ K , n ≥ 0.

Here and in the rest of the article, ‖ · ‖ shall denote the Euclidean norm. Also,
for any matrix A ∈ RN×N , its norm is defined as the induced matrix norm, also
denoted using ‖ · ‖ and defined according to ‖ A ‖= max

{x∈RN |‖x‖=1}
‖ Ax ‖.

We require (A2) in order to ensure that the system remains stable under
a tunable parameter. Assumption (A2) is used in the proofs of Lemmas A.1
and A.3, and is a standard requirement that has also been made in Bhatnagar
and Borkar [1998] and Bhatnagar et al. [2001]. However, (A2) will not be re-
quired if the cost function h(·) is bounded in addition, as was the case studied
in Bhatnagar [2005]. Suppose P(Rd ) is the space of all probability measures
on Rd equipped with the Prohorov topology (which we briefly explain below;
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see Chapter 2 of Borkar [1995] for details). A set { fn, n ≥ 1} of bounded and
continuous functions is called a separating class for P(Rd ) if for any probability
measures μ, ν ∈ P(Rd ),

∫
fndμ = ∫

fndν, ∀n ≥ 1, implies μ = ν. Given a sep-
arating class of functions { fn, n ≥ 1} of P(Rd ), we define a metric ρ on P(Rd )
as

ρ(μ, ν) =
∞∑

n=1

|
∫

fndμ −
∫

fndν|

for any μ, ν ∈ P(Rd ). The topology in P(Rd ) generated by ρ is called the Pro-
horov topology. The following result follows as a direct consequence of (A2) (see
Lemma 2.1 of Bhatnagar and Borkar [1998] for a proof).

LEMMA 2.1. {νθ , θ ∈ C} is compact in P(Rd ) and the map θ → νθ : C →
P(Rd ) is continuous.

In Newton-based algorithms where the aim is to find a local minimum, one
projects the Hessian estimate after each iteration onto the space of positive
definite and symmetric matrices. This is required for the algorithm to progress
along the negative gradient direction. In a small neighborhood of any local
minimum, the Hessian matrix is expected to be positive definite. However, it
need not be so in other portions of the search space. We let P : RN×N → {positive
definite and symmetric matrices} denote the projection operator that projects
any N × N–matrix to the space of positive definite and symmetric matrices.
We assume P (A) = A, if A is positive definite and symmetric. In general, P can
be characterized using various methods, for instance, via the modified Choleski
factorization procedure (see Bertsekas [1999]), or the ones presented in Spall
[2000] and Zhu and Spall [2002], respectively. For a matrix A, let {P (A)}−1

denote the inverse of the matrix P (A). We assume that the operator P satisfies
the following:

Assumption (A3). If {An} and {Bn} are sequences of matrices in RN×N such
that limn→∞ ‖ An − Bn ‖ = 0, then limn→∞ ‖ P (An) − P (Bn) ‖ = 0 as well. Fur-
ther, for any sequence {Cn} of matrices in RN×N , if supn ‖ Cn ‖ < ∞, then
supn ‖ P (Cn) ‖, supn ‖ {P (Cn)}−1 ‖ < ∞ as well.

Assumption (A3) is a technical requirement for the convergence analysis and
has also been used in Bhatnagar [2005]. As argued in Bhatnagar [2005], the con-
tinuity requirement in (A3) can be easily imposed in the modified Choleski fac-
torization procedure (see Bertsekas [1999], and the operators in Spall [2000]).
Also the procedure in Zhu and Spall [2002] has been shown (there) to satisfy
this requirement. For the other requirements in (A3), a sufficient condition is
that, for some scalars c1, c2 > 0, the operator P be such that

c1 ‖ z ‖2≤ zT P (Cn)z ≤ c2 ‖ z ‖2, ∀z ∈ RN , n ≥ 0. (2)

Then all eigenvalues of P (Cn), ∀n, lie between c1 and c2 and supn ‖ P (Cn) ‖,
supn ‖ {P (Cn)}−1 ‖ < ∞ (cf. Propositions A.9 and A.15 of Bertsekas [1999]).
Most projection operators are seen to satisfy (2) (see Bhatnagar [2005] for a
detailed discussion).
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3. THE ALGORITHMS

In Bhatnagar and Borkar [2003], a one-sided SF algorithm that estimates only
the gradient was presented. This was based on the Katkovnik-Kulchitsky [1972]
scheme. We first begin by explaining the key idea there. For some scalar con-
stant β > 0, let

Dβ,1 J (θ ) =
∫

Gβ(θ − η)∇η J (η)dη (3)

represent the convolution of the gradient of average cost (J (·)) with the N -
dimensional multivariate normal p.d.f.

Gβ(θ − η) = 1

(2π )N/2βN
exp

(
−1

2

N∑
i=1

(θi − ηi)
2

β2

)
,

where θ , η ∈ RN with θ
= (θ1, . . . , θN )T and η

= (η1, . . . , ηN )T . Integrating by
parts in (3), it is easy to see that

Dβ,1 J (θ ) =
∫

∇θ Gβ(θ − η)J (η)dη =
∫

∇ηGβ(η)J (θ − η)dη. (4)

One can easily check that ∇ηGβ(η) = −η

β2
Gβ(η). Substituting the last and η′ = η

β
in (4), one obtains

Dβ,1 J (θ ) = 1

β

∫
−η′ 1

(2π )N/2
exp

(
−1

2

N∑
i=1

(η′
i)

2

)
J (θ − βη′)dη′. (5)

In the above, we use the fact that η = βη′ = (βη′
1, . . . , βη′

N )T (written compo-
nentwise), and hence dη = βN dη′

1 · · · dη′
N = βN dη′. Upon substituting η̄ = −η′,

one obtains

Dβ,1 J (θ ) = E
[

1

β
η̄J (θ + βη̄)

]
, (6)

where the expectation above is taken with respect to the N -dimensional mul-
tivariate normal p.d.f.

G(η̄) = 1

(2π )N/2
exp

(
−1

2

N∑
i=1

(η̄i)
2

)
.

The form of gradient estimator suggested by (6) (for M large and β small) is

∇ J (θ (n)) ≈ 1

β

1

M

M∑
n=1

η(n)J (θ (n) + βη(n)). (7)

Here η(n)
= (η1(n), . . . , ηN (n))T , with ηi(n), i = 1, . . . , N , n ≥ 0, being indepen-

dent N (0, 1)-distributed random variables. Before we proceed, we first describe
the SF algorithm proposed in Bhatnagar and Borkar [2003]. We call it the
G-SF1 algorithm to indicate that it is gradient based and requires one system-
simulation. Subsequently, we develop and present the G-SF2, N-SF1, and N-
SF2 algorithms, respectively. The G-SF2 algorithm is also gradient based and
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uses a two-sided difference estimate for the gradient and hence requires two
simulations. The N-SF1 and N-SF2 algorithms are Newton based and estimate
both the gradient and Hessian using one and two simulations, respectively.
While N-SF1 uses one-sided estimates for both gradient and Hessian, N-SF2
uses two-sided ones for both of these quantities.

Let {a(n)} and {b(n)} be two step-size sequences that satisfy the requirements

∞∑
n=0

a(n) =
∞∑

n=0

b(n) = ∞,
∞∑

n=0

a(n)2,
∞∑

n=0

b(n)2 < ∞, a(n) = o(b(n)).

For x = (x1, . . . , xN )T ∈ RN , let 
(x) = (
1(x1), . . ., 
N (xN ))T represent the pro-
jection of x onto the set C. Let L > 0 be a given integer. It is generally observed
(cf. Bhatnagar and Borkar [2003], Bhatnagar et al. [2001, 2003]; Bhatnagar
[2005]) that the performance of the algorithm improves considerably when the
parameter vector is updated once after a given number L of instants when
L > 1. Let Zi(n), i = 1, . . . , N , n ≥ 0, be quantities defined via the recursions
below that are used to estimate the average cost gradient. We now give the
algorithm of Bhatnagar and Borkar [2003] we have labeled G-SFI.

The G-SF1 Algorithm

Step 0 (Initialize). Set Z1(0) = Z2(0) = · · · = Z N (0) = 0. Fix θ1(0), . . . , θN (0) and

let θ (0)
= (θ1(0), . . . , θN (0))T denote the initial parameter vector. Fix L, M and β. Set

n := 0 and m := 0, respectively. Generate i.i.d., N (0, 1)-distributed random variables

η1(0), η2(0), . . . , ηN (0), and set η(0)
= (η1(0), . . . , ηN (0))T .

Step 1. Generate the simulation X nL+m governed with parameter (θ (n) + βη(n)). Up-
date for all i = 1, . . . , N ,

Zi(nL + m + 1) = Zi(nL + m) + b(n)

(
ηi(n)

β
h(X nL+m) − Zi(nL + m)

)
.

If m = L − 1, set n := n + 1, m := 0 and go to Step 2;
else, set m := m + 1 and repeat Step 1.

Step 2. For i = 1, . . . , N , update θi(n) according to

θi(n + 1) = 
i(θi(n) − a(n)Zi(nL)).

Set n := n + 1 and θ (n)
= (θ1(n), . . . , θN (n))T . If n = M , go to Step 3; else, generate i.i.d.,

N (0, 1) distributed random variables η1(n), . . . , ηN (n), independent of previous samples.

Set η(n)
= (η1(n), . . . , ηN (n))T and go to Step 1.

Step 3 (termination). Terminate algorithm and output θ (M )
= (θ1(M ), . . . , θN (M ))T

as the final parameter vector.

A two-sided finite-difference form of SF estimates has been studied in
Styblinski and Tang [1990] and Chin [1997]. The two-sided SF estimates are
given by

Dβ,2 J (θ ) = E
[

η̄

2β
(J (θ + βη̄) − J (θ − βη̄))

]
,

where, as with Dβ,1 J (θ ), η̄ is an N -vector of independent N (0, 1) random vari-
ates and the above expectation is taken with respect to the distribution of η̄.
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The form of the gradient estimator is thus

∇ J (θ (n)) ≈ 1

2β

1

M

M∑
n=1

η(n)(J (θ (n) + βη(n)) − J (θ (n) − βη(n))), (8)

for M large and β small. Here η(n)
= (η1(n), . . . , ηN (n))T is a vector of in-

dependent N (0, 1)-distributed random variables as before. In the simulation
optimization setting, this suggests the following form for the corresponding
gradient-based algorithm that we refer to as G-SF2.

The G-SF2 Algorithm

Step 0 (Initialize). Set Z1(0) = Z2(0) = · · · = Z N (0) = 0. Fix θ1(0), . . . , θN (0) and

let θ (0)
= (θ1(0), . . . , θN (0))T denote the initial parameter vector. Fix L, M and β. Set

n := 0 and m := 0, respectively. Generate i.i.d., N (0, 1)-distributed random variables

η1(0), . . . , ηN (0), and set η(0)
= (η1(0), . . . , ηN (0))T .

Step 1. Generate two parallel simulations X 1
nL+m and X 2

nL+m that are governed with
parameters (θ (n) + βη(n)) and (θ (n) − βη(n)), respectively. Update for all i = 1, . . . , N ,

Zi(nL + m + 1) = Zi(nL + m) + b(n)

(
ηi(n)

2β
(h(X 1

nL+m) − h(X 2
nL+m)) − Zi(nL + m)

)
.

If m = L − 1, set n := n + 1, m := 0 and go to Step 2; else, set m := m + 1 and repeat
Step 1.

Step 2. For i = 1, . . . , N , update θi(n) according to

θi(n + 1) = 
i(θi(n) − a(n)Zi(nL)).

Set n := n + 1 and θ (n)
= (θ1(n), . . . , θN (n))T . If n = M , go to Step 3; else, generate i.i.d.,

N (0, 1) distributed random variables η1(n), . . . , ηN (n), independent of previous samples.

Set η(n)
= (η1(n), . . . , ηN (n))T and go to Step 1.

Step 3 (Termination). Terminate algorithm and output θ (M )
= (θ1(M ), . . . , θN (M ))T

as the final parameter vector.

In what follows, we shall first extend the above ideas to get a one-sided es-
timate D2

β,1 J (θ ) on the Hessian ∇2 J (θ ) and later provide a two-sided Hessian

estimate as well. We also develop the corresponding Newton-based SF algo-
rithms N-SF1 and N-SF2, respectively. Let

D2
β,1 J (θ ) =

∫
Gβ(θ − η)∇2

η J (η)dη, (9)

with Gβ(θ − η) defined as before. Upon integrating by parts, one obtains

D2
β,1 J (θ ) =

∫
∇θ Gβ(θ − η)∇η J (η)dη.

Now

∇θ Gβ(θ − η) = − (θ − η)

β2
Gβ(θ − η).
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2:10 • S. Bhatnagar

Hence,

D2
β,1 J (θ ) = − 1

β2

∫
(θ−η)Gβ(θ−η)∇η J (η)dη = − 1

β2

∫
∇θ ((θ−η)Gβ(θ−η))J (η)dη.

The last equality above is obtained via another operation involving integration
by parts. By a change of variables, one obtains

D2
β,1 J (θ ) = − 1

β2

∫
∇η(ηGβ(η))J (θ − η)dη. (10)

Before we proceed further, we first evaluate ∇η(ηGβ(η)) =
∇η((η1Gβ(η), . . . , ηN Gβ(η)). Note that ∇η(ηGβ(η)) equals⎡

⎢⎢⎣
∇η1

(η1Gβ(η)) ∇η2
(η1Gβ(η)) · · · ∇ηN (η1Gβ(η))

∇η1
(η2Gβ(η)) ∇η2

(η2Gβ(η)) · · · ∇ηN (η2Gβ(η))
· · · · · · · · · · · ·

∇η1
(ηN Gβ(η)) ∇η2

(ηN Gβ(η)) · · · ∇ηN (ηN Gβ(η))

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(
1 − η2

1

β2

)
− η1η2

β2 · · · − η1ηN
β2

− η2η1

β2

(
1 − η2

2

β2

)
· · · − η2ηN

β2

· · · · · · · · · · · ·
− ηN η1

β2 − ηN η2

β2 · · ·
(
1 − η2

N
β2

)

⎤
⎥⎥⎥⎥⎥⎦ Gβ(η).

Let Ĥ(η) denote the matrix above that multiplies Gβ(η). Then from (10), we
have

D2
β,1 J (θ ) = − 1

β2

∫
Ĥ(η)Gβ(η)J (θ − η)dη.

As with the calculation of the gradient, let η′ = η/β. Then dη = βN dη′. Hence
(10) becomes

D2
β,1 J (θ ) = 1

β2

∫
H̄(η′)

(
1

(2π )N/2
exp

(
−1

2

N∑
i=1

(η′
i)

2

))
J (θ − βη′)dη′. (11)

In the above,

H̄(η′) =

⎡
⎢⎢⎣

((η′
1)2 − 1) η′

1η
′
2 · · · η′

1η
′
N

η′
2η

′
1 ((η′

2)2 − 1) · · · η′
2η

′
N

· · · · · · · · · · · ·
η′

N η′
1 η′

N η′
2 · · · ((η′

N )2 − 1)

⎤
⎥⎥⎦. (12)

Note that η′
i, i = 1, . . . , N are independent N (0, 1) distributed random vari-

ables. Now since η′
i and −η′

i have the same distribution, one obtains

D2
β,1 J (θ ) = E

[
1

β2
H̄(η̄)J (θ + βη̄)

]
,

where the expectation above is taken with respect to the N -dimensional mul-
tivariate normal p.d.f. G(η̄) (as before) corresponds to the random vector of N
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independent N (0, 1)-distributed random variables. Hence the form of the esti-
mator for ∇2 J (θ (n)) suggested by the above is (for M large and β small)

∇2 J (θ (n)) ≈ 1

β2

1

M

M∑
n=1

H̄(η(n))J (θ (n) + βη(n)). (13)

Here η(n) = (η1(n), . . . , ηN (n))T is a vector of independent N (0, 1)-distributed
random variables. We now propose a three-timescale Newton-based algorithm
to implement the above. Let {a(n)}, {b(n)} and {c(n)} be three step-size sequences.
We assume that these satisfy the following requirements.

Assumption (A4).∑
n

a(n) =
∑

n

b(n) =
∑

n

c(n) = ∞,
∑

n

(a(n)2 + b(n)2 + c(n)2) < ∞, (14)

a(n) = o(c(n)) and c(n) = o(b(n)). (15)

Note that (14) are standard requirements on step-size sequences in stochas-
tic approximation algorithms. From (15), a(n) → 0, the fastest, and b(n) → 0,
the slowest, among the three step-size schedules. Thus, in the algorithm below,
the timescale corresponding to {b(n)} is the fastest while that corresponding
to {a(n)} is the slowest since, beyond some finite integer N0, increments in re-
cursions governed by {b(n)} are uniformly the largest while those governed by
{a(n)} are uniformly the smalle amongs the three types of recursions. Hence,
one expects that recursions corresponding to {b(n)} would asymptotically track
the stable equilibrium points of the associated ODEs, the fastest, albeit with
a possibly higher variance in their iterates. The timescale corresponding to
{c(n)} is faster than the one corresponding to {a(n)} but slower than that cor-
responding to {b(n)}. In both our algorithms N-SF1 and N-SF2, the Hessian is
updated on the fastest timescale (using the step-size sequence {b(n)}) while the
parameter is updated on the slowest scale (with step-size sequence {a(n)}). This
is because the Hessian recursion needs to converge the fastest as the inverse
of the (converged) Hessian update is required. The gradient is updated using
the step-size sequence {c(n)} as it should ideally move on a scale in between
the Hessian and parameter updates. Further, both the Hessian and gradient
updates should converge before a parameter update step. This helps in keeping
the parameter iterates stable. We now present the N-SF1 algorithm.

The N-SF1 Algorithm

Step 0 (Initialize). Set Zk(0) = Zi, j (0) = 0, ∀k, i, j ∈ {1, . . . , N }. Fix θk(0), k = 1, . . . , N

and let θ (0)
= (θ1(0), . . . , θN (0))T denote the initial parameter vector. Fix L, M and β. Set

n := 0 and m := 0, respectively. Generate i.i.d., N (0, 1)-distributed random variables

η1(0), η2(0), . . . , ηN (0), and set η(0)
= (η1(0), . . . , ηN (0))T .

Step 1. Generate the simulation X nL+m governed with parameter (θ (n) + βη(n)). For
i, j , k = 1, . . . , N , j < k, update

Zi,i(nL + m + 1) = Zi,i(nL + m) + b(n)

(
η2

i (n) − 1

β2
h(X nL+m) − Zi,i(nL + m)

)
,

Z j ,k(nL + m + 1) = Z j ,k(nL + m) + b(n)

(
η j (n)ηk(n)

β2
h(X nL+m) − Z j ,k(nL + m)

)
.
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For j > k, set Z j ,k(nL + m + 1) = Zk, j (nL + m + 1). Next for l = 1, . . . , N , update

Zl (nL + m + 1) = Zl (nL + m) + c(n)

(
ηl (n)

β
h(X nL+m) − Zl (nL + m)

)
.

If m = L − 1, set n := n + 1 and m := 0. Next form the matrix H(nL) =
P ([[Z j ,k(nL)]]N

j ,k=1) and compute its inverse M (nL) = [[M j ,k(nL)]]N
j ,k=1

= H(nL)−1, and

go to Step 2; else, set m := m + 1 and repeat Step 1.

Step 2. For i = 1, . . . , N , update θi(n) according to

θi(n + 1) = 
i

(
θi(n) − a(n)

N∑
k=1

Mi,k(nL)Zk(nL)

)
.

Set n := n + 1 and θ (n)
= (θ1(n), . . . , θN (n))T . If n = M , go to Step 3; else, generate i.i.d.,

N (0, 1)-distributed random variables η1(n), . . . , ηN (n), independent of previous samples.

Set η(n)
= (η1(n), . . . , ηN (n))T and go to Step 1.

Step 3 (Termination). Terminate algorithm and output θ (M )
= (θ1(M ), . . . , θN (M ))T

as the final parameter vector.

In Step 1, since the Hessian is symmetric and is derived from the matrix H̄(η′)
in (12), we only update Zi, j (nL+m) for i < j in Step 1 and set Zi, j (nL+m+1) =
Z j ,i(nL + m + 1) for i > j . Again note that Algorithm N-SF1 requires only one
simulation.

Next, we propose a two-sided estimate for the Hessian that uses two paral-
lel simulations. This will be used together with a finite difference estimate of
the gradient (similar to G-SF2) in our next algorithm N-SF2. The form of the
smoothed functional (D2

β,2 J (θ )) for the Hessian that we propose is the following:

D2
β,2 J (θ ) = E

[
1

2β2
H̄(η̄)(J (θ + βη̄) + J (θ − βη̄))

]
.

The form of the proposed two-sided estimator of the Hessian is thus

∇2 J (θ (n)) ≈ 1

2β2

1

M

M∑
n=1

H̄(η(n))(J (θ (n) + βη(n)) + J (θ (n) − βη(n))), (16)

where η(n)
= (η1(n), . . . , ηN (n))T is a vector of N (0, 1) random variates. Algo-

rithm N-SF2 uses the same gradient estimate as G-SF2.

The N-SF2 Algorithm

Step 0 (Initialize). Set Zk(0) = Zi, j (0) = 0, ∀k, i, j ∈ {1, . . . , N }. Fix θk(0), k = 1, . . . , N

and let θ (0)
= (θ1(0), . . . , θN (0))T denote the initial parameter vector. Fix L, M and β. Set

n := 0 and m := 0, respectively. Generate i.i.d., N (0, 1)-distributed random variables

η1(0), η2(0), . . . , ηN (0), and set η(0)
= (η1(0), . . . , ηN (0))T .

Step 1. Generate two parallel simulations X 1
nL+m and X 2

nL+m that are governed with
parameters (θ (n) + βη(n)) and (θ (n) − βη(n)), respectively. For i, j , k = 1, . . . , N , j < k,
update

Zi,i(nL + m + 1) = Zi,i(nL + m) + b(n)

(
η2

i (n) − 1

2β2

(
h(X 1

nL+m) + h(X 2
nL+m

))
−Zi,i(nL + m)),
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Z j ,k(nL + m + 1) = Z j ,k(nL + m) + b(n)

(
η j (n)ηk(n)

2β2

(
h

(
X 1

nL+m

) + h
(
X 2

nL+m

))
−Z j ,k(nL + m)

)
.

For j > k, set Z j ,k(nL + m + 1) = Zk, j (nL + m + 1). Next, for l = 1, . . . , N , update

Zl (nL + m + 1) = Zl (nL + m) + c(n)

(
ηl (n)

2β

(
h

(
X 1

nL+m

) − h
(
X 2

nL+m

)) − Zl (nL + m)

)
.

If m = L − 1, set n := n + 1 and m := 0. Next form the matrix H(nL) =
P ([[Z j ,k(nL)]]N

j ,k=1) and compute its inverse M (nL) = [[M j ,k(nL)]]N
j ,k=1

= H(nL)−1, and

go to Step 2; else, set m := m + 1 and repeat Step 1.

Step 2. For i = 1, . . . , N , update θi(n) according to

θi(n + 1) = 
i

(
θi(n) − a(n)

N∑
k=1

Mi,k(nL)Zk(nL)

)
.

Set n := n + 1 and θ (n)
= (θ1(n), . . . , θN (n))T . If n = M , go to Step 3; else, generate i.i.d.,

N (0, 1)-distributed random variables η1(n), . . . , ηN (n), independent of previous samples.

Set η(n)
= (η1(n), . . . , ηN (n))T and go to Step 1.

Step 3 (Termination). Terminate algorithm and output θ (M )
= (θ1(M ), . . . , θN (M ))T

as the final parameter vector.

3.1 The Jacobi Variants of N-SF1 and N-SF2

For purposes of implementation in our numerical experiments, we consider vari-
ants of both the N-SF1 and N-SF2 algorithms wherein the entire Hessian is not
updated at each epoch but only its diagonal elements are. The cross-diagonal
elements in the Hessian are simply set to zero. Thus projecting the resulting
(by abuse of terminology) Hessian update onto the set of positive definite and
symmetric matrices is straightforward as all one needs to do is to project each
element of the diagonal matrix to the positive half-line. Computing and project-
ing the entire Hessian at each update epoch onto the set of positive definite and
symmetric matrices, and computing its inverse takes a large computational ef-
fort. Moreover, the above procedure has also been proposed in Spall [2000] for
the case of high-dimensional parameters. A similar procedure has been adopted
in Bhatnagar [2005] as well for the algorithms therein. The resulting algorithms
that we implement are thus the Jacobi variants of the proposed algorithms. We
also describe, in the Appendix, the convergence analysis for the Jacobi variants
of algorithms N-SF1 and N-SF2 in addition to that of the original algorithms.

For our numerical experiments, we project each diagonal element of the (re-
sulting) Hessian update to the interval [0.1, ∞). The requirements in Assump-
tion (A3) can be seen to hold in this case since the projection operator is contin-
uous. Further, (2) holds in this setting since all eigenvalues are greater than or
equal to 0.1. Also, one can show, as in Lemma A.3, that the iterates of the above
scaling matrix and hence of the projected matrix are uniformly upper bounded
with probability 1.
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4. NUMERICAL EXPERIMENTS

We show performance comparisons of our algorithms G-SF2 and the Jacobi
variants of N-SF1 and N-SF2 (which we again refer to as N-SF1 and N-
SF2, respectively, for simplicity) with the G-SF1 algorithm of Bhatnagar and
Borkar [2003], the one- and two-simulation Gradient SPSA algorithms (G-
SPSA1 and G-SPSA2, respectively) of Bhatnagar et al. [2003], and the one-
and two-simulation Newton based SPSA algorithms (N-SPSA1 and N-SPSA2,
respectively) of Bhatnagar [2005]. For the sake of completeness, we first briefly
describe the above Gradient and Newton SPSA algorithms.

4.1 Gradient and Newton SPSA Algorithms

We begin by describing the one- and two-simulation Gradient SPSA algorithms,
G-SPSA1 and G-SPSA2, respectively.

4.1.1 Gradient SPSA (G-SPSA) Algorithms. These algorithms estimate

only the gradient of the objective. Let (n)
= (1(n), . . . , N (n))T be a vector

of i.i.d random variables 1(n), . . . , N (n), n ≥ 0, each of which is Bernoulli
distributed with i(n) = ±1 w.p. 1/2, i = 1, . . . , N , n ≥ 0. More general distri-
butions for the above (see Spall [1992]) may, however, be chosen. Let δ > 0 be a
given small constant. Let {X +

l } ({X +
l } and {X −

l }) denote the simulation(s) that
is (are) governed by parameter sequence(s) {θ+

l } ({θ+
l } and {θ−

l }, respectively).
Here θ+

l = θ (n) + δ(n) and θ−
l = θ (n) − δ(n) for n = [ l

L ], with L ≥ 1 a given
fixed integer as before. Let Z̃ (0) = 0 in the recursions below.

4.1.1.1 G-SPSA1.

θi(n + 1) = 
i

(
θi(n) − a(n)

(
Z̃ (nL)

δi(n)

))
, (17)

where for m = 0, 1, . . . , L − 1,

Z̃ (nL + m + 1) = Z̃ (nL + m) + b(n)(h(X +
nL+m) − Z̃ (nL + m)). (18)

4.1.1.2 G-SPSA2.

θi(n + 1) = 
i

(
θi(n) − a(n)

(
Z̃ (nL)

2δi(n)

))
, (19)

where for m = 0, 1, . . . , L − 1,

Z̃ (nL + m + 1) = Z̃ (nL + m) + b(n)(h(X +
nL+m) − h(X −

nL+m) − Z̃ (nL + m)). (20)

4.1.2 Newton SPSA (N-SPSA) Algorithms. These algorithms estimate
both the gradient and Hessian of the objective. Let δ1, δ2 > 0 be given small

constants. Let (n)
= (1(n), . . . , N (n))T and ̂(n)

= (̂1(n), . . . , ̂N (n))T be
independent sequences of i.i.d random variables 1(n), . . . , N (n), and ̂1(n),
. . . , ̂N (n), respectively, with i(n), ̂i(n) = ±1 w.p. 1/2, i = 1, . . . , N , n ≥ 0.
Suppose {X ++(l )} ({X ++(l )} and {X +(l )}) denote the simulation(s) that is (are)
governed by parameter sequence(s) {θ++

l } ({θ++
l } and {θ+

l }, respectively). Here,
θ+

l = θ (n) +δ1(n) and θ++
l = θ (n) + δ1(n) + δ2̂(n) for n = [ l

L ] as before.
Let Z̃ (0) = 0.
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        q = 1-p

p

λ 1 λ 2

Node 1 Node 2

Fig. 1. Queueing network.

4.1.2.1 N-SPSA1. For n ≥ 0, m = 0, 1, . . . , L − 1,

Z̃ (nL + m + 1) = Z̃ (nL + m) + b(n)(h(X ++(nL + m)) − Z̃ (nL + m)). (21)

For j , i ∈ {1, . . . , N },

Hj ,i(n + 1) = Hj ,i(n) + c(n)

(
Z̃ (nL)

δ1δ2i(n)̂ j (n)
− Hj ,i(n)

)
. (22)

Next form the matrix H(n) = P ([[Hk,l (n)]]N
k,l=1) and let M (n) = [[Mk,l (n)]]N

k,l=1

be the inverse of H(n) (where the operator P is as before). Finally, for i =
1, . . . , N ,

θi(n + 1) = 
i

(
θi(n) − a(n)

N∑
k=1

Mi,k(n)

(
Z̃ (nL)

δ2̂k(n)

))
. (23)

4.1.2.2 N-SPSA2. The only difference here with N-SPSA1 is that (21) is
replaced with

Z̃ (nL+m+1) = Z̃ (nL+m)+b(n)(h(X ++(nL+m))−h(X +(nL+m))− Z̃ (nL+m)).
(24)

Recursions (22)–(23) are now the same as before.
As with the N-SF1 and N-SF2 algorithms, we consider for the purposes of

implementation the Jacobi variants of N-SPSA1 and N-SPSA2. Next we present
our numerical setting and results.

4.2 Numerical Setting and Results

We consider a two-node network of M/G/1 queues with feedback as shown in
Figure 1. The setting here is the same as that considered in Bhatnagar [2005].
A somewhat similar setting is also considered in Bhatnagar et al. [2001] and
Bhatnagar et al. [2003].

We allow nodes 1 and 2 to be fed with independent Poisson arrival processes
with rates λ1 = 0.2 and λ2 = 0.1, respectively. Customers after service at Node
1 enter Node 2. Upon completion of service at Node 2, a customer either leaves
the system with probability p = 0.4 or joins Node 1 with probability q = 0.6,
independently of other customers. We assume the cost function to be the sum
of waiting times of individual customers at the two nodes. Let A = [[Aj , j ′ ]] be
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a given positive definite and symmetric matrix. Let the vector of parameters to
be tuned be denoted θ = (θ1, θ2), where θ i = (θ i

1, . . . , θ i
M )T , i = 1, 2. The service

time processes {Si
n(θ i)} at the two nodes i = 1, 2, depend on the above parame-

ter in the manner Si
n(θ i) = Ui

n(1 + ∑M
j=1

∑M
j ′=1(θ i

j (n) − θ̄ i
j )(θ

i
j ′ (n) − θ̄ i

j ′ )Aj , j ′ )/Ri,

i = 1, 2, n ≥ 1. Here U 1
n , U 2

n are independent samples from the uniform distribu-
tion U (0, 1). Also, we select R1 = 10 and R2 = 20, respectively. Thus, in vector-
matrix notation, Si

n(θ i) = Ui
n(1+ (θ i − θ̄ i)T A(θ i − θ̄ i)). Since A is positive definite

and symmetric, Si
n(θ i) have the lowest values for θ i = θ̄ i. This choice of θ i min-

imizes the cost. Thus, θ̄ i
1, . . . , θ̄ i

M , i = 1, 2, represent the target parameter com-
ponents to which each algorithm must converge. Note that if we have − log(Ui

n)
in place of Ui

n above, then Si
n(θ i) would correspond, via the inverse transform

method for generating random variates, to a sample from the exponential dis-
tribution with parameter Ri/(1 + ∑M

j=1

∑M
j ′=1 (θ i

j (n) − θ̄ i
j )(θ

i
j ′ (n) − θ̄ i

j ′ )Aj , j ′ ).
We consider two different choices for M : M = 2 and 25, respectively.

The dimensions of the corresponding parameters are thus N = 4 and 50.
We consider the Euclidean distance d (θ (n), θ̄ )

= (
∑2

i=1

∑M
j=1(θ i

j (n) − θ̄ i
j )

2)1/2 of

θ (n), n ≥ 1 from θ̄ as our measure of performance. For M = 25, we let
A = I (the identity matrix) while for M = 2, we consider A with elements
A1,1 = A1,2 = A2,1 = 1 and A2,2 = 2, respectively. For the cost to be minimized,
one expects d (θ (n), θ̄ ) → 0 as n → ∞. We show performance comparisons of the
various algorithms using the above metric.

In all the experiments whose results are shown in Tables I–VII, we ran
all the algorithms for a total of 12 × 105 simulations. Thus, when L = 100
(as with the experiments whose results are shown in Tables I, II, III, VI, and
VII, respectively), for each of the one (two)-simulation algorithms, a total of
12,000 (6000) parameter updates are obtained. On a Pentium 5 PC with Linux
operating system, each of the four SPSA algorithms take about 20 (5) s for
one simulation run for the case N = 50 (N = 4), while each of the four SF
algorithms take about 1 min (20 s). The SF algorithms take slightly longer than
their SPSA counterparts since generating Gaussian random variates is more
computationally expensive than generating Bernoulli variates. All simulations
are run independently with 20 different initial seeds.

For our first experiment, we set L = 100, β = 0.1, δ = 0.1, and δ1 = δ2 = 0.1
as the given sensitivity parameters in the various algorithms. In Figures 2
and 3, we plot the trajectories for the mean values of d (θ (n), θ̄ ) obtained from
the 20 independent simulation runs, using all the algorithms for both N = 4
and 50, respectively. The mean and standard deviation values obtained from
these simulations upon termination in all the algorithms are then presented
in Table I. We select step-sizes {a(n)}, {b(n)}, and {c(n)} according to a(n) = 1

n ,

b(n) = 1
n2/3 , and c(n) = 1

n3/4 , respectively, n ≥ 1, with a(0) = b(0) = c(0) = 1,
in the various algorithms. Note, however, that the gradient-based algorithms
G-SF1, G-SF2, G-SPSA1, and G-SPSA2 do not use step sizes c(n). From these
experiments, we observe that, when N = 4, G-SPSA2 gives the best results
and is closely followed by N-SF2. However, for N = 50, N-SF2 shows the best
results and is in fact significantly better than the other algorithms. Also, for
this case (N = 50), G-SPSA2 and N-SPSA2 are slightly better as compared
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Fig. 3. Convergence behavior of the algorithms for N = 50.

ACM Transactions on Modeling and Computer Simulation, Vol. 18, No. 1, Article 2, Pub. date: December 2007.



2:18 • S. Bhatnagar

Table I. Performance after 12 × 105 Simulations

d (θ (n), θ̄ ) d (θ (n), θ̄ )

Algorithm N = 4 N = 50

N-SF2 0.0030 ± 0.0009 0.1278 ± 0.0088

G-SF2 0.0070 ± 0.0010 0.2546 ± 0.0168

G-SPSA2 0.0020 ± 0.0004 0.2237 ± 0.0312

N-SPSA2 0.0227 ± 0.0096 0.2139 ± 0.0283

N-SF1 0.0242 ± 0.0112 0.2598 ± 0.0189

G-SF1 0.0285 ± 0.0132 0.5567 ± 0.0692

G-SPSA1 0.0483 ± 0.0184 0.8525 ± 0.0466

N-SPSA1 0.1072 ± 0.0220 0.3768 ± 0.0228

Table II. Performance of SF Algorithms for Different Values of β When N = 50

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

β G-SF2 N-SF2 G-SF1 N = 50 N-SF1

0.001 0.3363 ± 0.0219 0.1584 ± 0.0142 0.5990 ± 0.0812 0.3310 ± 0.0643

0.01 0.3384 ± 0.0228 0.1381 ± 0.0109 0.5208 ± 0.0616 0.3084 ± 0.0372

0.05 0.2723 ± 0.0189 0.1187 ± 0.0124 0.5165 ± 0.0412 0.2594 ± 0.0409

0.10 0.2546 ± 0.0168 0.1278 ± 0.0088 0.5567 ± 0.0692 0.2598 ± 0.0189

0.15 0.2314 ± 0.0112 0.1430 ± 0.0064 0.5497 ± 0.0273 0.2765 ± 0.0220

0.20 0.2670 ± 0.0205 0.1381 ± 0.0102 0.5889 ± 0.0366 0.2408 ± 0.0411

0.30 0.2532 ± 0.0211 0.1292 ± 0.0171 0.6344 ± 0.0298 0.3036 ± 0.0213

0.40 0.2891 ± 0.0168 0.1533 ± 0.0287 0.6886 ± 0.0401 0.3103 ± 0.0108

0.50 0.2718 ± 0.0305 0.1596 ± 0.0191 0.6728 ± 0.0349 0.3111 ± 0.0235

0.75 0.2865 ± 0.0336 0.1734 ± 0.0335 0.6911 ± 0.0382 0.3189 ± 0.0188

1.00 0.2991 ± 0.0378 0.1739 ± 0.0299 0.6739 ± 0.0316 0.3237 ± 0.0316

to G-SF2 and N-SF1. Among the one-simulation algorithms, N-SF1 shows the
best results in both cases. G-SPSA1 and G-SF1 do not show good performance
when N = 50.

Next, we study comparisons in performance of various algorithms under
different settings of the sensitivity parameters. In Tables II–III, we compare
performance of the SF algorithms for varying values of the spread parameter
β, for N = 50 and N = 4, respectively, with the rest of the setting parameters
as before. Here it can be seen that N-SF2 consistently outperforms the other
algorithms for N = 50. The same is also true for N = 4, except for a couple of
cases: β = 0.01 and β = 0.05, in which G-SF2 is better. Note also that G-SF2
performs better than N-SF1 in seven out of the 11 cases for N = 50 but in only
three out of the 11 cases for N = 4. G-SF1 does not show good performance
in comparison with the other algorithms when N = 50. For N = 4, however,
G-SF1 is better than N-SF1 for β = 0.05 and β = 0.15, respectively. It is
observed in most algorithms that performance deteriorates when β is either too
small or is increased beyond a point. This is due to the fact that low values of β

lead to high variability and overall bias in the estimates (cf. Styblinski and Tang
[1990]) while high values result in inaccuracies in the gradient and Hessian
estimates. As discussed in Section A.1 of the Appendix, the performance of
N-SF2, however, does not degrade much when β is made low or high.

In Tables IV–V, performance comparisons of all algorithms are shown for
N = 50 for different values of the averaging parameter L. The value of β is set
at 0.1 for all SF algorithms. Here also, N-SF2 can be seen to perform better in
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Table III. Performance of SF Algorithms for Different Values of When N = 4

β d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

β G-SF2 N-SF2 G-SF1 N-SF1

0.001 0.1903 ± 0.0466 0.1389 ± 0.0327 0.3105 ± 0.0761 0.1457 ± 0.0514

0.01 0.0163 ± 0.0140 0.0219 ± 0.0202 0.2062 ± 0.0522 0.1066 ± 0.0278

0.05 0.0033 ± 0.0067 0.0091 ± 0.0038 0.0172 ± 0.009 0.0765 ± 0.0109

0.10 0.0070 ± 0.0010 0.0030 ± 0.0009 0.0285 ± 0.0132 0.0242 ± 0.0112

0.15 0.0413 ± 0.0134 0.0094 ± 0.0071 0.0283 ± 0.0196 0.0308 ± 0.0141

0.20 0.0978 ± 0.0360 0.0284 ± 0.0128 0.0824 ± 0.0208 0.0327 ± 0.0106

0.30 0.1038 ± 0.0344 0.0713 ± 0.0269 0.1237 ± 0.0185 0.0512 ± 0.0276

0.40 0.1307 ± 0.0319 0.0886 ± 0.0301 0.1620 ± 0.0368 0.1090 ± 0.0395

0.50 0.1473 ± 0.0298 0.1217 ± 0.0392 0.1861 ± 0.0504 0.1139 ± 0.0251

0.75 0.1524 ± 0.0277 0.1231 ± 0.0210 0.1929 ± 0.0356 0.1235 ± 0.0299

1.00 0.1728 ± 0.0300 0.1229 ± 0.0253 0.2001 ± 0.0327 0.1348 ± 0.0388

Table IV. Performance of SF Algorithms for Different Values of L When N = 50

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

L G-SF2 N-SF2 G-SF1 N-SF1

1 0.3119 ± 0.0211 0.2679 ± 0.0178 0.5973 ± 0.0277 0.3040 ± 0.0169

10 0.2568 ± 0.0303 0.0495 ± 0.0227 0.5264 ± 0.0198 0.2267 ± 0.0124

50 0.2494 ± 0.0189 0.0999 ± 0.0143 0.4656 ± 0.0262 0.1956 ± 0.0197

100 0.2546 ± 0.0168 0.1278 ± 0.0088 0.5567 ± 0.0692 0.2598 ± 0.0189

200 0.2642 ± 0.0277 0.1093 ± 0.0093 0.5586 ± 0.0348 0.2604 ± 0.0201

500 0.2718 ± 0.0395 0.1286 ± 0.0161 0.5806 ± 0.0365 0.2750 ± 0.0188

1000 0.2789 ± 0.0264 0.1481 ± 0.0200 0.6009 ± 0.0259 0.3112 ± 0.0223

comparison with all the algorithms and in some cases by more than an order of
magnitude; see, for instance the cases of L = 10 and L = 50. Among algorithms
other than N-SF2, N-SF1 shows the best results overall here. The performance
of G-SF2 and G-SPSA2 is almost similar, with G-SF2 marginally better in most
cases here. The performance of all four algorithms is not good when L = 1 is
used. Performance improves as L is increased, implying that an additional aver-
aging over the two-timescale averaging is desirable. Similar observations have
also been made in Bhatnagar et al. [2001, 2003] and Bhatnagar [2005] as well.
Note also that performance deteriorates somewhat when L is increased beyond
a point implying that excessive averaging is also not desirable for overall system
performance.

Next, we study performance comparisons between the N-SF and N-SPSA
algorithms for the case of N = 50, for varying step-size parameters, and also
study the impact of step-size on performance. We set L = 100 for all algorithms.
All other setting parameters are the same as before. In Table VI, we use step-
sizes a(n) = 1/n, b(n) = 1/n0.55, and c(n) = 1/nα, respectively, where α is varied
between the values of 0.55 and 1.0. One may use other choices for b(n). For
instance, b(n) here can be chosen as b(n) = 1/nγ for any γ satisfying 0.5 < γ < 1.
It can be seen that performance deteriorates when α is very close to 0.55 or 1.0,
namely, when step-size c(n) is close to b(n) or a(n), respectively. In Table VII,
we use a(n) = 1/n, c(n) = 1/n0.75, and b(n) = 1/nγ , respectively, where γ

is varied between 0.55 and 0.75. It can be seen that, for all the algorithms,
performance is good for lower values of γ and deteriorates as γ is brought close
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Table V. Performance of SPSA Algorithms for Different Values of L When N = 50

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

L G-SPSA2 N-SPSA2 G-SPSA1 N-SPSA1

1 0.3165 ± 0.0254 0.3304 ± 0.0309 1.1531 ± 0.0192 0.4122 ± 0.0346

10 0.2627 ± 0.0218 0.3286 ± 0.0221 0.7100 ± 0.0451 0.3466 ± 0.0225

50 0.2557 ± 0.0193 0.3027 ± 0.0235 0.8090 ± 0.0384 0.3689 ± 0.0156

100 0.2237 ± 0.0312 0.2139 ± 0.0283 0.8525 ± 0.0466 0.3768 ± 0.0228

200 0.2706 ± 0.0287 0.2339 ± 0.0128 0.7575 ± 0.0340 0.3084 ± 0.0215

500 0.2781 ± 0.0199 0.2236 ± 0.0300 0.8238 ± 0.0278 0.3997 ± 0.0329

1000 0.2738 ± 0.0249 0.3107 ± 0.0227 0.8671 ± 0.0333 0.4018 ± 0.0281

Table VI. Performance of Newton-Based Algorithms for c(n) = 1/nα , a(n) = 1/n and

b(n) = 1/n0.55 When N = 50

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

α N-SF2 N-SF1 N-SPSA2 N-SPSA1

0.55 0.1812 ± 0.0220 0.3115 ± 0.0378 0.2903 ± 0.0334 0.4212 ± 0.0409

0.60 0.1439 ± 0.0098 0.2774 ± 0.0291 0.2712 ± 0.0329 0.4066 ± 0.0373

0.65 0.0921 ± 0.0083 0.2362 ± 0.0295 0.2569 ± 0.0241 0.3947 ± 0.0236

0.70 0.1007 ± 0.0186 0.2467 ± 0.0259 0.2298 ± 0.0188 0.3975 ± 0.0381

0.75 0.1123 ± 0.0104 0.1905 ± 0.0178 0.2381 ± 0.0232 0.3544 ± 0.0206

0.80 0.0992 ± 0.0217 0.2292 ± 0.0182 0.2496 ± 0.0287 0.3603 ± 0.0212

0.85 0.1281 ± 0.0248 0.2661 ± 0.0289 0.2970 ± 0.0313 0.3530 ± 0.0308

0.90 0.1397 ± 0.0274 0.2868 ± 0.0334 0.2561 ± 0.0272 0.3441 ± 0.0253

0.95 0.1415 ± 0.0309 0.2738 ± 0.0272 0.2695 ± 0.0200 0.3856 ± 0.0298

1.00 0.1597 ± 0.0315 0.3259 ± 0.0526 0.2817 ± 0.0296 0.3979 ± 0.0440

to 0.75, thereby again suggesting the need for a clear separation in timescales.
In both Tables VI and VII, N-SF2 shows much better performance than the
other algorithms. Also, N-SPSA2 shows better results compared with N-SF1
in most cases here (six out of the 10 cases in Table VI and five out of seven in
Table VII).

Finally, for the same setting as in Table I, for N = 50, we measured the
time required by each algorithm for d (θ (n), θ̄ ) to become less than 0.1. It took
about 3 min for N-SF2, while for N-SF1 and G-SF2 it took close to 14 min each.
N-SPSA2 and G-SPSA2 took about 9 and 10 min, respectively, while N-SPSA1
took about 32 min. G-SPSA1 and G-SF1, on the other hand, did not reach the
target even after 5 h.

5. CONCLUSIONS

We developed three SF-based stochastic approximation algorithms for simula-
tion optimization. While one of our algorithms estimates the gradient of the
objective by using two-sided gradient estimates, the other two estimate both
the gradient and Hessian of the objective function by using one and two simula-
tions, respectively. The original SF algorithm due to Katkovnik and Kulchitsky
[1972] estimates only the gradient using one-sided estimates. A two-sided gra-
dient estimate was proposed and used in Styblinski and Tang [1990] and Chin
[1997]. Using similar methods as in Katkovnik and Kulchitsky [1972] and Sty-
blinski and Opalski [1986], we derive two SF-based Hessian estimates that
use (the same) one and two simulations (as for gradient estimates). These are
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Table VII. Performance of Newton-Based Algorithms for b(n) = 1/nγ , a(n) = 1/n and

c(n) = 1/n0.75 When N = 50

d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for d (θ (n), θ̄ ) for

γ N-SF2 N-SF1 N-SPSA2 N-SPSA1

0.55 0.1123 ± 0.0104 0.1905 ± 0.0178 0.2381 ± 0.0232 0.3544 ± 0.0206

0.58 0.0971 ± 0.0124 0.2517 ± 0.0252 0.2412 ± 0.0277 0.3563 ± 0.0148

0.64 0.0822 ± 0.0183 0.2357 ± 0.0161 0.2496 ± 0.0318 0.3671 ± 0.0408

0.66 0.1278 ± 0.0088 0.2156 ± 0.0197 0.2139 ± 0.0283 0.3689 ± 0.0156

0.70 0.1349 ± 0.0175 0.2677 ± 0.0275 0.2288 ± 0.0209 0.3897 ± 0.0299

0.72 0.1497 ± 0.0199 0.2796 ± 0.0202 0.2554 ± 0.0306 0.3898 ± 0.0393

0.75 0.1672 ± 0.0247 0.3102 ± 0.0429 0.2781 ± 0.0369 0.4110 ± 0.0518

then used in our Newton-based algorithms. We showed numerical results over
a setting involving a network of two M/G/1 queues with feedback and com-
pared the performance of our algorithms with other one- and two-simulation
gradient and Newton-based algorithms in the literature. We studied several
experiments by varying the setting parameters and step-sizes. Here N-SF2 is
seen to consistently show the best performance among all algorithms. Also, G-
SF2 and N-SF1 performed favorably in many cases over other algorithms in the
literature. In particular, N-SF1 showed the best results among one-simulation
algorithms and did comparably well in many cases over other well-known two-
simulation algorithms. A detailed convergence analysis of our algorithms is
shown in the Appendix.

We use a constant value for the spread parameter β in our algorithm. This
results in convergence to a near-optimum point. As future work, one could de-
velop algorithms where β goes to zero over a timescale that is the slowest among
all timescales in order to ensure convergence to an optimum. In Bhatnagar and
Borkar [2003], the use of a rapidly mixing chaotic random number generator
for generating Gaussian random variates was seen to improve performance
in a related gradient-based SF algorithm. Similar random number generators
may also be used for our algorithms. Finally, algorithms that use perturbation
variates other than Gaussian, for instance, Cauchy and uniform, as suggested
in Styblinski and Tang [1990], may be worth exploring in the context of SF
algorithms.

APPENDIX: CONVERGENCE ANALYSIS

We first show the detailed convergence analysis of algorithm N-SF1. Next, the
changes in the above analysis required for N-SF2 are presented. The conver-
gence of G-SF2 is then briefly indicated. Finally, we briefly present the analysis
for the Jacobi variants of N-SF1 and N-SF2.

A.1 Convergence Analysis of N-SF1

Let F(l ) = σ (θ̃i(p), X p, η̃i(p), p ≤ l , i = 1, . . . , N ), l ≥ 1, denote σ -fields gener-
ated by the quantities above. Here θ̃i(p) = θi(n) and η̃i(p) = ηi(n), respectively,
for i = 1, . . . , N , nL ≤ p ≤ (n + 1)L − 1. Define {b̃(n)} and {c̃(n)} as follows:
for n ≥ 0, b̃(n) = b([ n

L ]) and c̃(n) = c([ n
L ]), where [ n

L ] denotes the integer part of
n
L . Note that {b̃(n)} ({c̃(n)}) corresponds to the natural timescale over which the
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Hessian (data) averaging step should be analyzed. It is easy to see that∑
n

b̃(n) =
∑

n

c̃(n) = ∞,
∑

n

(b̃(n)2 + c̃(n)2) < ∞, (25)

c̃(n) = o(b̃(n)), a(n) = o(c̃(n)). (26)

In fact {b(n)} ({c(n)}) goes to zero faster than {b̃(n)} ({c̃(n)}) does. Thus, {b̃(n)}
({c̃(n)}) corresponds to an even faster step-size sequence compared with {b(n)}
({c(n)}). The timescale difference of {a(n)} with {b̃(n)} ({c̃(n)}) is thus higher
compared to the same with {b(n)} ({c(n)}). This is seen to improve performance.
The Hessian and gradient update recursions in Step 1 of the algorithm can be
rewritten as follows: for i, j , k = 1, . . . , N , j < k, update

Zi,i(p + 1) = Zi,i(p) + b̃(p)

(
η̃2

i (p) − 1

β2
h(X p) − Zi,i(p)

)
, (27)

Z j ,k(p + 1) = Z j ,k(p) + b̃(p)

(
η̃ j (p)η̃k(p)

β2
h(X p) − Z j ,k(p)

)
. (28)

For j > k, set Z j ,k(p + 1) = Zk, j (p + 1). Further, for l = 1, . . . , N ,

Zl (p + 1) = Zl (p) + c̃(p)

(
η̃l (p)

β
h(X p) − Zl (p)

)
. (29)

Define sequences {Ml ,l (p)}, {Mi, j (p)}, l , i, j ∈ {1, . . . , N }, i �= j , as follows:
for l = 1, . . . , N ,

Ml ,l (p) =
p∑

m=1

b̃(m)

(
η̃2

l (m) − 1

β2
h(X m) − E

[
η̃2

l (m) − 1

β2
h(X m) | F(m − 1)

])
.

Further, for i, j ∈ {1, . . . , N }, we have

Mi, j (p) =
p∑

m=1

b̃(m)

(
η̃i(m)η̃ j (m)

β2
h(X m) − E

[
η̃i(m)η̃ j (m)

β2
h(X m) | F(m − 1)

])
.

LEMMA A.1. The sequences {Ml ,l (p), F(p)} and {Mi, j (p), F(p)}, l , i, j =
1, . . . , N, i �= j , are almost surely convergent martingale sequences.

PROOF. We consider first the sequence {Ml ,l (p), F(p)}. It is easy to see that,
almost surely, E[Ml ,l (p + 1) | F(p)] = Ml ,l (p), for all p ≥ 0. Now note that

E
[
M 2

l ,l (p)
] ≤ Cp

β4

p∑
m=1

b̃2(m)
(
E

[(
η̃2

l (m) − 1
)2h2(X m)

+ E2
[(

η̃2
l (m) − 1

)
h(X m) |F(m − 1)

]])
for some constant Cp > 0 (that however depends on p). For the second term on
the right hand side above, note that, almost surely,

E2
[(

η̃2
l (m) − 1

)
h(X m) | F(m − 1)

] ≤ E
[(

η̃2
l (m) − 1

)2h2(X m) | F(m − 1)
]
,
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by the conditional Jensen’s inequality. Hence,

E
[
M 2

l ,l (p)
] ≤ 2Cp

β4

p∑
m=1

b̃2(m)E
[(

η̃2
l (m) − 1

)2h2(X m)
]

≤ 2Cp

β4

p∑
m=1

b̃2(m)E
[(

η̃2
l (m) − 1

)2]1/2 E
[
h4(X m)

]1/2

by the Cauchy-Schwartz inequality. Since, h(·) is a Lipschitz continuous func-
tion, we have

|h(X m)| − |h(0)| ≤ |h(X m) − h(0)| ≤ K ‖ X m ‖,

where K > 0 is the Lipschitz constant. Thus,

|h(X m)| ≤ C1(1+ ‖ X m ‖)

for C1 = max(K , |h(0)|) < ∞. Hence, one gets

E[h4(X m)] ≤ C2(1+ ‖ X m ‖4)

for (constant) C2 = 8C4
1 . As a consequence of (A2), supm ‖ X m ‖4< ∞. Thus,

E[M 2
l ,l (p)] < ∞, for all p ≥ 1. One can also see that Ml ,l (p) are integrable

random variables. Now note that∑
p

E[(Ml ,l (p + 1) − Ml ,l (p))2 | F(p)]

≤
∑

p

b̃2(p + 1)

(
E

[(
η̃2

l (p + 1) − 1

β2
h(X p+1)

)2

| F(p)

]

+ E[E2

[
η̃2

l (p + 1) − 1

β2
h(X p+1) | F(p)] | F(p)

])

≤
∑

p

2b̃2(p + 1)E

⎡
⎣(

η̃2
l (p + 1) − 1

β2
h(X p+1)

)2

| F(p)

⎤
⎦ ,

almost surely. The last inequality above again follows from the conditional
Jensen’s inequality. It can now be easily seen as before, using (A2), that

sup
p

1

β2
E

[((
η̃2

l (p + 1) − 1
)
h(X p+1)

)2 | F(p)
]

< ∞ w.p.1.

Hence, using (A4), it can be seen that∑
p

E[(Ml ,l (p + 1) − Ml ,l (p))2 | F(p)] < ∞

almost surely. Thus, by the martingale convergence theorem, {Ml ,l (p)} are al-
most surely convergent martingale sequences. A similar proof settles the claim
for {Mi, j (p)} as well.
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Define {s(n)}, {t(n)} and {r(n)} as follows: s(0) = t(0) = r(0) = 0,
s(n) = ∑n−1

i=0 a(i), t(n) = ∑n−1
i=0 b̃(i), and r(n) = ∑n−1

i=0 c̃(i), n ≥ 1, respectively.
Then the timescale corresponding to {s(n)} is the slowest timescale while
the one corresponding to {t(n)} is the fastest. Also, the timescale obtained

from {r(n)} falls in between the above two. Let Y (nL)
= [[Z j ,k(nL)]]N

j ,k=1 and

Z (nL)
= (Z1(nL), . . . , Z N (nL))T . Thus, the matrix H(nL) in the algorithm cor-

responds to P (Y (nL)).
Consider the following system of ordinary differential equations (ODEs):

.

θ (t) = 0, (30)
.

Z (t) = 0, (31)
.

Y (t) = D2
β,1 J (θ ) − Y (t). (32)

We now recall a key result from Hirsch [1989] stated here as Lemma A.2.
Consider an ODE

.
x (t) = F (x(t)), (33)

which has an asymptotically stable attracting set G. Let Gε denote the ε-
neighborhood of G, namely, Gε = {x | ∃x ′ ∈ G such that ‖ x − x ′ ‖≤ ε}. For
τ > 0, μ > 0, we call y(·) a (τ, μ)-perturbation of (33) if there exists an increas-
ing sequence {τi, i ≥ 0} of real numbers with τ0 = 0 and ∀i, τi+1 − τi ≥ τ , such
that, on each interval [τi, τi+1], there exists a solution xi(·) of (33) such that
supt∈[τi ,τi+1] |xi(t) − y(t)| < μ. We have

LEMMA A.2. Given ε > 0, τ > 0, there exists a μ̄ > 0 such that, for all
μ ∈ [0, μ̄], any (τ, μ)-perturbation of (33) converges to Gε .

Note that, in vector-matrix notation, the Hessian update recursions (27)–(28)
can be written as

Y (p + 1) = Y (p) + b̃(p)(H̄(η̃(p))h(X p) − Y (p)). (34)

We have the following:

LEMMA A.3. The sequence of Hessian updates {Y (p)} is uniformly bounded
with probability 1.

PROOF. Note that (34) can be rewritten as

Y (p + 1) = Y (p) + b̃(p)(E[H̄(η̃(p))h(X p) | F(p − 1)] − Y (p))

+ b̃(p)(H̄(η̃(p))h(X p) − E[H̄(η̃(p))h(X p) | F(p − 1)]).

From Lemma A.1, we have that, almost surely,∑
p

b̃(p)(H̄(η̃(p))h(X p) − E[H̄(η̃(p))h(X p) | F(p − 1)]) < ∞.

Hence it is sufficient to show the boundedness of the following recursion:

Ȳ (p + 1) = Ȳ (p) + b̃(p)(E[H̄(η̃(p))h(X p) | F(p − 1)] − Ȳ (p)),

with Ȳ (0) = Y (0). As in the proof of Lemma A.1, it can again be seen that
supp E[H̄(η̃(p))h(X p) | F(p − 1)] < ∞ with probability 1. Now since b̃(p) → 0

ACM Transactions on Modeling and Computer Simulation, Vol. 18, No. 1, Article 2, Pub. date: December 2007.



Adaptive Smoothed Functional Algorithms for Simulation Optimization • 2:25

as p → ∞, there exists an integer p0 such that, for all p ≥ p0, 0 ≤ b̃(p) ≤ 1.
Hence, for all p ≥ p0, Ȳ (p + 1) is a convex combination of Ȳ (p) and a quantity
that is almost surely uniformly bounded. The claim follows.

Consider now functions Ŷ (t) defined according to Ŷ (t(n)) = Y (nL) with the
maps t → Ŷ (t) corresponding to continuous linear interpolations on intervals
[t(n), t(n + 1)]. Given T > 0, define {Tn} as follows: T0 = 0 and for n ≥ 1,
Tn = min{t(m) | t(m) ≥ Tn−1 + T }. Let In = [Tn, Tn+1]. Note that there exists
some integer mn > 0 such that Tn = t(mn). Define also functions Y n(t), t ∈ In,
n ≥ 0, that are obtained as trajectories of the following ODEs:

.

Y
n
(t) = D2

β,1 J (θ ) − Y n(t), (35)

with Y n(Tn) = Ŷ (t(mn)) = Y (mnL). Note that, in (35), the parameter θ is held
fixed, namely, θ (t) ≡ θ since the parameter update recursion in Step 2 of the
algorithm can be rewritten as

θi(n + 1) = 
i(θi(n) + b̃(n)ξ1(n)), (36)

where ξ1(n) = o(1) as a(n) = o(b̃(n)). In other words, when viewed from the
timescale of {b̃(n)}, the parameter update recursion is quasistatic. Now a stan-
dard argument using Gronwall’s inequality can be used to show (see for instance
Bhatnagar et al. [2001]) the following:

LEMMA A.4. lim
n→∞ sup

t∈In

‖ Y n(t) − Ŷ (t) ‖= 0 w.p.1.

Next, we have the following:

LEMMA A.5. Given T, γ > 0, ((θ (t(n)+·), Z (t(n)+·), Ŷ (t(n)+·)) is a bounded
(T, γ )-perturbation of (30)–(32) for n sufficiently large.

PROOF. Observe that the gradient update recursions in Step 1 of the algo-
rithm can be written as

Zi(n + 1) = Zi(n) + b̃(n)ξ2(n),

where ξ2(n) = o(1) since c̃(n) = o(b̃(n)). Also, the parameter update recursion
can be written as in (36). The rest now follows from Lemma A.4.

COROLLARY A.6. ‖ Y (nL) − D2
β,1 J (θ (n)) ‖→ 0 w.p. 1, as n → ∞.

PROOF. The claim follows by Lemma A.2 applied on (32) for every ε > 0.

The next result shows that the Hessian estimates are unbiased in the limit
as β → 0.

PROPOSITION A.7. ‖ D2
β,1 J (θ (n)) − ∇2 J (θ (n)) ‖→ 0 as β → 0.

PROOF. Recall that

D2
β,1 J (θ (n)) = E

[
1

β2
H̄(η(n))J (θ (n) + βη(n))

]
,
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where η(n) = (η1(n), . . . , ηN (n))T is a vector of independent N (0, 1) random
variates and the expectation is taken with respect to the density of η(n). For
ease of exposition, we drop the dependence of θ (n) and η(n) on the index n and
simply denote these quantities as θ and η, respectively. Hence, using a Taylor
series expansion of J (θ + βη) around θ , one obtains

D2
β,1 J (θ ) = E

[
1

β2
H̄(η)(J (θ )

]
+ βηT ∇ J (θ ) + β2

2
ηT ∇2 J (θ )η + o(β2))

= 1

β2
E[H̄(η)J (θ )] + 1

β
E[H̄(η)ηT ∇ J (θ )] + 1

2
E[H̄(η)ηT ∇2 J (θ )η] + O(β). (37)

Now observe that E[H̄(η)] = 0 (the zero matrix). Here, E[H̄(η)] is a matrix of
expectations of individual elements of H̄(η). Hence the first term on the right-
hand side of (37) equals zero. Now consider the second term on the right-hand
side of (37). Note that

E[H̄(η)ηT ∇ J (θ )]= E

⎡
⎢⎢⎣

(η2
1 − 1)ηT ∇ J (θ ) η1η2η

T ∇ J (θ ) · · · η1ηN ηT ∇ J (θ )

η2η1η
T ∇ J (θ ) (η2

2 − 1)ηT ∇ J (θ ) · · · η2ηN ηT ∇ J (θ )
· · · · · · · · · · · ·

ηN η1η
T ∇ J (θ ) ηNη2η

T ∇ J (θ ) · · · (η2
N − 1)ηT ∇ J (θ )

⎤
⎥⎥⎦.

(38)
Consider the first term (corresponding to the first row and first column) above.
Note that

E[(η2
1 − 1)ηT ∇ J (θ )] = E[(η3

1 − η1, η2
1η2 − η2, . . . , η2

1ηN − ηN )T ∇ J (θ )] = 0.

Similarly all other terms in (38) can be seen to be equal to zero as well. We use
here the facts that E[η1] = E[η3

1] = 0 and E[η2
1] = 1. Also, ηi is independent of

η j for all i �= j . Hence the second term on the right-hand side of (37) equals zero
as well. Consider now the third term on the right-hand side of (37). Note that

1

2
E[H̄(η)ηT ∇2 J (θ )η] =

1

2
E

⎡
⎢⎣

(η2
1

− 1)
∑N

i, j=1 ∇i j J (θ )ηiη j η1η2

∑N
i, j=1 ∇i j J (θ )ηiη j · · · η1ηN

∑N
i, j=1 ∇i j J (θ )ηiη j

η2η1

∑N
i, j=1 ∇i j J (θ )ηiη j (η2

2
− 1)

∑N
i, j=1 ∇i j J (θ )ηiη j · · · η2ηN

∑N
i, j=1 ∇i j J (θ )ηiη j

· · · · · · · · · · · ·
ηN η1

∑N
i, j=1 ∇i j J (θ )ηiη j ηN η2

∑N
i, j=1 ∇i j J (θ )ηiη j · · · (η2

N − 1)
∑N

i, j=1 ∇i j J (θ )ηiη j

⎤
⎥⎦.

(39)
Consider now the term corresponding to the first row and first column above.
Note that

E[(η2
1 − 1)

N∑
i, j=1

∇i j J (θ )ηiη j = E

[
η2

1

N∑
i, j=1

∇i j J (θ )ηiη j

]
− E

[
N∑

i, j=1

∇i j J (θ )ηiη j

]
.

(40)
The first term on the right-hand side of (40) equals

E[η4
1∇11 J (θ )] + E

[ ∑
i= j ,i �=1

η2
1η

2
i ∇i j J (θ )

]
+ E

[ ∑
i �= j ,i �=1

η2
1ηiη j ∇i j J (θ )

]

= 3∇11 J (θ ) +
∑

i= j ,i �=1

∇i j J (θ ),
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since E[η4
1] = 3. The second term on right-hand side of (40) equals

− ∑N
i=1 ∇ii J (θ ). Adding the above two terms, one obtains

E

[
(η2

1 − 1)
N∑

i, j=1

∇i j J (θ )ηiη j

]
= 2∇11 J (θ ).

Consider now the term in the first row and second column of the matrix in
(39). Note that

E

[
η1η2

N∑
i, j=1

∇i j J (θ )ηiη j

]
= 2E

[
η2

1η
2
2∇12 J (θ )

]
+E

[ ∑
(i, j )�∈{(1,2),(2,1)}

η1η2ηiη j ∇i j J (θ )

]

= 2∇12 J (θ ).

Proceeding in a similar manner, it is easy to verify that the (i, j )th term
(i, j ∈ {1, . . . , N }) in the matrix in (39) equals 2∇i j J (θ ). Substituting the above
back into (39), one obtains

1

2
E[H̄(η)ηT ∇2 J (θ )η] = ∇2 J (θ ).

The claim now follows from (37).

COROLLARY A.8. ‖ Y (nL) − ∇2 J (θ (n)) ‖→ 0 w.p. 1, as n → ∞ and β → 0.

PROOF. Note that by the triangle inequality,

‖ Y (nL) − ∇2 J (θ (n)) ‖≤‖ Y (nL) − D2
β,1 J (θ (n)) ‖ + ‖ D2

β,1 J (θ (n)) − ∇2 J (θ (n)) ‖ .

The claim now follows from Corollary A.6 and Proposition A.7.

We now have the following:

LEMMA A.9. With probability 1, as n → ∞ and β → 0,

‖ {P (Y (nL))}−1 − {P (∇2 J (θ (n)))}−1 ‖→ 0.

PROOF. Note that

‖ {P (Y (nL))}−1 − {P (∇2 J (θ (n)))}−1 ‖

= ‖ {P (∇2 J (θ (n)))}−1(P (∇2 J (θ (n))){P (Y (nL))}−1 − I ) ‖

= ‖ {P (∇2 J (θ (n)))}−1(P (∇2 J (θ (n))){P (Y (nL))}−1 − P (Y (nL)){P (Y (nL))}−1) ‖

= ‖ {P (∇2 J (θ (n)))}−1(P (∇2 J (θ (n))) − P (Y (nL))){P (Y (nL))}−1) ‖

≤‖ {P (∇2 J (θ (n)))}−1 ‖ · ‖ P (∇2 J (θ (n))) − P (Y (nL)) ‖ · ‖ {P (Y (nL))}−1 ‖

≤ sup
n

‖ {P (∇2 J (θ (n)))}−1 ‖ sup
n

‖ {P (Y (nL))}−1 ‖ · ‖ P (∇2 J (θ (n)))− P (Y (nL)) ‖

→ 0 as n → ∞ and β → 0.
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This can be seen as follows. Note that the first inequality above follows from
the property on induced matrix norms (see Proposition A.12 of Bertsekas and
Tsitsiklis [1989]). Also, by Assumption (A1), supθ∈C ‖ ∇2 J (θ ) ‖< ∞ as C is a
closed and bounded set in RN . Further, from Lemma A.3, supn ‖ Y (nL) ‖< ∞
w.p. 1. Also, from Corollary A.8, ‖ Y (nL) −∇2 J (θ (n)) ‖ → 0 as n → ∞ and
β → 0 w.p. 1. The last then follows from Assumption (A3).

We now concentrate on the gradient update recursion for Z (p) in Step 1 of
algorithm N-SF1 (cf. (29)). By forming suitable martingale sequences as before,
similar conclusions as in Lemma A.1 can be drawn. Consider now the following
ODEs:

.

θ (t) = 0, (41)
.

Z (t) = Dβ,1 J (θ ) − Z (t). (42)

Consider functions Ẑ (t) defined according to Ẑ (r(n)) = Z (nL) with the maps
t → Ẑ (t) corresponding to continuous linear interpolations on intervals
[r(n), r(n + 1)]. Given T̄ > 0, define {T̄n} as follows: T̄0 = 0 and for n ≥ 1,
T̄n = min{r(m) | r(m) ≥ T̄n−1 + T̄ }. Let Īn = [T̄n, T̄n+1]. As before, there exists
some integer qn > 0 such that T̄n = r(qn). Define also functions Z n(t), t ∈ In,
n ≥ 0, that are obtained as trajectories of the following ODEs:

.

Z
n
(t) = Dβ,1 J (θ ) − Z n(t), (43)

with Z n(T̄n) = Ẑ (r(qn)) = Z (qnL). We have the following analogs of Lemmas A.3
to A.5 and Corollary A.6. (These can be shown in exactly the same way as the
preceding results; hence their proofs are not given.)

LEMMA A.10. The sequence of updates {Z (p)} is uniformly bounded with
probability 1.

LEMMA A.11. lim
n→∞ sup

t∈ Īn

‖ Z n(t) − Ẑ (t) ‖= 0 w.p.1.

LEMMA A.12. Given T̄ , γ > 0, ((θ (r(n) + ·), Z (r(n) + ·)), is a bounded (T̄ , γ )-
perturbation of (42)–(42) for n sufficiently large.

COROLLARY A.13. ‖ Z (nL) − Dβ,1 J (θ (n)) ‖→ 0 w.p. 1, as n → ∞.

We now have the following analog of Proposition A.7.

PROPOSITION A.14. ‖ Dβ,1 J (θ (n)) − ∇ J (θ (n)) ‖→ 0 as β → 0.

PROOF. Recall that

Dβ,1 J (θ (n)) = E
[

1

β
η(n)J (θ (n) + βη(n))

]
,

where η(n) = (η1(n), . . . , ηN (n))T is a vector of independent N (0, 1)-distributed
random variates. Using a Taylor series expansion of J (θ (n)+βη(n)) around θ (n),
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one has

Dβ,1 J (θ (n)) = 1

β
E[η(n)(J (θ (n)) + βη(n)T ∇ J (θ (n))

+ β2η(n)T ∇2 J (θ (n))η(n) + o(β2))]

= 1

β
E[η(n)J (θ (n))] + E[η(n)η(n)T ∇ J (θ (n))]

+ βE[η(n)η(n)T ∇2 J (θ (n))η(n)] + o(β). (44)

As before, it can be easily verified that the first term on the rifht-hand side of
(44) is zero. For the second term above, note that

E[η(n)η(n)T ∇ J (θ (n))] = E[η(n)η(n)T ]∇ J (θ (n)) = ∇ J (θ (n)).

The last equality follows since E[η(n)η(n)T ] = I (the identity matrix). A routine
calculation also shows that

E[η(n)η(n)T ∇2 J (θ (n))η(n)] = 0.

Hence,

Dβ,1 J (θ (n)) = ∇ J (θ (n)) + o(β).

The claim follows.

Using Corollary A.13 and Proposition A.14, a simple application of the tri-
angle inequality gives the following:

COROLLARY A.15. With probability 1, as n → ∞ and β → 0,

‖ Z (nL) − ∇ J (θ (n)) ‖→ 0.

Finally, we consider the slowest timescale recursion. Consider the ODE
.

θ = 
̃(−{P (∇2 J (θ (t)))}−1∇ J (θ (t))), (45)

where for any y ∈ RN and a bounded, continuous function v(·) : RN → RN ,


̃(v( y)) = lim
0<η→0

(

( y + ηv( y)) − 
( y)

η

)
.

Let

K
= {θ ∈ C | ∇ J (θ )T 
̃(−{P (∇2 J (θ ))}−1∇ J (θ )) = 0}.

Further, for any set S ⊆ C, given η > 0, Sη = {θ ∈ C |‖ θ − θ0 ‖≤ η, θ0 ∈ S} shall
denote the set of all points in C that are in an “η-neighborhood” of the set S. Let
K̂ denote the set {θ ∈ C | 
̃(−{P (∇2 J (θ ))}−1∇ J (θ )) = −{P (∇2 J (θ ))}−1∇ J (θ )}.
Let Co denote the interior of C. Then, one can see that Co ⊆ K̂ . We have the
following key result.

THEOREM A.16. Under Assumptions (A1)–(A4), given η > 0, there exists β̂ >

0, such that, for all β ∈ (0, β̂], the sequence {θ (n)} obtained using N-SF1 converges
to a point in K η with probability 1 as M → ∞.
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PROOF. Recall that the parameter update recursion corresponds to

θ (n + 1) = 
(θ (n) − a(n){P (Y (nL))}−1 Z (nL)). (46)

Note that one can rewrite (46) as

θ (n + 1) = 
(θ (n) − a(n)({P (∇2 J (θ (n)))}−1∇ J (θ (n))

+ ({P (∇2 J (θ (n)))}−1 − {P (Y (nL))}−1)∇ J (θ (n))

+ {P (Y (nL))}−1(∇ J (θ (n)) − Z (nL)))).

Note that as a consequence of Lemma A.9, Corollary A.15, and Assumption
(A3), the second and third terms multiplying a(n) above asymptotically vanish
as n → ∞ and β → 0. One can then view (46) as a noisy Euler discretization
of the ODE (45) using a standard approximation argument as on pp. 191–196
of Kushner and Clark [1978]. Note that J (θ ) itself serves as an associated
Liapunov function for (45) since (cf. p. 75 of Kushner and Yin [1997]),

dJ(θ )

dt
= ∇ J (θ )T .

θ = ∇ J (θ )T 
̃(−{P (∇2 J (θ ))}−1∇ J (θ )) ≤ 0.

In particular for θ ∈ K̂ , d J (θ )
dt < 0 if ∇ J (θ ) �= 0. Now since J (θ ) satisfies As-

sumption (A1), it is in particular continuous and hence uniformly bounded on
the compact set C ⊂ RN . Let λ = supθ J (θ ) < ∞. Then {θ | J (θ ) ≤ λ} = C. It
follows from Lasalle’s invariance theorem (see Lasalle and Lefschetz [1961])—
stated also as Theorem 2.3, p. 76 of Kushner and Yin [1997]—that θ (n) → θ∗,
for some θ∗ ∈ K , as n → ∞ and β → 0.

Note that for θ ∈ K̂ ∩ K , ∇ J (θ ) = 0 since {P (∇2 J (θ ))}−1 is positive definite
and symmetric as P (∇2 J (θ )) is by definition of the operator P . Further, as noted
in Kushner and Yin [1997] (cf. p. 79), there may be spurious fixed points within
K as well. These, however, lie only on the projection set boundary.

Now note that K̄ ≡ {θ | ∇ J (θ ) = 0} constitutes the set of all Kuhn-Tucker
points (not just local minima). However, points that are not local minima
shall correspond to unstable equilibria. In principle, the stochastic approxima-
tion scheme may get trapped in an unstable equilibrium (cf. Pemantle [1990],
Brandiere [1998]). Avoidance of unstable equilibria can be ensured by using
additional independent noise. In most practical scenarios, however, stochastic
approximation algorithms are known to converge to a stable equilibrium even
without additional noise. Our algorithm, by continuity of J (·), converges to an
“ε-local minimum.”

Next, note that we have used Assumption (A1) only to show that the scheme
would converge to a local minimum of J (θ ) if β were slowly decreased to zero.
The original scheme however is for a given β > 0. Hence, in the absence of
Assumption (A1), consider the following ODE:

.

θ= 
̃(−{P (D2
β,1 J (θ (t)))}−1 Dβ,1 J (θ (t))). (47)

Note that by Lemma 2.1 and the fact that h(·) is Lipschitz continuous, J (θ )
can be seen to be a continuous function. Moreover, since C is a compact set,
J (θ ) is also uniformly bounded on C, thereby implying that the ODE (47) is
well posed. One can show using the above methods (without assuming (A1))
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that the algorithm, for given β > 0, tracks the stable fixed points of (47) and
converges to a θ for which Dβ,1 J (θ ) = 0. Thus, in our analysis, Assumption
(A1) has been used in characterizing the point of convergence as being a local
minimum when β → 0.

Finally, note that Theorem A.16 merely gives the existence of a β̂ > 0, for
given ε > 0, such that ∀β ∈ (0, β̂], the algorithm converges to an ε-local min-
imum but does not give the precise value of such a β̂. The variability in the
gradient estimates (7)–(8) that we use in G-SF1/N-SF1 and G-SF2/N-SF2, re-
spectively, has been discussed in detail in Styblinski and Tang [1990]. It was
observed there that a low value of β greatly increases the variability in esti-
mates of (7), while for (8), this effect is not as significant. We also observe in
our analysis that estimates (7) have a higher bias than (8). Similarly, estimates
(13) of the Hessian (in N-SF1) have a higher bias compared with estimates
(16) (in N-SF2) (see discussion following Proposition A.18). We have seen in
our experiments that N-SF2 converges faster than N-SF1 and exhibits fewer
inaccuracies compared with the latter as β is made low or high.

A.2 Convergence Analysis of N-SF2

The analysis for this case proceeds along similar lines as N-SF1 with operators
Dβ,2 and D2

β,2 being used in place of Dβ,1 and D2
β,1 respectively. We only present

here the main results.

PROPOSITION A.17. ‖ D2
β,2 J (θ (n)) − ∇2 J (θ (n)) ‖→ 0 as β → 0.

PROOF. Recall that

D2
β,2 J (θ (n)) = E

[
1

2β2
H̄(η(n))(J (θ (n) + βη(n)) + J (θ (n) − βη(n)))

]
,

where η(n) = (η1(n), . . . , ηN (n))T is a vector of independent N (0, 1) random
variates. Using suitable Taylor series expansions of J (θ (n)+βη(n)) and J (θ (n)−
βη(n)) around θ (n), one gets

D2
β,2 J (θ (n)) = E

[
1

2β2
H̄(η(n))(2J (θ (n)) + β2η(n)T ∇2 J (θ (n))η(n) + o(β3))

]
.

It has been shown in the proof of Proposition A.7 that E[H̄(η(n))J (θ (n))] = 0
and 1

2
E[H̄(η(n))η(n)T ∇2 J (θ (n))η(n)] = ∇2 J (θ (n)), respectively. The claim fol-

lows.

For the gradient estimates of N-SF2, we have the following analog of Propo-
sition A.14.

PROPOSITION A.18. ‖ Dβ,2 J (θ (n)) − ∇ J (θ (n)) ‖→ 0 as β → 0.

PROOF. Recall that

Dβ,2 J (θ (n)) = E
[
η(n)

2β
(J (θ (n) + βη(n)) − J (θ (n) − βη(n)))

]
.

Using appropriate Taylor series expansions of J (θ (n) + βη(n)) and J (θ (n) −
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βη(n)), respectively, around the point θ (n), one gets

Dβ,2 J (θ (n)) = E[η(n)η(n)T ∇ J (θ (n))] + o(β),

= ∇ J (θ (n)) + o(β),

since E[η(n)η(n)T ] = I . The claim follows.

It can be seen from the proofs of Propositions A.14 and A.18 that the overall
bias in the gradient estimates (8) is much less compared width those in (7).
The same is also true of the corresponding Hessian estimates with the two-
sided estimates (16) having much less bias compared with the one-sided ones
in (13) (see Propositions A.7 and A.17). This is because of the direct cancellation
of many of the terms that contribute to the bias in the corresponding Taylor
series expansions in the two-sided estimates as opposed to the same terms being
mean-zero in the case of estimates in N-SF1. We finally have the following key
result whose proof follows along the same lines as that of Theorem A.16.

THEOREM A.19. Under Assumptions (A1)–(A4), given η > 0, there exists β̂ >

0, such that for all β ∈ (0, β̂], the sequence {θ (n)} obtained using N-SF2 converges
to a point in K η with probability 1 as M → ∞.

A.3 Convergence Analysis of G-SF2

Note that one can view G-SF2 as being similar to N-SF2 with the difference that
one sets here each estimate of the Hessian matrix as I (the identity matrix).
Assumption (A3) is thus not needed. Note also that P (I ) = I since I is positive
definite and symmetric. The analysis proceeds by following a similar sequence
of steps as before. The conclusions of Proposition A.18 continue to hold as the
gradient estimates in N-SF2 and G-SF2 are the same. Consider now the ODE
(tracked by the slowest timescale recursion):

.

θ= 
̃(−∇ J (θ (t)). (48)

The set of stable fixed points of this ODE lie within the set K1
= {θ ∈ C |


̃(−∇ J (θ )) = 0}. However, note that K1 = K when {P (∇2 J (θ ))}−1 is set equal
to I here. This can be seen as follows. Suppose θ ∈ K . Then either ∇ J (θ ) = 0 or

̃(−∇ J (θ )) = 0. If the latter holds, then θ ∈ K1. On the other hand, if ∇ J (θ ) = 0,
then 
̃(−∇ J (θ )) = 0 as well and θ ∈ K1. Next, suppose θ ∈ K1. Then clearly

θ ∈ K as well. Now consider the set K̂1
= {θ ∈ C | 
̃(−∇ J (θ )) = −∇ J (θ )}. It is

easy to see that Co ⊂ K̂1. Also, one can see that the regular fixed points in K
(with the earlier definition of K , namely, with {P (∇2 J (θ ))}−1 not set to I ) also
lie in K1 and vice versa. The only difference between these two sets would only
be (if at all) in the spurious fixed points that, however, lie only on the boundary
of the projection set. One can now proceed along similar lines as before to show
the following

THEOREM A.20. Under Assumptions (A1), (A2) and (A4), given η > 0, there
exists β̂ > 0, such that for all β ∈ (0, β̂], the sequence {θ (n)} obtained using G-SF2
converges to a point in K η

1 with probability 1 as M → ∞.
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A.4 Convergence Analysis of the Jacobi Variants of N-SF1 and N-SF2

The analysis for the Jacobi variants of algorithms N-SF1 and N-SF2 that we
used in the numerical experiments also proceeds along similar lines as before.
Note, however, that instead of D2

β,1 J (θ ) and D2
β,2 J (θ ), one has in this case

D̄2
β,1 J (θ ) = E

[
1

β2
H̄1(η)J (θ + βη)

]
,

D̄2
β,2 J (θ ) = E

[
1

2β2
H̄1(η)(J (θ + βη) + J (θ − βη)

]
,

respectively, as the one- and two-sided estimates of the matrix that is the analog
of the Hessian in N-SF1 and N-SF2, respectively. Here H̄1(η) is the matrix

H̄1(η) =

⎡
⎢⎢⎣

((η1)2 − 1) 0 · · · 0

0 ((η2)2 − 1) · · · 0
· · · · · · · · · · · ·
0 0 · · · ((ηN )2 − 1)

⎤
⎥⎥⎦ , (49)

where η = (η1, . . . , ηN )T is a vector of independent N (0, 1) random variates. Let
D2 J (θ ) be the matrix

D2 J (θ ) =

⎡
⎢⎢⎣

∇11 J (θ ) 0 · · · 0
0 ∇22 J (θ ) · · · 0
· · · · · · · · · · · ·
0 0 · · · ∇N N J (θ )

⎤
⎥⎥⎦. (50)

The following directly follows from Propositions A.7 and A.17.

COROLLARY A.21. For l = 1, 2, ‖ D̄2
β,l J (θ (n)) − D2 J (θ (n)) ‖→ 0, as β → 0.

Consider now the ODE:
.

θ= 
̃(−{P (D2 J (θ (t)))}−1∇ J (θ (t))). (51)

Let

K0
= {θ ∈ C | ∇ J (θ )T 
̃(−{P (D2 J (θ ))}−1∇ J (θ )) = 0}.

Also, let K̂0
= {θ ∈ C | 
̃(−{P (D2 J (θ ))}−1∇ J (θ )) = −{P (D2 J (θ ))}−1∇ J (θ )}. One

can see that Co ⊆ K̂0. Note also that, for all θ ∈ K̂0, ∇ J (θ ) = 0. The discussion
following Theorem A.16 is also valid here and it can be seen that the regular
fixed points in K would also lie in K0 and vice versa. The only difference between
these two sets (if at all) would only be in spurious fixed points that, however,
only lie on the boundary of the projection set. We thus have the following result.

THEOREM A.22. Under Assumptions (A1)–(A4), given η > 0, there exists β̂ >

0, such that for all β ∈ (0, β̂], the sequence {θ (n)} obtained using either of the
Jacobi variants of N-SF1 or N-SF2 converges to a point in K η

0 with probability
1 as M → ∞.
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