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Abstract: The main object in this study concerns to 
vibration control of a one-link flexible arm system. The 
robot link manipulators are widely used in various 
industrial applications. A variable structure system 
(VSS) non-linear observer has been proposed in order 
to reduce the oscillation in controlling the angular. The 
non-linear observer parameters are optimized using a 
novel version of simultaneous perturbation stochastic 
approximation (SPSA) algorithm. The SPSA algorithm 
is especially useful when the number  of parameters  
to be  adjusted is large, and makes it possible to 
estimate them very efficiently. As for the vibration and 
position control , a model reference sliding mode 
control (MR-SMC) has been proposed. The simulations 
show that the vibration and position controls of a 
one-link flexible arm system can be achieved more easy 
and efficiently with a non-linear observer designed 
using our proposed modified SPSA algorithm. 
 
Keywords: Non-linear Observer, Simultaneous 
Perturbation Method, Flexible Arm System, Fisher 
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   1. Introduction 
 

It is well known that the demand for increase 
productivity by robots can be partly met by the 
use of lighter robots operating at high speeds and 
consuming less energy. This would result in an 
increase in robot deflection and poor performance 
due to the effect of mechanical vibration in the 
links, and bring difficulties for control [1]. Thus, 
vibration control of a robotic manipulator system 
has been an important research area in the last 
decade [1]-[5]. On the other hand, the robots are 
highly non-linear, whose mathematical models 
usually consist of a set of linear or non-linear 
differential/difference equations derived by using 
some forms of approximation [2].  A flexible arm 
can be modeled as an infinite  dimensional 
system. However, it is almost impossible to 
practically design a controller based on an infinite 
dimensional model. Usually, reduced order 
models of the flexible arm are employed to design 
the controller [3].  In this paper, we consider a 
one-link flexible arm. One end of this arm is 

attached to a motor and the other end carries a 
payload. The control of vibration and angular 
position of the arm is taken as our purpose. Since 
the feedback of only the motor angle will not be 
sufficient to suppress the oscillation, a variable 
structure system (VSS) non-linear observer is 
incorporated. Also, a model reference sliding 
mode control (MR-SMC) is established as  a 
very efficient control method. However, there are 
many design parameters  for the observer and 
SMC to be determined, so that it is difficult to 
design them in advance. Hence, in order to 
overcome the problem, the simultaneous 
perturbation stochastic approximation (SPSA) 
algorithm is used to obtain the parameters of the 
VSS non-linear observer and controller. 
 
2. Dynamic Modeling of a Single 
Flexible Link Robot Arm 

2.1 Dynamic Model 

The physical configuration of a robot arm 
considered in this work is given in Fig.1. The 
mass and elastic properties are assumed to be 
distributed uniformly along the elastic arm. The 
flexible arm shown in Fig.1 is modeled as a 
continuous cantilever beam of length L that has a 
mass m, torque T that rotates the elastic arm and a 
mass M that is the payload at the end of the arm. 
We use Lagrange’s equation to obtain the 
equations of motion [4].  The deflection  

),( txy  is described by an infinite series of 
separable modes. 
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where )(xi  is a characteristic function and 
)(tqi is a mode function. The kinetic and potential 

energies of the arm can be determined as follows: 
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where  is the angle of the joint, E is Young's 
modulus, and I is the area moment of inertia 
where 
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       Fig. 1 One-link flexible arm. 
 
2.2 Equation of Motion 

 
The robot arm is assumed as a cantilever beam 
carrying a mass. The eigenfunctions of a 
cantilever beam with a constant length is given by 

l

x

l

x

l

x

l

x
sinsinh

sinsinh

coscosh
coscosh . (8) 

Each individual mode shape function  may be 
found by substituting the value  determined from 
the following expression  into (8): 

01coscosh .                      
Assuming that only the first mode exists, from (2) 
and (3), and using  Lagrange's equations as in 
[5][6], we obtain  

0
111 q

V
q
T

q
T

dt
d

TVTT
dt
d

ee

ee

             (9)  

y
qqH
qqT

q 2
11111

1111

11101

0100 2
 (10) 

where 
2
111

2
00 qMLJ ,T is the 

motor’s shaft torque, J is the moment of inertia, 
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11 , a is the area of the cross 

section, is the density, and y is the observation  
of  .  Defining the  state variables  such that 

1x = , 2x , 13 qx , 14 qx ,  
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The equation of motion of the cantilever beam for 
free vibration is written as  
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The boundary conditions are 
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 3. Proposed Modified SPSA Algorithm 

 
The second order of simultaneous perturbation 
stochastic approximation (2SPSA) algorithm 
provide two general recursions for the estimate 

)ˆ( k  of a solution *  having a dimension p, 
this is written as [7]  

)ˆ(ˆˆˆ 1
1 kkkkkk gHa )( kkk HfH  (17a)         

kkk H
k

H
k

kH ˆ
1

1
1 1  k=0,1,2   (17b) 

where ka  is a scalar gain  that satisfies  
stochastic approximations (SA) conditions [7], 

kĝ  is the simultaneous perturbation (SP) that 
estimates  the loss function gradient using 

kc (the perturbation vector defined in [7]), kĤ  

is the estimates of the Hessian matrix, and kf  

maps a usual non-positive-definite kH  to a 

positive-definite pxp matrix. Let k be a 
user-generated mean-zero random vector of 
dimension p with its components being 
independent random variables, the gradient kg  
is obtained by one-side approximations (in order 
to limit the number of function evaluations). We 
suggest the following approach that eliminates the 
non-positive definiteness while preserving key 

spectral properties of kH . First, we compute the 

eigenvalues of kH and sort them into descending 
order: 

k diag ],...,,,,...,,[ 1121 pqqq (18) 

where 0q and 01q . Next, we assume 
that the negative eigenvalues will not lead to a 
physically meaningful solution. They are either 

caused by errors in kH  or are due to the fact 
that the iteration has not reached the neighborhood 
of *  where the loss function is locally 
quadratic [8]. Therefore, we replace them together 

with the smallest positive eigenvalue with a 
descending series of positive eigenvalues: 

111
ˆˆ,...,ˆˆ,ˆ

ppqqqq    (19) 

where the adjustable parameter 10 can be 
specified based on the existing positive 
eigenvalues [8]: 

2
11 )/( q

q                      (20) 
The purpose of having the smallest positive 

eigenvalue )( q redefined is to avoid its possible  
near-zero values that would make the mapping 

matrix kH  nearly singular. Since kH  is 
symmetric, it is orthogonally similar to the real 
diagonal matrix of its real eigenvalues [8]. 

T
kkkk PPH                     (21) 

where, the orthogonal matrix kP consists of all 

eigenvectors of kH which are usually derived 
together with the eigenvalues. Now, the mapping 

kf  can be expressed as  
T

kkkkk PPHf ˆ)(                   (22) 

where k
ˆ be  the diagonal matrix of k , the 

2SPSA algorithm based on the mapping (22) 
makes the procedure of eliminating the 

non-positive definiteness of kH a precise one.  
In this part, we use the Fisher information matrix 

)(nF   instead of the Hessian matrix kH in order 
to keep and guarantee the estimation matrix be 
positive definite [8]. This Fisher information 
matrix provides a summary of the amount of 
information in the data relative to the quantities of 
interest.  The essence of the method is to produce 
a large number of efficient “almost unbiased” 
estimates of the Hessian matrix, and then average 
the negatives of these estimates to obtain an 
approximation of )(nF .   In these estimates, 
the gain series at each iteration  are determined 
using the 2SPSA algorithm (17a) by replacing 

k
ˆ  mapping kf of (22) with k

ˆ  contains 
constant diagonal elements  

)ˆ(ˆˆˆ 1
1 kkkkkk ga              (23) 

where k  is the geometric mean of all the 

eigenvalues of )(nF   
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Recursions (23) and (17b) together with (18)–(20) 
and (24) form a modified version  of the 2SPSA 
(called the 3SPSA) that takes the advantages of 
both the well-conditioned SPSA and the internally 
determined gain sequence of the 2SPSA. The 
unknown parameters of non-linear observer are 
estimated by minimizing the following maximum 
likelihood cost function taking into account the 
measurement noise [9]: 

))(ˆ())(ˆ(
2
1min)(min 1

1
iii

T
N

i
iim xyQxyJ  

where iy , iQ   and )(ˆix are the measurement 
vector, the measurement error matrix and the state 
estimates obtained from the non-linear observer 
system, respectively [9]. N is the number of 
iterations for estimating the parameters. This 
algorithm updates  the estimates using the 
following procedure: 
(S.1) The output to be identified is observed with     
     respect to a particular input.  
(S.2)  Perturbation is added to all the parameters   
     in the estimation vector.   
(S.3)  The error function is calculated.  
(S.4)  The amount of correction is calculated and  
     the estimation parameters are updated. 
(S.5)   Return to  S.1. 
 

 4. Design of Non-linear Observer 
 
Since only the motor angle 1x  is the measurable 

state variable, the remaining states 32 , xx and 

4x  are predicted using intelligent state observer 
design [10]. For this,  (10) is written as   

Txgxfx )()(                    (25) 
Cxy   

].0001[C              (26) 
For this non-linear system, we consider a robust 
VSS observer, which predicts system states. This 
is defined as  

)ˆ()ˆ()ˆ()ˆ(ˆ yyKyMTxgxfx  (27) 
xCy ˆˆ                              (28) 

y
yxgyM
ˆ

)()ˆ(                (29) 

)ˆ(ˆ xxCyyy                 (30) 

where x̂  represents the predicted value of 
system state as in [10], K is the observer gain 
matrix, )(yM  is the observer non-linearity 
term,  represents the gain and >0 is an 
averaging constant for removing chattering. Now 
defining the estimation error as  

xxe ˆ                            (31) 
we have 

.)(
)ˆ()]()ˆ([)()ˆ(

yM
xxKCTxgxgxfxfe

(32) 

For the evaluation of the observer gain K with 

dx as the desired point, using the Taylor series 
expansion and its first order approximation, the 
error system is given as   
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Choosing  a Lyapunov function of e as 
2

2
1 eV                            (37) 

and  integrating V with respect to e yields  

).1)(( 0
2

eC
CxgAeeeV          (38) 

If  K is designed such that the eigenvalues of 
error system (34)  are all negatives, then 
selection of  0)(0 xgA  yields 0V  
and the Lyapunov’s stability theory gives e(t) 0 
as .t In the simulation, we chose 

]0002.0[dx  and computed A and G 
with the observer parameters determined with 
SPSA(see sec. 3). Therefore, as to ensure the 
stability of (39) minimizing the following 
evaluation parameters: 

2

0 )ˆ( yyJ                    (39)                  

where, K=[-339  -19002  15.2020   -10109 ],  
0.012 , =0.013. We can get these values 

more easily using the SPSA algorithm, because 
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this  has less computational complexity [9].  
 

5. Model Reference Sliding 
Mode Controller 

 
In this section, the main purpose of this kind of 
control is to make the state converge to the sliding 
mode surface. Therefore, we choose the desired 
response based on a second order reference model 
given as [10] 
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 (40)  

where n  is the eigenvalue of angular 

frequency and mU is the model input. 
The following sliding mode hyper-plane for (10) 
is defined by: 

44332211 )()( xsxsxxsxxs mm (41) 
where all the state variables can be predicted by 
the observer. When the sliding mode is in 
operation, then  

0                                (42) 
.0                               (43) 

The equivalent control input can be obtained by 
substituting (10) into (43). This gives 

4443221
2
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2
21131
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43211
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where it can  be assumed that 
 0)/( 11

2
0100 .  

Now, we   consider the  design  of  sliding  
mode  controller  (SMC), which   in  the  
non-linear  input to make the state converging  
in   the  hyper-plane. Assuming the  

equivalent control input eqT  and non-linear 

control input T [10], we have  
)(sat),( txkTTTT eqeq      (45) 

where 

if

if

if

1

1

)sat(             (46) 

and ),( txk  is the control input function. is a 
constant to eliminate the chattering. The condition 
for realization of the sliding mode is obtained 
from the Lyapunov function. We choose a 
Lyapunov function of    to confirm 

0  : 

.
2
1 2V                            (47) 

V is given by 
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Substituting (45) into (48), we have 

.0),()sgn(),( 22 stxktxksV (49) 

Since 02s
if we choose k(x,t) > 0, then the 

state variable x will converge in the slide mode 
hyper-plane. The controller gains are determined 
using the SPSA algorithm (see sec. 3) so as to 
minimize the cost function [10] 

.])([ 31 xxxLJ mh         (50) 

The parameters values are 4.31s , 2s =2, 

3s =11.23,  4s =-0.58 and  = 0.43,  
k(x,t)=3.45. 

 
  6. Simulation Results 

 
In this study, a sliding mode based controller is 
designed to achieve the end-point tracking of a 
flexible arm. These results are compared with 
previous simulations without the proposed 
algorithm [10]. The numerical values used are as 
follows: t =0.1[ms], M=0.026[kg], 
J=0.0013823[kg 2m ],.m=0.028[kg],. a =0.0648[

kg/m],.EI=0.09088[ 2mN ], L=0.4[m], 0x =[-0.1 0 

0 0]T and dx =[ 0.1 0 0 0]T. Figure 2 shows 
typical responses of the system at the tip position. 
This position is a little over-damped with 
practically no overshoot.   
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Fig.2 Bending deformation. Without SPSA 
algorithm (dashed line (- -)). With SPSA 
algorithm and non-linear observer (solid line (-)). 

 
Fig.3 shows the tip position. The non-linear 
observer and the sliding mode control provides a 
stable operation. 

Fig.3 Tip position. Without SPSA algorithm 
(dashed line(- -)). With SPSA algorithm and 
non-linear observer (solid line (-)). 

 
Fig.4 shows the tip velocity. The algorithm 
proposed reduce the magnitude of velocity to a 
small value. 

Fig.4 Tip Velocity. Without SPSA algorithm 
(dashed line(- -)). With SPSA algorithm non-linear 
observer (solid line (-)). 
 

          7. Conclusion 
 
We have proposed a MR-SMC method using a 
non-linear observer for controlling the angular  
position of a flexible arm, suppressing its 
oscillation. We also have proposed the use of the 
SPSA algorithm for the estimation of the observer 
gains and the parameters in the sliding 
hyper-plane. The SPSA has very low 
computational complexity for solving difficult  
estimation problems in an efficient way, such as 
the observer gains. The non-linear observer was 
successful in predicting the state variables from 
the motor angular position. The simulation results 
motivate a real implementation of the proposed 
method with a flexible arm. The effectiveness of 
the proposed algorithm was verified by the 
simulation results and comparison with the 
previously algorithms under the same conditions. 
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